

FINAL JEE-MAIN EXAMINATION – JANUARY, 2019 Held On Friday 11th JANUARY, 2019 TIME: 9:30 AM To 12:30 PM

1. For the cell $Zn(s) \mid Zn^{2+}(aq) \parallel M^{x+}$ (aq) $\mid M(s)$, different half cells and their standard electrode potentials are given below :

$M^{x+}(aq/M(s)$	Au(s)	$Ag^{+}(aq)/$ $Ag(s)$	Fe ³⁺ (aq)/ Fe ²⁺ (aq)	Fe ²⁺ (aq)/ Fe(s)
$E_{M^{x+}/M^{(v)}}^{o}$	1.40	0.80	0.77	-0.44

If $E_{Zn^{2+}/Zn}^{\circ} = -0.76 \, V$, which cathode will give a mximum value of E_{cell}° per electron transferred ?

- (1) Fe^{3+} / Fe^{2+}
- $(2) Ag^{+} / Ag$
- (3) Au^{3+} / Au
- $(4) \text{ Fe}^{2+} / \text{ Fe}$

Ans. (2)

2. The correct match between items-I and II is:

Item-IItem-II(Mixture)(Separation method)(A) H_2O : Sugar(P) Sublimation(B) H_2O : Aniline(Q) Recrystallization

- (C) H_2O : Toluene (R) Steam distillation
 - (S) Differential
 - extraction
- (1) A-Q, B-R, C-S
- (2) A-R, B-P, C-S
- (3) A-S, B-R, C-P
- (4) A-Q, B-R, C-P

Ans. (1)

Sol. (Mixture) (Seperation method)

 $H_2O: Sugar \Rightarrow Recrystallization$

 H_20 : Aniline \Rightarrow Steam distillation H_20 : Toluene \Rightarrow Differential extraction

3. If a reaction follows the Arrhenius equation, the

plot lnk vs $\frac{1}{(RT)}$ gives straight line with a

gradient (-y) unit. The energy required to activate the reactant is :

- (1) y unit
- (2) –y unit
- (3) yR unit
- (4) y/R unit

Ans. (1)

- **4.** The concentration of dissolved oxygen (DO) in cold water can go upto :
 - (1) 10 ppm
- (2) 14 ppm
- (3) 16 ppm
- (4) 8 ppm

Ans. (1)

- **Sol.** In cold water, dissolved oxygen (DO) can reach a concentration upto 10 ppm
- 5. The major product of the following reaction is:

OEt
$$(i) \text{ Ni/H}_2$$
 $(i) \text{ DIBAL-H}$

(1) OCHO

(2) N

NH

(3) NH

(4) OH

Ans. (2)

Sol.

$$\begin{array}{c|c}
O & O & O \\
\parallel & C - OE \\
\hline
ON & O & \parallel \\
C - OE \\
\hline
OHNH_{2}
\\
\hline
OHNH_{2}$$

- **6.** Th correct statements among (a) to (d) regarding H₂ as a fuel are :
 - (a) It produces less pollutant than petrol
 - (b) A cylinder of compressed dihydrogen weighs ~ 30 times more than a petrol tank producing the same amount of energy
 - (c) Dihydrogen is stored in tanks of metal alloys like NaNi₅
 - (d) On combustion, values of energy released per gram of liquid dihydrogen and LPG are 50 and 142 kJ, respectively
 - (1) b and d only
- (2) a, b and c only
- (3) b, c and d only
- (4) a and c only

Ans. (2)

Sol. Option (a), (b) & (c) are correct answer (NCERT THEORY BASED)

7. The major poduct of the following reaction is:

Ans. (1)

∜Saral

Sol.

$$\begin{array}{c}
C \\
C \\
C
\end{array}$$

$$\begin{array}{c}
C \\
C
\end{array}$$

$$C$$

Tauto

- **8.** The element that usually does not show variable oxidation states is:
 - (1) V
- (2) Ti
- (3) Sc
- (4) Cu

Ans. (3)

Sol. Usally Sc(Scandium) does not show variable oxidation states.

Most common oxidation states of:

- (i) Sc: +3
- (ii) V: +2, +3, +4, +5
- (iii) Ti: +2, +3, +4
- (iv) Cu: +1, +2
- 9. An organic compound is estimated through Dumus method and was found to evolve 6 moles of CO₂.
 4 moles of H₂O and 1 mole of nitrogen gas. The formula of the compound is :
 - (1) $C_{12}H_8N$
- (2) $C_{12}H_8N_2$
- (3) C_6H_8N
- $(4) C_6 H_8 N_2$

Ans. (4)

Sol.
$$[C_xH_yN_z] \xrightarrow{Duma Method} 6CO_2 + 4H_2O + N_2$$

Hence, $C_6H_8N_2$

10. The major product of the following reaction is :

$$COCH_{3} \xrightarrow{(i) \text{ KMnO}_{4}/\text{KOH}, \Delta}$$

$$CH_{3} \xrightarrow{(ii) \text{H}_{2}\text{SO}_{4}(\text{dil})}$$

Ans. (2)

11. Among the following compound which one is found in RNA?

$$(1) \qquad \begin{array}{c} O \\ NH_{2} \\ NH \\ N \end{array} \qquad (2) \qquad \begin{array}{c} NH_{2} \\ NH_{2} \\ NH \\ N \end{array} \qquad (3) \qquad \begin{array}{c} O \\ NH \\ NH \\ N \end{array} \qquad (4) \qquad \begin{array}{c} NMe \\ NHe \\ NH \\ NHe \end{array}$$

- Ans. (3)
- **Sol.** For the given structure 'uracil' is found in RNA

12. Which compound(s) out of the following is/are not aromatic?

- (1) C and D
- (2) B, C and D
- (3) A and C
- (4) B

Ans. (2)

- **Sol.** out of the given options only \triangle is aromatic.
 - Hence (B), (C) and (D) are not aromatic
- **13.** The correct match between Item(I) and Item(II) is:

Item-I	Item-II	
(A) Nortehindrone	(P) Anti-biotic	
(B) Ofloxacin	(Q) Anti-fertility	
(C) Equanil	(R) Hypertension	
	(S) Analgesics	

- (1) A-R, B-P, C-S
- (2) A-Q, B-P, C-R
- (3) A-R, B-P, C-R
- (4) A-Q, B-R, C-S

Ans. (2)

- **Sol.** (A) Norethindrone Antifertility
 - (B) Ofloaxacin Anti-Biotic
 - (C) Equanil Hypertension (traiquilizer)
- **14.** Heat treatment of muscular pain involves radiation of wavelength of about 900 nm. Which spectral line of H-atom is suitable for this purpose?

[R_H = 1
$$\times$$
 10⁵ cm⁻¹, h = 6.6 \times 10⁻³⁴ Js, c = 3 \times 10⁸ ms⁻¹]

- (1) Paschen, $5 \rightarrow 3$
- (2) Paschen, $\infty \to 3$
- (3) Lyman, $\infty \to 1$
- (4) Balmer, $\infty \to 2$

Ans. (2)

15. Consider the reaction,

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

The equilibrium constant of the above reaction is K_P . If pure ammonia is left to dissociate, the partial pressure of ammonia at equilibrium is given by (Assume that $P_{\rm NH_3}$ << $P_{\rm total}$ at equilibrium)

$$(1) \ \frac{3^{\frac{3}{2}} \ K_{P}^{\frac{1}{2}} \ P^{2}}{4}$$

(2)
$$\frac{3^{\frac{3}{2}} K_{P}^{\frac{1}{2}} P^{2}}{16}$$

(3)
$$\frac{K_{P}^{\frac{1}{2}} P^{2}}{16}$$

(4)
$$\frac{K_{P}^{\frac{1}{2}} P^{2}}{\Delta}$$

Ans. (2)

16. Match the ores(Column A) with the metals (column B):

Column-A	Column-B	
Ores	Metals	
(I) Siderite	(a) Zinc	
(II) Kaolinite	(b) Copper	
(III) Malachite	(c) Iron	
(IV) Calamine	(d) Aluminium	
(1) I-b; II-c; III-d	; IV-a	
(2) Let $\Pi d \cdot \Pi d \cdot \Pi b$		

- (2) I-c; II-d; III-a; IV-b (3) I-c; II-d; III-b; IV-a
- (4) I-a; II-b; III-c; IV-d

Ans. (3)

Sol. Siderite : FeCO₃

Kaolinite : Al₂(OH)₄Si₂O₅ Malachite : Cu(OH)₂.CuCO₃

Calamine: ZnCO₃

17. The correct order of the atomic radii of C, Cs, Al and S is:

$$(1) S < C < Al < Cs$$

(2)
$$S < C < Cs < A1$$

$$(3) C < S < Cs < Al$$

(4)
$$C < S < Al < Cs$$

Ans. (4)

Atomic radii order : C < S < Al < Cs

Atomic radius of C: 170 pm Atomic radius of S: 180 pm Atomic radius of Al: 184 pm Atomic radius of Cs: 300 pm

18. Match the metals (Column I) with the coordination compound(s) / enzyme(s) (Column II)

Column-I	Column-II	
Metals	Coordination compound(s) / Enzyme(s)	
(A)Co	(i) Wilkinson catalyst	
(B) Zn	(ii) Chlorophyll	
(C) Rh	(iii) Vitamin B ₁₂	
(D) Mg	(iv) Carbonic anhydrase	
(1) A-ii ; B-i ; C-iv	; D-iii	

(4) A-i ; B-ii ; C-iii ; D-iv **Ans.** (2)

∜Saral

Sol. (i) Wilkinson catalyst : RhCl(PPh₃)₃

(2) A-iii ; B-iv ; C-i ; D-ii (3) A-iv ; B-iii ; C-i ; D-ii

(ii) Chlorophyll: C₅₅H₇₂O₅N₄Mg

(iii) Vitamin B₁₂(also known as

cyanocobalamin) contain cobalt.

- (iv) Carbonic anhydrase contains a zinc ion.
- 19. A 10 mg effervescent tablet contianing sodium bicarbonate and oxalic acid releases 0.25 ml of CO_2 at T = 298.15 K and p = 1 bar. If molar volume of CO_2 is 25.0 L under such condition, what is the percentage of sodium bicarbonate in each tablet ? [Molar mass of NaHCO₃ = 84 g mol⁻¹]
 - (1) 16.8
- (2) 8.4
- (3) 0.84
- (4) 33.6

Ans. (1)

20. The major product of the following reaction is :

Ans. (1) Sol.

$$\begin{array}{c} OH \\ \hline \\ OH \\ \hline \\ SO_3H \end{array} \begin{array}{c} OH \\ \hline \\ Br \\ \hline \\ Br \end{array} \begin{array}{c} OH \\ + SO_3 \\ \hline \\ Due \ to \ Ipso \ attack \end{array}$$

21. Two blocks of the same metal having same mass and at temperature T_1 and T_2 , respectively. are brought in contact with each other and allowed to attain thermal equilibrium at constant pressure. The change in entropy, ΔS , for this process is :

(1)
$$2C_P \ln \left(\frac{T_1 + T_2}{4T_1T_2} \right)$$
 (2) $2C_P \ln \left[\frac{(T_1 + T_2)^{\frac{1}{2}}}{T_1T_2} \right]$

(3)
$$C_P \ln \left[\frac{(T_1 + T_2)^2}{4T_1T_2} \right]$$
 (4) $2C_P \ln \left[\frac{T_1 + T_2}{2T_1T_2} \right]$

Ans. (3)

- **22.** The chloride that CANNOT get hydrolysed is :
 - (1) $SiCl_4$
- (2) SnCl₄
- (3) PbCl₄
- (4) CCl₄

Ans. (4)

- **Sol.** CCl₄ cannot get hydrolyzed due to the absence of vacant orbital at carbon atom.
- 23. For the chemical reaction $X \longrightarrow Y$, the standard reaction Gibbs energy depends on temperature T (in K) as:

$$\Delta_r G^o \text{ (in kJ mol}^{-1}\text{)} = 120 - \frac{3}{8} T$$

The major component of the reaction mixture at T is:

- (1) X if T = 315 K
- (2) X if T = 350 K
- (3) Y if T = 300 K
- (4) Y if T = 280 K

Ans. (1)

- 24. The freezing point of a diluted milk sample is found to be -0.2°C, while it should have been -0.5°C for pure milk. How much water has been added to pure milk to make the diluted sample?
 - (1) 2 cups of water to 3 cups of pure milk
 - (2) 1 cup of water to 3 cups of pure milk
 - (3) 3 cups of water to 2 cups of pure milk
 - (4) 1 cup of water to 2 cups of pure milk

Ans. (3)

25. A solid having density of 9×10^3 kg m⁻³ forms face centred cubic crystals of edge length $200\sqrt{2}$ pm. What is the molar mass of the solid?

(Avogadro constant $\cong 6 \times 10^{23} \text{ mol}^{-1}, \pi \cong 3$)

- (1) 0.0216 kg mol⁻¹
- (2) 0.0305 kg mol⁻¹
- (3) 0.4320 kg mol⁻¹
- (4) 0.0432 kg mol⁻¹

Ans. (2)

26. The polymer obtained from the following reactions is:

$$HOOC \xrightarrow{NH_2} \xrightarrow{\text{(i) NaNO}_2/H_3O^+} \xrightarrow{\text{(ii) Polymerisation}}$$

$$(1) \begin{bmatrix} O & H \\ -C - (CH_2)_4 - N \end{bmatrix}_n$$

(2)
$$\begin{bmatrix} O \\ O \\ -(CH_2)_4 - C \end{bmatrix}_n$$

(3)
$$\begin{bmatrix} O & O \\ \parallel & \parallel & H \\ -HN \frac{C(CH_2)_4 - C - N}{n} \end{bmatrix}_n$$

$$(4) \begin{bmatrix} 0 \\ OC(CH_2)_4O \end{bmatrix}_n$$

Ans. (2)

Sol.

HOOC
$$\begin{array}{c}
NH_2 & \xrightarrow{NaNO_2} \\
H_3O^{+} & \xrightarrow{NOC} \\
\end{array}$$

$$\begin{array}{c}
OH \\
Polymerisation$$

- **27.** An example of solid sol is:
 - (1) Butter
- (2) Gem stones
- (3) Paint
- (4) Hair cream

Ans. (2)

- **28.** Peoxyacetyl nitrate (PAN), an eye irritant is produced by:
 - (1) Acid rain
- (2) Photochemical smog
- (3) Classical smog
- (4) Organic waste

Ans. (2)

- **Sol.** Photochemical smog produce chemicals such as formaldehyde, acrolein and peroxyacetyl nitrate (PAN).
- **29.** NaH is an example of :
 - (1) Electron-rich hydride (2) Molecular hydride
 - (3) Saline hydride
- (4) Metallic hydride

Ans. (3)

- **Sol.** NaH is an example of ionic hydride which is also known as saline hydride.
- **30.** The amphoteric hydroxide is :
 - $(1) Ca(OH)_2$
- (2) $Be(OH)_2$
- $(3) Sr(OH)_2$
- (4) Mg(OH)₂

Ans. (2)

Sol. Be(OH)₂ is amphoteric in nature while rest all alkaline earth metal hydroxide are basic in nature.