Revision Notes

Class-12 Mathematics

Chapter 1 - Relations and Functions

Relation

- It defines relationship between two set of values let say from set A to set B.
- \quad Set A is then called domain and set B is then called codomain.
- $\quad \operatorname{If}(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$, it shows that a is related to b under the relation R

Types of Relations

1. Empty Relation:

- In this there is no relation between any element of a set.
- It is also known as void relation
- For example: if set A is $\{2,4,6\}$ then an empty relation can be $R=\{x, y\}$ where $\mathrm{x}+\mathrm{y}>11$

2. Universal Relation:

- In this each element of a set is related to every element of that set.
- For example: if set A is $\{2,4,6\}$ then a universal relation can be $R=\{x, y\}$ where $x+y>0$

3. Trivial Relation: Empty relation and universal relation is sometimes called trivial relation.

4. Reflexive Relation:

- In this each element of set (say) A is related to itself i.e., a relation R in set A is called reflexive if $(a, a) \in R$ for every $a \in A$.
- For example: if $\operatorname{Set} \mathrm{A}=\{1,2,3\}$ then relation $R=\{(1,1),(1,2),(2,2),(2,1),(3,3)\}$ is reflexive since each element of set A is related to itself.

5. Symmetric Relation:

- A relation R in set A is called symmetric if $(a, b) \in R$ and $(b, a) \in R$ for every $\mathrm{a}, \mathrm{b} \in \mathrm{A}$
- For example: if $\operatorname{Set} \mathrm{A}=\{1,2,3\}$ then relation $\mathrm{R}=\{(1,2),(2,1),(2,3),(3,2),(3,1),(1,3)\}$ is symmetric.

6. Transitive Relation:

- A relation R in set A is called transitive if $(a, b) \in R \quad$ and $(b, c) \in R$ then (a, c) also belongs to R for every $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$.
- For example: if $\operatorname{Set} \mathrm{A}=\{1,2,3\}$ then relation $\mathrm{R}=\{(1,2),(2,3),(1,3)(2,3),(3,2),(2,2)\}$ is transitive.

7. Equivalence Relation:

- A relation R on a set A is equivalence if R is reflexive, symmetric and transitive.
- For example: $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)\right.$: line L_{1} is parallel line $\left.\mathrm{L}_{2}\right\}$, This relation is reflexive because every line is parallel to itself Symmetric because if L_{1} parallel to L_{2} then L_{2} is also parallel to L_{1} Transitive because if L_{1} parallel to L_{2} and L_{2} parallel to L_{3} then L_{1} is also parallel to L_{3}

Functions

- A function f from a set A to a set B is a rule which associates each element of set A to a unique element of set B.

- Range is the set of all possible resulting value given by the function.
- For example: x^{2} is a function where values of x will be the domain and value given by x^{2} is range.

Types of Function:

1. One-One Function:

- A function f from set A to set B is called one-one function if no two distinct elements of A have the same image in B .
- Mathematically, a function f from set A to set B if $f(x)=f(y)$ implies that $\mathrm{x}=\mathrm{y}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$.
- One-one function is also called an injective function.
- For example: If a function f from a set of real number to a set of real number, then $f(x)=2 x$ is a one-one function.

2. Onto Function:

- A function f from set A to set B is called onto function if each element of set B has a preimage in set A or range of function f is equal to the codomain i.e., set B.
- Onto function is also called surjective function.
- For example: If a function f from a set of natural number to a set of n Natural number, then $f(x)=x-1$ is onto function.

3. Bijective Function:

- A function f from set A to set B is called bijective function if it is both one-one function and onto function.
- For example: If a function f from a set of real number to a set of real number, then $f(x)=2 x$ is one-one function and onto function.

Composition of function and invertible function

- Composition of function: Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ then the composite of g and f, written as $g \circ f$ is a function from A to C such that $(g \circ f)(a)=g(f(a)) \quad$ for all $a \in A$. (Not in the current syllabus)
- Properties of composition of function: Let $f: A \rightarrow B, g: B \rightarrow C$ and $\mathrm{h}: \mathrm{C} \rightarrow \mathrm{A}$ then
a. Composition is associative i.e., $h(g f)=(h g) f$
b. If f and g are one-one then $g \circ f$ is also one-one
c. If f and g are onto then $g \circ f$ is also onto
d. Invertible function: If f is bijective then there is a function $f^{-1}: B \rightarrow A$ such that $\left(f^{-1} f\right)(a)=a$ for all $a \in A$ and $\left(f^{-1} f\right)(b)=b$ for all $b \in B$
- $\quad \mathrm{f}^{-1}$ is the inverse of the function f and is always unique.

Binary Operations

- A binary operation are mathematical operations such as addition, subtraction, multiplication and division performed between two operands.
- A binary operation on a set A is defined as operations performed between two elements of set A and the result also belongs to set A . Then set A is called binary composition.
- It is denoted by *
- For example: Binary addition of real numbers is a binary composition
- since on adding two real number the result will always a real number.

Properties of Binary Composition:

- A binary operation * on the set X is commutative, i.e., $a * b=b * a$, for every $a, b \in X$
- A binary operation * on the set X is associative, i.e., $a *(b * c)=(a * b) * c$, for every $a, b, c \in X$
- There exists identity for the binary operation $*: A \times A \rightarrow A$, i.e., $a^{*} e=e^{*} a=a \quad$ for all $a, e \in A$
- $\quad \mathrm{A}$ binary operation $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ is said to be invertible with respect to the operation * if there exist an element b in A such that $a * b=b * a=e$ $\mathrm{e} \quad$ is identity element in A then b is the inverse of a and is denoted by a^{-1}.

