

Revision Notes

Class-12 Mathematics

Chapter 1 – Relations and Functions

Relation

- It defines **relationship** between two set of values let say from set A to set B.
- Set A is then called domain and set B is then called codomain.
- If $(a, b) \in R$, it shows that a is related to b under the relation R

Types of Relations

- **Empty Relation:**
- In this there is **no relation** between any element of a set.
- It is also known as void relation
- For example: if set A is $\{2,4,6\}$ then an empty relation can be $R = \{x,y\}$ where x + y > 11
- 2. **Universal Relation:**
- In this each element of a set is related to every element of that set.
- For example: if set A is $\{2,4,6\}$ then a universal relation can be $R = \{x, y\}$ where x + y > 0
- Trivial Relation: Empty relation and universal relation is sometimes 3. called trivial relation.
- 4. **Reflexive Relation:**
- In this each element of set (say) A is related to itself i.e., a relation R in set A is called **reflexive** if $(a,a) \in R$ for every $a \in A$.
- For example: if Set A = $\{1,2,3\}$ then relation $R = \{(1,1),(1,2),(2,2),(2,1),(3,3)\}$ is reflexive since each element of set A is related to itself.

&Saral

- **5. Symmetric Relation:**
- A relation R in set A is called **symmetric** if $(a,b) \in R$ and $(b,a) \in R$ for every $a,b \in A$
- For example: if Set $A = \{1, 2, 3\}$ then relation $R = \{(1,2),(2,1),(2,3),(3,2),(3,1),(1,3)\}$ is symmetric.

Transitive Relation: 6.

- A relation R in set A is called **transitive** if $(a,b) \in R$ and $(b,c) \in R$ then (a,c) also belongs to R for every $a,b,c \in A$.
- For example: if Set A = $\{1, 2, 3\}$ then relation $R = \{(1,2),(2,3),(1,3)(2,3),(3,2),(2,2)\}$ is transitive.

7. **Equivalence Relation:**

- A relation R on a set A is equivalence if R is reflexive, symmetric and transitive.
- For example: $R = \{(L_1, L_2) : \text{line } L_1 \text{ is parallel line } L_2\}$ This relation is reflexive because every line is parallel to itself Symmetric because if L_1 parallel to L_2 then L_2 is also parallel to L_1 Transitive because if L_1 parallel to L_2 and L_2 parallel to L_3 then L_1 is also parallel to L₃

Functions

A function f from a set A to a set B is a rule which associates each element of set A to a **unique element** of set B.

Rev. Notes Class 12 Maths Chapter- 1 B is codomain of the function www.esaral.com

- Range is the set of all possible resulting value given by the function.
- For example: x^2 is a function where values of x will be the domain and value given by x^2 is range.

Types of Function:

1. One-One Function:

- A function f from set A to set B is called one-one function if no two distinct elements of A have the same image in B.
- Mathematically, a function f from set A to set B if f(x) = f(y) implies that x = y for all $x, y \in A$.
- One-one function is also called an injective **function**.
- For example: If a function f from a set of real number to a set of real number, then f(x) = 2x is a one-one function.

2. Onto Function:

- A function f from set A to set B is called onto function if each element of set B has a preimage in set A or range of function f is equal to the codomain i.e., set B.
- Onto function is also called **surjective function**.
- For example: If a function f from a set of natural number to a set of n Natural number, then f(x) = x 1 is onto function.

3. Bijective Function:

- A function f from set A to set B is called bijective function if it is **both** one-one function and onto function.
- For example: If a function f from a set of real number to a set of real number, then f(x) = 2x is one-one function and onto function.

Composition of function and invertible function

- Composition of function: Let $f:A \to B$ and $g:B \to C$ then the composite of g and f, written as $g \circ f$ is a function from A to C such that $(g \circ f)(a) = g(f(a))$ for all $a \in A$. (Not in the current syllabus)
- Properties of composition of function: Let $f:A \rightarrow B$, $g:B \rightarrow C$ and $h:C \rightarrow A$ then

- a. Composition is associative i.e., h(gf) = (hg)f
- **b.** If f and g are one-one then $g \circ f$ is also **one-one**
- **c.** If f and g are onto then $g \circ f$ is also **onto**
- **d.** Invertible function: If f is bijective then there is a function $f^{-1}: B \to A$ such that $(f^{-1}f)(a) = a$ for all $a \in A$ and $(f^{-1}f)(b) = b$ for all $b \in B$
- f^{-1} is the **inverse** of the function f and is **always unique**.

Binary Operations

- A binary operation are **mathematical operations** such as addition, subtraction, multiplication and division performed between two operands.
- A binary operation on a set A is defined as operations performed between two elements of set A and the result also belongs to set A. Then set A is called **binary composition**.
- It is denoted by *
- For example: Binary addition of real numbers is a binary composition
- since on adding two real number the result will always a real number.

Properties of Binary Composition:

- A binary operation * on the set X is **commutative**, i.e., a * b = b * a, for every $a,b \in X$
- A binary operation * on the set X is **associative**, i.e., a*(b*c)=(a*b)*c, for every $a,b,c \in X$
- There exists **identity** for the binary operation *: $A \times A \rightarrow A$, i.e., a * e = e * a = a for all $a.e \in A$
- A binary operation *: A×A → A is said to be invertible with respect to the operation * if there exist an element b in A such that a*b=b*a=e
 e is identity element in A then b is the inverse of a and is denoted by a⁻¹.