CLASS-XII
(2023-24)
One Paper

No.	Units	No. of Periods	Marks
I.	Relations and Functions	30	08
II.	Algebra	50	10
III.	Calculus	80	35
IV.	Vectors and Three - Dimensional Geometry	30	14
V.	Linear Programming	20	05
VI.	Probability	30	08
	Total	240	80
	Internal Assessment		20

Unit-I: Relations and Functions

1. Relations and Functions

15 Periods

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

2. Inverse Trigonometric Functions

15 Periods

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices

25 Periods

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).
2. Determinants

25 Periods

Determinant of a square matrix (up to 3×3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-III: Calculus

1. Continuity and Differentiability

20 Periods

Continuity and differentiability, chain rule, derivative of inverse trigonometric functions, like $\sin ^{-1} x, \cos ^{-1} x$ and $\tan ^{-1} x$, derivative of implicit functions. Concept of exponential and logarithmic functions.
Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

2. Applications of Derivatives

10 Periods
Applications of derivatives: rate of change of quantities, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as reallife situations).

3. Integrals

20 Periods

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

$$
\begin{aligned}
& \int \frac{\mathrm{dx}}{\mathrm{x}^{2} \pm \mathrm{a}^{2}} \int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}, \int \frac{\mathrm{dx}}{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}, \int \frac{\mathrm{dx}}{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}}, \int \frac{\mathrm{dx}}{\sqrt{\mathrm{ax}^{2}+b x+c}} \\
& \int \frac{\mathrm{px}+\mathrm{q}}{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}} \mathrm{dx}, \int \frac{\mathrm{px}+\mathrm{q}}{\sqrt{\mathrm{ax}^{2+} \mathrm{bx}+\mathrm{c}}} \mathrm{dx}, \int \sqrt{\mathrm{a}^{2} \pm \mathrm{x}^{2}} \mathrm{dx}, \int \sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}} \mathrm{dx} \\
& \int \sqrt{a x^{2}+b x+c} d x,
\end{aligned}
$$

Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

15 Periods

Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only)

5. Differential Equations

15 Periods
Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{py}=\mathrm{q}, \text { where } \mathrm{p} \text { and } \mathrm{q} \text { are functions of } \mathrm{x} \text { or constants. } \\
& \frac{\mathrm{d} x}{\mathrm{~d} y}+\mathrm{px}=\mathrm{q} \text {, where } \mathrm{p} \text { and } \mathrm{q} \text { are functions of } \mathrm{y} \text { or constants. }
\end{aligned}
$$

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

15 Periods
Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

2. Three - dimensional Geometry

15 Periods
Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

Unit-V: Linear Programming

1. Linear Programming

20 Periods

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

30 Periods
Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes' theorem, Random variable and its probability distribution, mean of random variable.

MATHEMATICS (Code No. - 041)
 QUESTION PAPER DESIGN CLASS - XII

(2023-24)
Time: $\mathbf{3}$ hours
Max. Marks: 80

S. No.	Typology of Questions	Total Marks	$\%$ Weightage
1	Remembering: Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers. Understanding: Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating main ideas	44	55
2	Applying: Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	20	25
	Analysing: Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations	16	20
Evaluating: Present and defend opinions by making judgments about information, validity of ideas, or quality of work based on a set of criteria.	Creating: Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions	80	100

1. No chapter wise weightage. Care to be taken to cover all the chapters
2. Suitable internal variations may be made for generating various templates keeping the overall weightage to different form of questions and typology of questions same.
