<mark>∛S</mark>aral

Å

Revision Notes

Class - 12 Physics

Chapter 4 - Moving Charges And Magnetism

1. Force on a moving charge:-The source of magnetic field is a moving charge.

Suppose a positive charge q is in motion in a uniform magnetic field B with velocity \vec{v} .

n

 $\therefore F \alpha q B v sin \theta \Longrightarrow F = k q B v sin \theta [k = constant]$

Where in S.I. system, k = 1

$$\therefore F = qBsin\theta \text{ and } \vec{F} = q \left(\vec{v} \times \vec{B} \right)$$

2. Magnetic field strength $\left(\overrightarrow{B} \right)$:

We can see that in the equation, $F = qBvsin\theta$, if q = 1, v = 1,

∛Saral

 $\sin\theta = 1$ i.e. $\theta = 90^{\circ}$ then F = B.

Therefore magnetic field strength can be known as the force felt by a unit charge in motion with unit velocity perpendicular to the direction of magnetic field.

There are some special cases for this:

(1) If $\theta = 0^\circ$ or 180° , sin $\theta = 0$ \therefore F = 0

A charged particle which is in motion parallel to the magnetic field, will be not experiencing any force.

(2) When v = 0, F = 0

At rest, a charged particle in a magnetic field will be not experiencing any force.

(3) When $\theta = 90^{\circ}$, sin $\theta = 1$ then the force will be maximum $F_{max} = qvB$

A charged particle in motion perpendicular to the magnetic field will be experiencing maximum force.

3. S.I. unit of magnetic field intensity: The S.I unit has been found to be tesla (T).

 $B = \frac{F}{qvsin\theta}$

When q = 1C, v = 1m/s, $\theta = 90^{\circ}$ That is, $\sin\theta = 1$ and F = 1N

Then B = 1T.

At a point, the strength of magnetic field can be called as 1T if a charge of 1C which have a velocity of 1 m/s while in motion at right angle to a magnetic field experiences a force of 1N at that point.

- 4. Biot-Savart's law:- The strength of magnetic flux density or magnetic field at a point P (dB) because of the current element dl will be dependent on,
 - (i) dBαI
 - (ii) $dB\alpha dl$

Å

(iii) $dB\alpha\sin\theta$

(iv) $dB\alpha \frac{1}{r^2}$,

When we combine them, $dB\alpha \frac{Idlsin\theta}{r^2} \Rightarrow dB = k \frac{Idlsin\theta}{r^2}$ [k =

Proportionality constant]

In S.I. units, $k = \frac{\mu_0}{4\pi}$ where μ_0 can be called as permeability of free space.

 $\mu_0 = 4\pi \times 10^{-7} \text{ TA}^{-1} \text{m}$

$$\therefore d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{\mathrm{Idlsin}\theta}{r^2} \text{ and } \vec{d\mathbf{B}} = \frac{\mu_0}{4\pi} \mathbf{I} \frac{\left(\vec{d\mathbf{l}} \times \vec{r}\right)}{r^3}$$

 $d\hat{B}$ will be perpendicular to the plane containing \vec{dl} and \vec{r} and will be directed inwards.

5. Applications of Biot-Savart's law:-

• Magnetic field (B) kept at the Centre of a Current Carrying Circular Coil of radius *r* .

$$\mathbf{B} = \frac{\mu_0 \mathbf{I}}{2r}$$

If there are n turns, then the magnetic field at the centre of a circular coil of n turns will be,

∛Saral

 $B = \frac{\mu_0 nI}{2r}$

Here n will be the number of turns of the coil. I will be the current in the coil and r will be the radius of the coil.

• Magnetic field because of a straight conductor carrying current.

Here a will be the perpendicular distance of the conductor from the point where the field is to the measured.

 $\varphi_1 and \varphi_2$ will be the angles created by the two ends of the conductor with

the point. In case of an infinitely long conductor, $\phi_1 = \phi_2 = \frac{\pi}{2}$

Rev. Notes Class 12 Physics Chapter-4 www.ex

Å

• At a point on the axis, magnetic field of a Circular Coil Carrying Current.

If point P is lying far away from the centre of the coil.

Rev. Notes Class 12 Physics Chapter-4

www.esaral.com

Å

Where M = nIA = magnetic dipole moment of the coil . x be the distance of the point where the field is needed to be measured, n be the number of turns, I

be the current and A be the area of the coil.

• Magnetic field at the centre of a semi-circular current-carrying conductor will be,

• Magnetic field at the centre of an arc of circular current-carrying conductor which is subtending an angle 0 at the centre will be,

6. Ampere's circuital law:-

JEE | NEET | Class 8 - 10 Download eSaral App

Å

Around any closed path in vacuum line integral of magnetic field \vec{B} will be μ_0 times the total current through the closed path. that is, $\vec{\Phi}\vec{B}.\vec{dl} = \mu_0 I$

7. Application of Ampere's circuital law:-

*****Saral

(a) Magnetic field because of a current carrying solenoid, $B = \mu_0 nI$

 $n\,$ be the number of turns per unit length of the solenoid.

In the edge portion of a short solenoid, $B = \frac{\mu_0 nI}{2}$

(b) Magnetic field because of a toroid or endless solenoid

 $B = \mu_0 nI$

∛Saral

8. Motion in uniform electric field of a charged particle:– Parabola is the path of a charged particle in an electric field.

Equation of the parabola be $x^2 = \frac{2mv^2}{qE}y$

Where x be the width of the electric field.

y be the displacement of the particle from its straight path.

 \mathbf{v} be the speed of the charged particle.

q be the charge of the particle

E be the electric field intensity.

m be the mass of the particle.

9. In a magnetic field (B) which is uniform, the path of a particle which is

charged in motion with a velocity \vec{v} creating an angle θ with \vec{B} will be a helix.

$$\overset{\underline{sin}}{\to} \overset{\theta}{\to} \overset{\underline{sin}}{\to} \overset{\underline{sin}}$$

The component of velocity $v\cos\theta$ will not be given a force to the charged

particle, hence under this velocity in the direction of B, the particle will move forward with a fixed velocity. The other component $vsin\theta$ will create the force $F = qBvsin\theta$, which will be supplying the needed centripetal force to the charged particle in the motion along a circular path having radius r.

∴ Centripetal force =
$$\frac{m(vsin\theta)^2}{r}$$
 = Bqvsinθ
∴ vsinθ = $\frac{Bqr}{m}$

<mark>∛S</mark>aral

Angular velocity of rotation = w=
$$\frac{\text{vsin}\theta}{r} = \frac{\text{Bq}}{m}$$

Frequency of rotation = v = $\frac{\omega}{2\pi} = \frac{\text{Bq}}{2\pi \text{m}}$
Time period of revolution = T = $\frac{1}{v} = \frac{2\pi \text{m}}{\text{Bq}}$

10. Cyclotron: This can be defined as a device we use for accelerating and therefore energize the positively charged particle. This can be created by keeping the particle, in an oscillating perpendicular magnetic field and a electric field. The particle will be moving in a circular path.
∴ Centripetal force = magnetic Lorentz force

$$\Rightarrow \frac{mv^2}{r} = Bqv \Rightarrow \frac{mv}{Bq} = r \quad \leftarrow \text{ radius of the circular path}$$

Time for travelling a semicircular path = $\frac{\pi r}{v} = \frac{\pi m}{Bq} = \text{constant}$.

When v_0 be the maximum velocity of the particle and r_0 be the maximum radius of its path then we can say that,

$$\frac{mv_0^2}{r_0} = Bqv_0 \Longrightarrow v_0 = \frac{Bqr_0}{m}$$

Maximum kinetic energy of the particle

$$=\frac{1}{2}mv_0^2 = \frac{1}{2}m\left(\frac{Bqr_0}{m}\right)^2 \Longrightarrow (K.E.)_{max.} = \frac{B^2q^2r_0^2}{2m}$$

Time period of the oscillating electric field \Rightarrow T = $\frac{2\pi m}{Bq}$.

Time period be the independent of the speed and radius.

Cyclotron frequency =
$$v = \frac{1}{T} = \frac{Bq}{2\pi m}$$

Cyclotron angular frequency = $\omega_0 = 2\pi v = \frac{Bq}{m}$

11. Force acting on a current carrying conductor kept in a magnetic field will be,

<mark>∛</mark>Saral

 $\vec{F} = I \left| \vec{l} \times \vec{B} \right|$ or $F = IIBsin\Theta$

Here I be the current through the conductor

B be the magnetic field intensity.

l be the length of the conductor.

 $\boldsymbol{\theta}$ be the angle between the direction of current and magnetic field.

(i) If
$$\theta = 0^{\circ}$$
 or 180° , $\sin\theta \implies 0 \implies F = 0$

 \therefore If a conductor is kept along the magnetic field, no force will be acting on the conductor.

(ii) If $\theta = 90^{\circ}$, sin $\theta = 1$, F will be maximum.

 $F_{max} = IIB$

If the conductor has been kept normal to the magnetic field, it will be experiencing maximum force.

- 12. Force between two parallel current carrying conductors:-
 - (a) If the current will be in similar direction the two conductors will be attracting each other with a force

$$F = \frac{\mu_0}{4\pi} \cdot \frac{2I_1I_2}{r}$$
 per unit length of the conductor

(b) If the current is in opposite direction the two conductors will be repelling each other with an equal force.

∛Saral

(c) S.I. unit of current is 1 ampere. (A).

1A can be defined as the current which on flowing through each of the two parallel uniform linear conductor kept in free space at a distance of 1m from each other creates a force of 2×10^{-7} N/m along their lengths.

13. Torque experienced on a current carrying coil kept in a magnetic field:-

 $\vec{\tau} = \vec{M} \times \vec{B} \Longrightarrow \tau = MBsin\alpha = nIBAsin\alpha$ where M be the magnetic dipole moment of the coil.

M = nIA

Where n be the number of turns of the coil.

I be the current through the coil.

B be the intensity of the magnetic field.

A be the area of the coil.

 α will be the angle in between the magnetic field $\left(\begin{array}{c} \bar{B} \end{array} \right)$ and normal to the

plane of the coil.

Special Cases will be:

- (i) When the coil has been kept parallel to magnetic field $\theta = 0^{\circ}$, $\cos\theta = 1$ then torque will be maximum. $\tau_{max} = nIBA$
- (ii) When the coil is kept perpendicular to magnetic field, $\theta = 90^{\circ}$, $\cos\theta = 0$ $\therefore \tau = 0$

Å

14. Moving coil galvanometer: – This has been on the basis on the principle that if a coil carrying current has been kept in a magnetic field it is experiencing a torque. There is a restoring torque because of the phosphor bronze strip which is bringing back the coil to its normal position. In equilibrium,

Deflecting torque = Restoring torque

 $nIBA = k\theta [k = restoring torque/unit twist of the phosphor bronze strip]$

$$I = \frac{k}{nBA} \theta = G\theta \text{ where } G = \frac{k}{nBA} = Galvanometer \text{ constant}$$

:. I $\alpha \theta$

Current sensitivity of the galvanometer can be defined as the deflection made if the unit current has been passed through the galvanometer.

$$I_s = \frac{\theta}{I} = \frac{nBA}{k}$$

Voltage sensitivity can be explained as the deflection created if unit potential difference has been applied across the galvanometer.

 $V_{s} = \frac{\theta}{V} = \frac{\theta}{IR} = \frac{nBA}{kR} [R = \text{Resistance of the galvanometer}]$

15. The maximum sensitivity of the galvanometer is having some conditions:-The galvanometer has been defined to be sensitive if a small current develops a large deflection.

$$:: \theta = \frac{nBA}{k}I$$

 $:: \theta$ will be large if (i) n is large, (ii) B is large (iii) A is large and (iv) k is small.

16. Conversion of galvanometer into voltmeter and ammeter

(a) A galvanometer has been converted to voltmeter by putting a high resistance in series with it.

Total resistance of voltmeter = $R_g + R$ where R_g be the galvonometer resistance.

R be the resistance added in series.

Current through the galvanometer = $I_g = \frac{V}{R_g + R}$

Here V is the potential difference across the voltmeter.

 $\therefore R = \frac{V}{I_g} - G$

Range of the voltmeter: 0-Vvolt.

(b) A galvanometer can be converted into an ammeter by the connection of a low resistance in parallel with it (shunt)

Shunt = S = $\left(\frac{I_g}{I - I_g}\right)R_g$ where R_g be the galvanometer's resistance.

I be the total current through the ammeter.

 $I_{\rm g}\,$ be the current through the ammeter.

Effective resistance of the ammeter will be,

$$R = \frac{R_g}{R_g + S}$$

The range of the ammeter will be **O–IA**. An ideal ammeter will be having zero resistance.