Chapter-10

Circles

Exercise 10.1

Q. 1 How many tangents can a circle have?

Answer: Tangent is a line that intersects the circle at one point.
Since, there are infinite number of points on circle. At every point, there is one tangent.

Hence, there are infinite number of tangents in a circle.
Q. 2 Fill in the blanks :
(i) A tangent to a circle intersects it in point (s).
(ii) A line intersecting a circle in two points is called a .
(iii) A circle can have parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called.

Answer:

(i) A tangent to a circle intersects it in One point.

XY is a tangent which intersect the circle at A .
(ii) A line intersecting a circle in two points is called a Secant.

(iii) A circle can have Two parallel tangents at the most.

AB and CD are two parallel tangents
(iv) The common point of a tangent to a circle and the circle is called the Point of contact.

A is point of contact here.
Q. 3 A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is :

A. 12 cm B. 13 cm

C. 8.5 cm D. 119 cm .

Answer: We know that the line drawn from the centre of the circle to the tangent is perpendicular to the tangent.
$\mathrm{OP} \perp \mathrm{PQ}$
By applying Pythagoras theorem in $\triangle \mathrm{OPQ}$,

$\mathrm{OP}^{2}+\mathrm{PQ}^{2}=\mathrm{OQ}^{2}$
$5^{2}+\mathrm{PQ}^{2}=12^{2}$
$\mathrm{PQ}^{2}=144-25$
$P Q=\sqrt{119} \mathrm{~cm}$.
Q. 4 Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Answer:

Steps of Construction:

1) Draw a circle with any radius and center O.
2) Choose any point P on the circumference of circle, and draw a line passing through P , Let's name it CD.3) Draw a line AB parallel to $C D$, such that $A B$ intersects the circle at two points P and A.Here, $A B$ and CD are two parallel lines. AB intersects the circle at exactly two points, P and Q . Therefore, line AB is the secant of this circle.
CD intersects the circle at exactly one point, R , line CD is the tangent to the circle.

Exercise 10.2

Q. 1 From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
A. $7 \mathrm{~cm} \mathrm{B}$.
C. 15 cm D. 24.5 cm

Answer:

(A)

Let O be the centre of the circle.
Given that,
$\mathrm{OQ}=25 \mathrm{~cm}$ and $\mathrm{PQ}=24 \mathrm{~cm}$
As the radius is perpendicular to the tangent at the point of contact, Therefore, $\mathrm{OP} \perp \mathrm{PQ}$

Applying Pythagoras theorem in $\triangle \mathrm{OPQ}$, we obtain
$\mathrm{OP}^{2}+\mathrm{PQ}^{2}=\mathrm{OQ}^{2}$
$\mathrm{OP}^{2}+24^{2}=25^{2}$
$\mathrm{OP}^{2}=625-576$
$\mathrm{OP}^{2}=49$
$\mathrm{OP}=\sqrt{49}=7$
Therefore, the radius of the circle is 7 cm .
Q. 2 In Fig. 10.11, if TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is equal to
A. 60° B. 70°
C. 80° D. 90°

Fig. 10.11

Answer:

Given: TP and TQ are tangents.
Therefore, radius drawn to these tangents from centre of the circle will be perpendicular to the tangents.

Thus, $\mathrm{OP} \perp \mathrm{TP}$ and $\mathrm{OQ} \perp \mathrm{TQ}$
And therefore,
$\angle \mathrm{OPT}=90^{\circ}$
$\angle O Q T=90^{\circ}$
In quadrilateral POQT ,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OPT}+\angle \mathrm{POQ}+\angle \mathrm{OQT}+\angle \mathrm{PTQ}=360^{\circ}$
$90^{\circ}+110^{\circ}+90^{\circ}+\angle \mathrm{PTQ}=360^{\circ}$
$\angle \mathrm{PTQ}=70^{\circ}$
Q. 3 If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle \mathrm{POA}$ is equal to
A. 50° B. 60°
C. 70° D. 80°

Answer: Given: PA and PB are tangents.

Therefore, the radius drawn to these tangents will be perpendicular to the tangents.

Thus, $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$
$\angle \mathrm{OBP}=90^{\circ}$
$\angle \mathrm{OAP}=90^{\circ}$
In quadrilateral AOBP,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ} 90^{\circ}+80^{\circ}+90^{\circ}+\angle \mathrm{BOA}=$ 360°
$\angle \mathrm{BOA}=100^{\circ}$
In $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPA}$,
$\mathrm{AP}=\mathrm{BP}$ (Tangents from a point)
$\mathrm{OA}=\mathrm{OB}$ (Radii of the circle)
$\mathrm{OP}=\mathrm{OP}($ Common side $)$
Therefore, $\triangle \mathrm{OPB} \cong \triangle \mathrm{OPA}$ (SSS congruence criterion)
And thus, $\angle \mathrm{POB}=\angle \mathrm{POA}$
$<P O A=\frac{1}{2}<A O B=\frac{100}{2}=50^{\circ}$
Q. 4 Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Answer:

Let AB is diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively. Radius drawn to these tangents will be perpendicular to the tangents.

Thus, $\mathrm{OA} \perp \mathrm{RS}$ and $\mathrm{OB} \perp \mathrm{PQ}$
$\angle \mathrm{OAR}=90^{\circ}$
$\angle \mathrm{OAS}=90^{\circ}$
$\angle \mathrm{OBP}=90^{\circ}$
$\angle \mathrm{OBQ}=90^{\circ}$
It can be observed that
$\angle \mathrm{OAR}=\angle \mathrm{OBQ}$ (Alternate interior angles)
$\angle \mathrm{OAS}=\angle \mathrm{OBP}$ (Alternate interior angles)
Since alternate interior angles are equal, lines PQ and RS will be parallel.
Q. 5 Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Answer: To Prove: A line drawn perpendicular from P will pass from O .
Given: APB is tangent to circle with centre O .
Let us consider a circle with centre O. Let $A B$ be a tangent which touches the circle at P .

Proof:

Assume that the perpendicular to AB at P does not pass through centre O. Let it pass through another point O'. Join OP and O'P.

As perpendicular to AB at P passes through O^{\prime}, therefore, $\angle \mathrm{O}^{\prime} \mathrm{PB}=90^{\circ}$

O is the centre of the circle and P is the point of contact.
We know the line joining the centre and the point of contact to the tangent of the circle are perpendicular to each other.
$\therefore \angle \mathrm{OPB}=90^{\circ} \ldots$ (2)
Comparing equations (1) and (2), we obtain
$\angle \mathrm{O}^{\prime} \mathrm{PB}=\angle \mathrm{OPB}$
From the figure, it can be observed that,

$$
\angle \mathrm{O}^{\prime} \mathrm{PB}<\angle \mathrm{OPB} . . . \text { (4) }
$$

Therefore, $\angle \mathrm{O}^{\prime} \mathrm{PB}=\angle \mathrm{OPB}$ is not possible. It is only possible, when the line $\mathrm{O}^{\prime} \mathrm{P}$ coincides with OP .

Therefore, the perpendicular to AB through P passes through centre O.

Hence, Proved.
Q. 6 The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Answer:

Let us consider a circle centred at point O .
AB is a tangent drawn on this circle from point A .
Given that,
$\mathrm{OA}=5 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$
In $\triangle \mathrm{ABO}$,
$\mathrm{OB} \perp \mathrm{AB}$ (Radius \perp tangent at the point of contact)
Applying Pythagoras theorem in $\triangle \mathrm{ABO}$, we obtain

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BO}^{2}=\mathrm{OA}^{2} \\
& 4^{2}+\mathrm{BO}^{2}=5^{2} \\
& 16+\mathrm{BO}^{2}=25 \mathrm{BO}^{2}=9 \\
& \mathrm{BO}=3
\end{aligned}
$$

Hence, the radius of the circle is 3 cm .
Q. 7 Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Answer:

Let the two concentric circles be centred at point O. And let PQ be the chord of the larger circle which touches the smaller circle at point A. Therefore, PQ is tangent to the smaller circle.
$\mathrm{OA} \perp \mathrm{PQ}($ As OA is the radius of the circle $)$
Applying Pythagoras theorem in $\triangle \mathrm{OAP}$, we obtain
$\mathrm{OA}^{2}+\mathrm{AP}^{2}=\mathrm{OP}^{2}$
$3^{2}+\mathrm{AP}^{2}=5^{2}$
$9+\mathrm{AP}^{2}=25$
$\mathrm{AP}^{2}=16$
$\mathrm{AP}=4$

In $\triangle \mathrm{OPQ}$,
Since $\mathrm{OA} \perp \mathrm{PQ}$,
$\mathrm{AP}=\mathrm{AQ}$ (Perpendicular from the centre of the circle bisects the chord)
$\mathrm{PQ}=2 \mathrm{AP}=2 \times 4=8$
Therefore, the length of the chord of the larger circle is 8 cm .
Q. 8 A quadrilateral ABCD is drawn to circumscribe a circle (see Fig.
10.12). Prove that
$\mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$

Fig. 10.12
Answer:

Fig. 10.12

To Prove: $\mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$

Proof:

In the given figure, it can be observed that AB touches the circle at point $\mathrm{P} ; \mathrm{BC}$ touches the circle at point $\mathrm{Q} ; \mathrm{CD}$ touches the circle at point R ; DA touches the circle at point S .

Then, we can say from a theorem that " Length of tangents drawn from an external point to the circle are same ", Therefore,
$\mathrm{DR}=\mathrm{DS}$ (Tangents on the circle from point D) (1)
$\mathrm{CR}=\mathrm{CQ}$ (Tangents on the circle from point C) (2)
$\mathrm{BP}=\mathrm{BQ}$ (Tangents on the circle from point B) (3)
$\mathrm{AP}=\mathrm{AS}$ (Tangents on the circle from point A)
Adding all these equations, we obtain
$\mathrm{DR}+\mathrm{CR}+\mathrm{BP}+\mathrm{AP}=\mathrm{DS}+\mathrm{CQ}+\mathrm{BQ}+\mathrm{AS}$
$(\mathrm{DR}+\mathrm{CR})+(\mathrm{BP}+\mathrm{AP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{CQ}+\mathrm{BQ})$
$C D+A B=A D+B C$
Hence, Proved.
Q. 9 In Fig. 10.13, XY and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting XY at A and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ at B . Prove that $\angle \mathrm{AOB}=90^{\circ}$

Fig. 10.13
Answer: Let us join point O to C.

Fig. 10.13

In $\triangle \mathrm{OPA}$ and $\triangle \mathrm{OCA}$, $\mathrm{OP}=\mathrm{OC}$ (Radius of the same circle)
$\mathrm{AP}=\mathrm{AC}$ (Tangents from point A)
$\mathrm{AO}=\mathrm{AO}$ (Common side)
$\Delta \mathrm{OPA} \cong \triangle \mathrm{OCA}$ (SSS congruence criterion)
$\angle \mathrm{POA}=\angle \mathrm{COA} \ldots(i)$
Similarly, $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
$\angle \mathrm{QOB}=\angle \mathrm{COB} \ldots(i i)$
Since POQ is a diameter of the circle, it is a straight line.
Therefore, $\angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$
From equations (i) and (ii), it can be observed that $2 \angle \mathrm{COA}+2 \angle \mathrm{COB}$ $=180^{\circ}$
$\angle \mathrm{COA}+\angle \mathrm{COB}=180^{\circ} / 2$

$$
\begin{aligned}
& \angle \mathrm{COA}+\angle \mathrm{COB}=90^{\circ} \\
& \angle \mathrm{AOB}=90^{\circ}
\end{aligned}
$$

Hence Proved.
Q. 10 Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

Answer:

To Prove: $\angle \mathrm{APB}+\angle \mathrm{BOA}=180^{\circ}$
Proof: Let us consider a circle centred at point O.
Let P be an external point from which two tangents PA and PB are drawn to the circle which touches the circle at point A and B respectively and $A B$ is the line segment, joining point of contacts A and B together such that it subtends
$\angle \mathrm{AOB}$ at centre O of the circle.
It can be observed that
$\mathrm{OA} \perp \mathrm{PA}$ (radius of circle is always perpendicular to tangent)
Therefore, $\angle \mathrm{OAP}=90^{\circ}$
Similarly, $\mathrm{OB} \perp \mathrm{PB}$
$\angle \mathrm{OBP}=90^{\circ}$
In quadrilateral OAPB,
Sum of all interior angles $=360^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ} \\
& 90^{\circ}+\angle \mathrm{APB}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ} \\
& \angle \mathrm{APB}+\angle \mathrm{BOA}=180^{\circ}
\end{aligned}
$$

Hence, it can be observed that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle
subtended by the line-segment joining the points of contact at the centre.
Q. 11 Prove that the parallelogram circumscribing a circle is a rhombus.

Answer: Since ABCD is a parallelogram,
$\mathrm{AB}=\mathrm{CD}$
$\mathrm{BC}=\mathrm{AD}$

It can be observed that
$\mathrm{DR}=\mathrm{DS}$ (Tangents on the circle from point D$)$
$\mathrm{CR}=\mathrm{CQ}$ (Tangents on the circle from point C)
$\mathrm{BP}=\mathrm{BQ}($ Tangents on the circle from point B$)$
$\mathrm{AP}=\mathrm{AS}$ (Tangents on the circle from point A)
Adding all these equations, we obtain
$\mathrm{DR}+\mathrm{CR}+\mathrm{BP}+\mathrm{AP}=\mathrm{DS}+\mathrm{CQ}+\mathrm{BQ}+\mathrm{AS}$
$(\mathrm{DR}+\mathrm{CR})+(\mathrm{BP}+\mathrm{AP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{CQ}+\mathrm{BQ})$
$\mathrm{CD}+\mathrm{AB}=\mathrm{AD}+\mathrm{BC}$
On putting the values of equations (1) and (2) in this equation, we obtain $2 \mathrm{AB}=2 \mathrm{BC}$
$\mathrm{AB}=\mathrm{BC}$
Comparing equations (1), (2), and (3), we obtain
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$

Hence, ABCD is a rhombus.
Q. 12 A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig. 10.14). Find the sides $A B$ and $A C$.

Answer:

To Find: AB and AC

Let the given circle touch the sides AB and AC of the triangle at point E and F respectively and the length of the line segment AF be x.

In $\triangle \mathrm{ABC}$,
From the theorem which states that the lengths of two tangents drawn from an external point to a circle are equal.
So,
$\mathrm{CF}=\mathrm{CD}=6 \mathrm{~cm}$ (Tangents on the circle from point C)
$\mathrm{BE}=\mathrm{BD}=8 \mathrm{~cm}$ (Tangents on the circle from point B)
$\mathrm{AE}=\mathrm{AF}=x($ Tangents on the circle from point A$)$
$\mathrm{AB}=\mathrm{AE}+\mathrm{EB}=x+8$
$\mathrm{BC}=\mathrm{BD}+\mathrm{DC}=8+6=14$
$\mathrm{CA}=\mathrm{CF}+\mathrm{FA}=6+x$
By heron's formula

$$
\text { area of } \triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}
$$

where, a, b and c are sides of triangle and s is semi perimeter.

$$
\begin{aligned}
& 2 S=\mathrm{AB}+\mathrm{BC}+\mathrm{CA} \\
&=x+8+14+6+x \\
&=28+2 x \\
& S=\frac{28+2 x}{2}=14+x \\
& \text { area of } \triangle A B C=\sqrt{s(s-a)(s-b)(s-c)} \\
&= \sqrt{\{14+x\}\{x\}(8)(6)} \\
&= 4 \sqrt{3\left(14 x+x^{2}\right)}
\end{aligned}
$$

Also, area of triangle $=\frac{1}{2} \times$ base \times hei ght
And from the given figure it is clear that Area of $\triangle \mathrm{ABC}=$ Area of $\Delta \mathrm{OBC}+$ Area of $\triangle \mathrm{OCA}+$ Area of $\Delta \mathrm{OAB}$

Area of $\triangle O B C=\frac{1}{2} \times O D \times B C=\frac{1}{2} \times 4 \times 14=28$

$$
\begin{aligned}
& \text { Area of } \triangle O C A=\frac{1}{2} \times O F \times A C=\frac{1}{2} \times 4 \times(6+x)=12+2 x \\
& \text { Area of } \triangle O C A=\frac{1}{2} \times O E \times A B=\frac{1}{2} \times 4 \times(8+x)=16+2 x
\end{aligned}
$$

Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{OBC}+$ Area of $\triangle \mathrm{OCA}+$ Area of $\triangle \mathrm{OAB}$

$$
\begin{aligned}
& \Rightarrow 4 \sqrt{3\left(14 x+x^{2}\right)}=28+12+2 x+16+2 x \\
& \Rightarrow 4 \sqrt{3\left(14 x+x^{2}\right)}=56+4 x \\
& =\sqrt{3\left(14 x+x^{2}\right)}=14+x \\
& \Rightarrow 3 x(14+x)=(14+x)^{2} \\
& \Rightarrow 3 \mathrm{x}=14+\mathrm{x} \\
& \Rightarrow 2 \mathrm{x}=14
\end{aligned}
$$

$\Rightarrow \mathrm{x}=7$

Therefore, $x=7$
Hence,
$\mathrm{AB}=x+8=7+8=15 \mathrm{~cm}$
$\mathrm{CA}=6+x=6+7=13 \mathrm{~cm}$
Hence, $\mathrm{AB}=15 \mathrm{~cm}$ and $\mathrm{AC}=13 \mathrm{~cm}$
Q. 13 Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Answer:

To Prove: $\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}, \angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$ Given: ABCD is circumscribing the circle.
Proof: Let ABCD be a quadrilateral circumscribing a circle centred at O such that it touches the circle at point P, Q, R, S.

Join the vertices of the quadrilateral ABCD to the centre of the circle.
Consider $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OAS}$,
$\mathrm{AP}=\mathrm{AS}$ (Tangents from the same point)
$\mathrm{OP}=\mathrm{OS}$ (Radii of the same circle)
$\mathrm{OA}=\mathrm{OA}($ Common side $)$
$\Delta \mathrm{OAP} \cong \Delta \mathrm{OAS}$ (SSS congruence criterion)

And thus, $\angle \mathrm{POA}=\angle \mathrm{AOS}$
$\angle 1=\angle 8$ Similarly,
$\angle 2=\angle 3$
$\angle 4=\angle 5$
$\angle 6=\angle 7$
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}$
$2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}$
$2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$
$(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
Similarly, we can prove that $\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

