Chapter-11
 Constructions

Exercise 11.1

Q. 1 Draw a line segment of length 7.6 cm and divide it in the ratio 5: 8. Measure the two parts.

Steps of construction:

i. At first, we will draw a line segment $\mathrm{AB}=7.6 \mathrm{~cm}$.

ii. Draw a ray AX such that it makes an acute angle with AB .

iii. Now, locate 13 points $(5+8) A_{1}, A_{2}, A_{3}, \ldots \ldots . A_{13}$ on $A X$ so that;
$\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{A}_{5} \mathrm{~A}_{6}=\mathrm{A}_{6} \mathrm{~A}_{7}=\mathrm{A}_{7} \mathrm{~A}_{8}=\mathrm{A}_{8} \mathrm{~A}_{9}=$ $\mathrm{A}_{9} \mathrm{~A}_{10}=\mathrm{A}_{10} \mathrm{~A}_{11}=\mathrm{A}_{11} \mathrm{~A}_{12}=\mathrm{A}_{12} \mathrm{~A}_{13}$

iv. Join A_{13} to B
v. Draw a line $\mathrm{A}_{5} \mathrm{C} \| \mathrm{A}_{13} \mathrm{~B}$; which intersects AB at point C and passes Through the point A_{5}.

Now we have, $\mathrm{AC}: \mathrm{CB}=5: 8$
On measuring with the scale.
$\mathrm{AC}=2.92 \mathrm{~cm}$
And
$\mathrm{CB}=4.68 \mathrm{~cm}$

Justification:

Since $\angle \mathrm{AA}_{13} \mathrm{~B}=\angle \mathrm{AA}_{5} \mathrm{C}$
With AX is a transversal, corresponding angles are equal, Hence $\mathrm{A}_{13} \mathrm{~B}$ and $\mathrm{A}_{5} \mathrm{C}$ are parallel.
So by basic proportionality theorem, $\frac{A A_{5}}{A_{5} A_{13}}=\frac{A C}{C B}$
By construction $\frac{A A_{5}}{A_{5} A_{13}}=\frac{5}{8}$
So, $\frac{A C}{C B}=\frac{5}{8}$
Hence C divides AB in the ratio 5:8.
Q. 2 Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

Answer: Steps of construction:
i. Now in order to make a triangle, draw a line segment $A B=4 \mathrm{~cm}$.

ii. Then, draw an arc at 5 cm from point A. From point B, draw an arc at 6 cm in such a way that it intersects the previous arc. Join the point of intersection from points A and B. This gives the required triangle ABC.

iii. Now, divide the base in the ratio $2: 3$. Draw a ray AX which is at an acute angle from $A B$. Then, plot three points on $A X$ such that; $\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}$. Join A_{3} to B .
iv. Draw a line from point A_{2} parallel to $A_{3} B$ and intersects $A B$ at point B'.
v. Draw a line from point B^{\prime} that is parallel to BC intersecting AC at point C'.

Hence, triangle $A B^{\prime} C^{\prime}$ is the required triangle. justification:

Since the scalar factor is $2 / 3$
We need to prove:
$\frac{A B \prime}{A B}=\frac{A C \prime}{A C}=\frac{B \prime C \prime}{B C}=\frac{2}{3}$
By construction,

$$
\begin{equation*}
\frac{A B \prime}{A B}=\frac{A A_{2}}{A A_{3}}=\frac{2}{3} \tag{1}
\end{equation*}
$$

Also, $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is parallel to BC .
So, both will make same angle with AB .
$\therefore \angle \mathrm{AB}^{\prime} \mathrm{C}^{\prime}=\angle \mathrm{ABC}$ (corresponding angles)
In $\triangle \mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{A}=\angle \mathrm{A}$ (common)
$\angle \mathrm{AB}^{\prime} \mathrm{C}^{\prime}=\angle \mathrm{ABC}$
So, by AA similarity
$\Delta \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \Delta \mathrm{ABC}$
As we know if two triangles are similar the ratio of their corresponding sides are also equal.

So,

$$
\frac{A B^{\prime}}{A B}=\frac{A C^{\prime}}{A C}=\frac{B^{\prime} C^{\prime}}{B C}
$$

From (1),
$\frac{A B^{\prime}}{A B}=\frac{A C^{\prime}}{A C}=\frac{B^{\prime} C^{\prime}}{B C}=\frac{2}{3}$
Hence proved.
Q. 3 Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Answer: 1. Now in order to make a triangle, draw a line segment $A B$ $=5 \mathrm{~cm}$. From point A, draw an arc at 6 cm . Draw an arc at 7 cm from point B intersecting the previous arc.
2. Join the point of intersection from A and B.

Hence, this gives the required triangle ABC
3. Dividing the base, draw a ray AX which is at an acute angle from AB

4. Plot seven points on $A X$ such that:
$\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{A}_{5} \mathrm{~A}_{6}=\mathrm{A}_{6} \mathrm{~A}_{7}$.

5. Join A_{5} to B.
6. Draw a line from point A_{7} that is parallel to $\mathrm{A}_{5} \mathrm{~B}$ and joins $\mathrm{AB}^{\prime}(\mathrm{AB}$ extended to AB^{\prime}).
7. Draw a line $B^{\prime} C^{\prime} \| B C$.

Hence, triangle $A B^{\prime} C^{\prime}$ is the required triangle.
Q. 4 Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle.
Answer: Steps of construction:
i. Now in order to make a triangle, draw a line segment $\mathrm{AB}=8 \mathrm{~cm}$.
A $8 \mathrm{~cm} \quad$ B
ii. Draw two arcs intersecting at 4 cm distance from points A and B ; on either side of AB .
Join these arcs to get perpendicular bisector CD of AB. (Since,
altitude is the perpendicular bisector of base of isosceles triangle).

iii. Join points A and B to C in order to get the triangle $A B C$.

iv. Now, draw a ray $A X$ which is at an acute angle from point A.

As $1 \frac{1}{2}=\frac{3}{2}$
And 3 is greater between 3 and 2, So Plot 3 points on $A X$ such that:
$\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}$.

v. As 2 is smaller between 2 and 3. Join A_{2} to point B.

Draw a line from A_{3} which is parallel to $A_{2} B$ meeting the extension of AB at B .

vi. Draw $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \| \mathrm{BC}$. Then, draw $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$.

Triangle $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ is the required triangle.

Justification:

We need to prove,
$\frac{A C \prime}{A C}=\frac{A B^{\prime}}{A B}=\frac{C^{\prime} B^{\prime}}{C B}=\frac{3}{2}$
By construction $\frac{A B \prime}{A B}=\frac{A A_{3}}{A A_{2}}=\frac{3}{2}$
s C'B' || CB
They will maker equal angles with line $\mathrm{AB} . \angle \mathrm{ACB}=\angle \mathrm{AC}^{\prime} \mathrm{B}^{\prime}$ (corresponding angles)
In $\triangle \mathrm{ACB}$ and $\triangle \mathrm{AC}^{\prime} \mathrm{B}^{\prime}$
$\angle \mathrm{A}=\angle \mathrm{A}$ (common) $\angle \mathrm{ACB}=\angle \mathrm{AC}^{\prime} \mathrm{B}^{\prime}$ (corresponding angles)

So $\triangle \mathrm{ACB} \sim \Delta \mathrm{AC}^{\prime} \mathrm{B}^{\prime}$
As corresponding sides of similar triangles are in ratio,Hence, $\frac{A C \prime}{A C}=$ $\frac{A C \prime}{A C}=\frac{A B \prime}{A B}=\frac{C^{\prime} B \prime}{C B}=\frac{3}{2}$
Q. 5 Draw a triangle ABC with side $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC .

Answer:

Given in $\triangle \mathrm{ABC}$,

- Length of side $\mathrm{BC}=6 \mathrm{~cm}$.
- Length of side $\mathrm{AB}=5 \mathrm{~cm}$.
- $\angle \mathrm{ABC}=60^{\circ}$.

Steps of Construction:

1. Draw a line segment BC of length 6 cm .

2. With B as center, draw a line which makes an angle of 60° with BC.

Construction of 60° angle at B:
a. With B as centre and with some convenient radius draw an arc which cuts the line BC at
D.

b. With D as radius and with same radius (in step a), draw another arc which cuts the previous arc at E .

c. Join BE. The line BE makes an angle 60° with BC.

3. Again with B as centre and with radius of 5 cm , draw an arc which intersects the line BE at point A .

4. Join AC. This is the required triangle.

5. Now, from B, draw a ray BX which makes an acute angle on the opposite side of the vertex A .

6. With B as center, mark four points B_{1}, B_{2}, B_{3} and B_{4} on $B X$ such that they are equidistant. i.e. $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}$.

7. Join $\mathrm{B}_{4} \mathrm{C}$ and then draw a line from B_{3} parallel to $\mathrm{B}_{4} \mathrm{C}$ which meets the line BC at P .

8. From P , draw a line parallel to AC and meets the line AB at Q . Thus $\triangle \mathrm{BPQ}$ is the required triangle.

Q. 6 Draw a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}, \angle \mathrm{A}=$ 105°. Then, construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.

Answer:

Steps of construction:

1. Draw a line segment $\mathrm{BC}=7 \mathrm{~cm}$.

2. Draw $\angle \mathrm{ABC}=45^{\circ}$ and $\angle \mathrm{ACB}=30^{\circ}$ i.e. $\angle \mathrm{BAC}=105^{\circ}$.

We obtain $\triangle \mathrm{ABC}$.
3. Draw a ray BX making an acute angle with BC . Mark four points $B_{1}, B_{2}, B_{3}, B_{4}$ at equal distances.

4. Through B_{3} draw $\mathrm{B}_{3} \mathrm{C}$ and through B_{4} draw $\mathrm{B}_{4} \mathrm{C}_{1}$ parallel to $\mathrm{B}_{3} \mathrm{C}$. Then draw $\mathrm{A}_{1} \mathrm{C}_{1}$ parallel to AC .

$\therefore \mathrm{A}_{1} \mathrm{BC}_{1}$ is the required triangle.
Q. 7 Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm . Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

Answer: Steps of construction:

1. Now in order to make a triangle, draw a line segment $\mathrm{AB}=3$ cm.

2. Make a right angle at point A and draw $\mathrm{AC}=4 \mathrm{~cm}$ from this point.

3. Join points A and B to get the right triangle $A B C$.

4. Now, Dividing the base, draw a ray AX such at it forms an acute angle from AB.

5. Then, plot 5 points on $A X$ such that:
$\mathrm{AG}=\mathrm{GH}=\mathrm{HI}=\mathrm{IJ}=\mathrm{JK}$.

6. Join I to point line $A B$ and Draw a line from K which is parallel to IB such that it meets $A B$ at point M.
7. Draw MN \| CB.

This is the required construction, thus forming AMN which have all the sides $5 / 3$ times the sides of ABC

Triangle AMN is the required triangle.

Exercise 11.2

Q. 1 Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Answer:

Step1: Draw circle of radius 6 cm with center A, mark point C at 10 cm from center.

Step 2: find perpendicular bisector of AC

Step3: Take this point as center and draw a circle through A and C

Step 4: Mark the point where this circle intersects our circle and draw tangents through C

Length of tangents $=8 \mathrm{~cm}$
AE is perpendicular to CE (tangent and radius relation) In $\triangle \mathrm{ACE}$

AC becomes hypotenuse
$\mathrm{AC}^{2}=\mathrm{CE}^{2}+\mathrm{AE}^{2}$
$10^{2}=\mathrm{CE}^{2}+6^{2}$
$\mathrm{CE}^{2}=100-36$
$\mathrm{CE}^{2}=64$
$\mathrm{CE}=8 \mathrm{~cm}$
Q. 2 Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.

Answer: Steps of construction:
i. Draw two concentric circles with radii 4 cm and 6 cm respectively.

Radius $=4 \mathrm{~cm}$
ii. Now, draw the radius OP of the larger circle.

iii. Construct a perpendicular bisector of OP intersecting OP at point O'.
iv. Considering $\mathrm{O}^{\prime} \mathrm{P}$ as radius, draw another circle.
v. From point P , draw tangents PQ and PR (can see in the figure)

Justification: By applying Pythagoras theorem, we have;
$\mathrm{PQ}^{2}=\mathrm{OP}^{2}-\mathrm{OQ}^{2}$
$=6^{2}-4^{2}$
$=36-16=20$
Or, $P Q=2 \sqrt{5} \mathrm{~cm}$
Q. 3 Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q .

Answer: Steps of construction:
i. At first draw a circle with radius 3 cm .

ii. Now, extend the diameter to A and B on both the sides.

iii. Then, draw the perpendicular bisectors of OA and OB .

Such that:
Perpendicular bisector of OA intersects it at point O'.
And,
Perpendicular bisector of OB intersects it at point O".

iv. Considering O'A as radius, construct another circle.
v. Considering O " B as radius, construct the third circle.
vi. From point A, draw tangents $A P$ and $A Q$.
vii. From point B , draw tangents BR and BS .

Q. 4 Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.

Answer: Steps of construction:

1) Draw a circle of radius 5 cm , and draw a radius OA anywhere in the circle.

2) Taking $O A$ as base, draw an angle $A O B$ such that $\angle \mathrm{AOB}=120^{\circ}$.

3) At A, Draw a line AX such that $A X \perp O A$.

4) At B, Draw a line BY such that BY \perp OB.

5) AX and BY intersect at P ; AP and BP are required tangents.

Justification:

1) Clearly, AP and BP are tangents since tangent at a point on the circle is perpendicular to the radius through point of contact.
2) In Quadrilateral OAPB, we have $\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{OBP}+$ $\angle \mathrm{AOB}=360^{\circ} \quad[$ By Angle Sum Property $] \Rightarrow \angle \mathrm{OAP}+90^{\circ}+90^{\circ}+$ $120^{\circ}=360^{\circ} \Rightarrow \angle \mathrm{OAP}=60^{\circ}$.
Q. 5 Draw a line segment $A B$ of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.

Answer: Steps of construction:
i. At first, draw a line segment, $\mathrm{AB}=8 \mathrm{~cm}$.

ii. Considering A as centre, construct a circle of radius 4 cm .
iii. Considering B as centre, draw another circle with radius 3 cm . iv. Draw perpendicular bisector of AB .
v. Now, considering midpoint of AB as centre and AB as diameter, draw the third circle.
vi. From point A, draw tangents $A R$ and $A S$.
vii. Then, from point B , draw tangents BP and BQ .
Q. 6 Let ABC be a right triangle in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle \mathrm{B}=90^{\circ}$. BD is theperpendicular from B on AC . The circle through $\mathrm{B}, \mathrm{C}, \mathrm{D}$ is drawn. Construct the tangents from A to this circle.

Answer: Steps of construction:
i. Draw a line segment $A B=6 \mathrm{~cm}$.
ii. Draw a right angle $\angle \mathrm{ABC}$ at point B , such that $\mathrm{BC}=8 \mathrm{~cm}$.

iii. Now, draw a perpendicular bisector of BC which will intersect it at P .

iv. Now P is a mid point of BC. Taking P as a centre and BP as radius draw a circle.

v. Join A to the centre of circle i.e. P.Make perpendicular bisector of $A P$. Let Q be the mid point of AP .

vi. Taking Q as centre and AQ as a radius draw a circle.

vii. Now Both circles intersect each other at B and R.Join AR.

Hence $A B$ and $A R$ are the required tangents.

Justification:

We need to prove $A B$ and $A R$ are tangents. Construction: Join PR.

As ARP is an angle on the semicircle BPR. And angles in semicircles are of $90^{\circ} . \therefore \angle \mathrm{ARP}=90^{\circ} \Rightarrow \mathrm{AR} \perp \mathrm{PR}$

And PR is the radius of circle, From the theorem which states that tangent is perpendicular to the radius. So AR has to be tangent.
Similarly AB is a tangent. Hence proved.
Q. 7 Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

Answer: Steps of construction:
[We will take a bangle of some fixed radius, say it is $\mathbf{6 c m}$]
i. So at first draw a circle with the help of a bangle having a certain radius (say 6 cm) and centre O.
ii. Take a point P outside the circle.
iii. Draw a line segment $\mathrm{OP}=10 \mathrm{~cm}$
iv. Make perpendicular bisector of OP which intersects OP at point O'.
v. Take O'P as radius and draw another circle.
vi. From point P, draw tangents to points of intersection between the two circles.

