NCERT Solutions for Class 12
 Physics
 Chapter 7 - Alternating Current

1. A $100 \square$ resistor is connected to $\mathbf{a} 20 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.
a) What is the rms value of current in the circuit?

Ans: It is given that,
Resistance, R $\mathrm{D100} \mathrm{\square}$
Voltage, V [220 V
Frequency, f D 50 Hz
It is known that,

Therefore, the rms value of current in the circuit isI $I_{m s} \square 2.2 \mathrm{~A}$.
b) What is the net power consumed over a full cycle?

Ans: It is known that,
Power प पV I
-Power C 220 D 2.2
CPower C 484 W
Therefore, the net power consumed over a full cycle is 484 W .
2.
a) The peak voltage of an ac supply is 300 V . What is the rms voltage? Ans: It is given that,
Peak voltage of the ac supply, $V_{0} \square 300 \mathrm{~V}$ It
is known that,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{rms}} \mathrm{~V}_{\frac{1}{\sqrt{2}}}^{\mathrm{V}_{0}} \\
& \quad \frac{300}{\sqrt{2}} \square \\
& \square \mathrm{~V}_{\mathrm{rms}} \square \\
& \mathrm{~V} \text { rms } \\
& \square 212.1 \mathrm{~V}
\end{aligned}
$$

Therefore, the rms voltage is 212.1 V .
b) The rms value of current in an ac circuit is 10 A . What is the peak current? Ans: It is given that,
Rms value of current in an ac circuit, $\mathrm{I}_{\mathrm{rms}}$ D10A It
is known that,
Io प $\sqrt{2}$ Ims

- $\mathrm{II}_{0} 1.41410 \mathrm{C}$

Therefore, the peak current is 14.14 A .

3. A 44 mH inductor is connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Determine the $\mathbf{r m s}$ value of the current in the circuit.
Ans: It is known that,
Inductance, L $\quad 44 \mathrm{mH} \mathrm{C} 4410 \mathrm{D}^{\mathrm{D}} \mathrm{H}$
Voltage, V [220 V
Frequency, $\mathrm{f}_{\mathrm{L}} \mathrm{D} 50 \mathrm{~Hz}$
Angular frequency, \qquad
It is known that,
Inductive reactance, X_{L} प्र $\square_{L} L 2 f L_{L}$

— X_{L} D13.8
V
$\mathrm{I}_{\mathrm{rms}}$ \qquad

逍Saral

X
220
$\square \mathrm{I}_{\mathrm{ms}} \mathrm{\square}$
13.82
$\square \mathrm{I}_{\mathrm{rms}} \mathrm{D} 15.92 \mathrm{~A}$
Therefore, the rms value of the current in the circuit is 15.92 A .
4. A 60 F capacitor is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz}$ ac supply. Determine the rms value of the current in the circuit.
Ans: It is given that,

Voltage, V $\mathrm{D110V}$
Frequency, $\mathrm{f}_{\mathrm{c}} \mathrm{D} 60 \mathrm{~Hz}$
It is known that,
V
$\mathrm{I}_{\mathrm{rms}} \mathrm{D}$ —— X_{C}

$\square_{\mathrm{c}} \mathrm{C} \quad 2 \mathrm{Df} \mathrm{C} \mathrm{C}_{\mathrm{c}}$
1
— $\mathrm{Xc}_{\mathrm{c}} \mathrm{D}$ \qquad $2 \square \quad$ ■6
3.14D60 $6010 \square$
— X_{C} —44.248
110
$\square I_{\text {rms }}$ ■ \qquad
44.282.488A

Therefore, the rms value of the current in the circuit is 2.488 A .
5. In exercises 4 and 5 What is the net power absorbed by each circuit over a complete cycle? Explain your answer.
Ans: From the inductive circuit,

光Saral

Rms value of current, $\mathrm{I}_{\mathrm{rms}}$ D15.92A
Rms value of voltage, $\mathrm{V}_{\mathrm{rms}} \mathrm{\square} 220 \mathrm{~V}$
It is known that,
Net power absorbed, $\mathrm{P} \square \mathrm{V}_{\mathrm{rms}} \square \mathrm{I}_{\mathrm{ms}} \cos \square$
Where,
\square is the phase difference between voltage and current
For a pure inductive circuit, the phase difference between alternating voltage and current is 90° i.e., 믕́
— पР $22015.92 \mathrm{Cos} 90^{\circ}$ प 0
Therefore, net power absorbed is zero in a pure inductive circuit. In a capacitive circuit,
Rms value of current, $\mathrm{I}_{\mathrm{mms}} \square 2.49 \mathrm{~A}$
Rms value of voltage, $\mathrm{V}_{\mathrm{rms}} \square 110 \mathrm{~V}$
It is known that,
Net power absorbed, $\mathrm{P} \square \mathrm{V}_{\mathrm{rms}} \square \mathrm{I}_{\mathrm{mms}} \cos \square$
Where,
\square is the phase difference between voltage and current
For a pure capacitive circuit, the phase difference between alternating voltage and current is 90° i.e., 므웅
——P $110 \square 2.49 \cos 90^{\circ} \square 0$
Therefore, net power absorbed is zero in a pure capacitive circuit.

6. Obtain the resonant frequency D_{r} of a series LCR circuit with L $\quad \mathbf{2 . 0 H}$, $C \subset \square 32$ F and R प प10. What is the Q-value of this current?

Ans: It is given that, Inductance, LD2H

R — D 10
It is known that,
1
Resonant frequency, $\square_{r} \frac{1}{\sqrt{ }}$

LC
पष $\square_{r} \frac{1}{\sqrt{2 \square^{32 \varphi^{6}}}}$
믇 $\frac{1}{8 \times 10^{-3}}$
प $\mathrm{D}_{\mathrm{r}} \quad 125 \mathrm{rad} \mathrm{s}$
$Q \mathrm{Q}$ value $\square^{\square_{r} L}$
R-

प पQ $\frac{1}{10} \sqrt{\frac{2}{32 \square 10 \square 6}}$
प पQ $\frac{1}{10 \times 4 \times 10^{-3}}$
प पQ 25
Therefore, the resonant frequency is $125 \mathrm{rad} / \mathrm{s}$ and Q -value is 25 .
7. A charged $30 \square \mathrm{~F}$ capacitor is connected to a 27 mH inductor. What is the angular frequency of free oscillations of the circuit? Ans: It is given that,

It is known that,
Angular frequency of free oscillations, $\mathrm{Z}_{\mathrm{r}} \frac{1}{\sqrt{\text { LC }}}$
प $\square_{r} \frac{1}{\sqrt{27 \varphi^{\mathrm{a}^{3}} \square^{30} \bigoplus^{\mathrm{a}^{6}}}}$
पर $\mathrm{C}_{\mathrm{r}} \frac{1}{9 \times 10^{-4}}$
吅 $\mathrm{D}_{\mathrm{r}} 1.1110 \mathrm{D}^{3} \mathrm{rad} / \mathrm{s}$
Therefore, the angular frequency of free oscillations of the circuit is

e"Saral

$1.1110{ }^{3} \mathrm{rad} / \mathrm{s}$.

8. Suppose the initial charge on the capacitor in exercise 7 is $\mathbf{6 m C}$. What is the total energy stored in the circuit initially? What is the total energy at a later time?
Ans: It is known that,
Capacitance of the capacitor, CD प प30 F30 $10^{\text {D6 }} \mathrm{F}$
Inductance of the capacitor, L प $27 \mathrm{mH} \square 2710 \square^{{ }^{3}} \mathrm{H}$
Charge on the capacitor, $\mathrm{Q} \square 6 \mathrm{mCD} \square 610^{\square 3} \mathrm{C}$
It is known that,

$$
1 \mathrm{Q}^{2}
$$

Energy, E \quad I

$$
2 \mathrm{C}
$$

$$
1\left(6 \square 10^{\square 32}\right)
$$

प EE \qquad $230 \mathrm{D10}$ व6

प पह $\frac{6}{10} 0.6 \mathrm{~J}$
Therefore, the energy stored in the circuit initially is E 00.6 J .
Total energy at later time will remain same as the initially stored i.e., 0.6 J because energy is shared between the capacitor and the inductor.
9. A series LCR circuit with $R \square 20 \square, L \square 1.5 H$ and $C D \square 35 F$ is connected to a variable frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?
Ans: It is known that,
Resistance, R प प20
Inductance, L D 1.5 H

Voltage, V $\quad 200 \mathrm{~V}$
It is known that,
Impedance, $\mathrm{Z} \square \sqrt{2} \mathrm{\square}\left(\mathrm{X}_{\mathrm{L}} \square \mathrm{X}\right)_{\mathrm{C}}{ }^{2}$

At resonance， X_{L}－ X_{C}
ロロロZR 20ロ
V 200
I
ローロ
Z 20
Q DI 10A
Average power，P $\mathrm{I} \mathrm{R}^{2}$

ロ［P 2000W
Therefore，the average power transferred is 2000 W ．
10．A radio can tune over the frequency range of a portion of $M W$ broadcast band：$(800 \mathrm{kHz}$ to 1200 kHz$)$ ．If its LC circuit has an effective inductance of 200 H ，what must be the range of its variable capacitor？
［Hint：For tuning，the natural frequency i．e．，the frequency of free oscillations of the LC circuit should be equal to the frequency of the radio wave．］
Ans：It is given that，
The range of frequency（f）of a radio is 800 kHz to 1200 kHz ．
 is known that，

Capacitance of variable capacitor for f_{1} is $C_{1} \square _\square_{12} L$
Where，
D_{1} is the angular frequency for capacitor for $\mathrm{f}_{1} \mathrm{\square} \mathrm{\square} 2 \mathrm{f}_{1}$

1
$\square \square_{C^{1}}$ （2ロ ${ }^{32} 200 \square 10^{\square 6}$

3．14D800 10 ）

- $\mathrm{CC}_{1} 198.1 \mathrm{pF} 1$
$\mathrm{C}_{2} \square$
$\square_{22} L$
$\square \square_{C^{2}}$ \qquad $\left(2 \square^{32} \quad 200 \square 10^{\square 6}\right.$
3.14D1200ㅁ10)
$\mathrm{DC}_{2} \mathrm{D} 0.8804 \mathrm{IO}^{\mathrm{D} 10} \mathrm{~F}$
- पC $\mathrm{C}_{2} 88.04 \mathrm{pF}$

Therefore, the range of the variable capacitor is from 88.04 pF to 198.1 pF .
11. Figure shows a series LCR circuit connected to a variable frequency 230 V

a) Determine the source frequency which drives the circuit in resonance.

Ans: It is given that,
Voltage, V [230V
Inductance, L $\mathrm{D5} .0 \mathrm{H}$

Resistance, R प 440
It is known that,

$$
1
$$

Source frequency at resonance \square

$$
\overline{\sqrt{L C}}
$$

光Saral

Therefore, the source frequency of the circuit in resonance is $50 \mathrm{rad} / \mathrm{s}$.
b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
Ans: It is known that,
At resonance, Impedance, $\mathrm{Z} \square$ Resistance, R
प——ZR 40ロ
V
I
Z
(पI $\frac{230}{40}-5.75 \mathrm{~A}$
Amplitude, $\mathrm{I}_{0} \mathrm{D} 1.414 \mathrm{I}$
$\begin{array}{ll}\square \mathrm{I}_{0} & 1.414 \square 5.75\end{array}$
$\square \square \mathrm{I}_{0} \quad 8.13 \mathrm{~A}$
Therefore, the impedance of the circuit is $40 \square$ and the amplitude of current at resonating frequency is 8.13 A .
c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the $L C$ combination is zero at the resonating frequency.
Ans: It is known that,
Potential drop, V \square IR
Across resistor, $\mathrm{V}_{\mathrm{R}} \mathrm{\square}$ IR
$\square V_{R} \square 5.75 \square \square 40230 \mathrm{~V}$
I
Across capacitor, $\mathrm{V}_{\mathrm{C}} \square \mathrm{IX}_{\mathrm{C}} \square$ \qquad - C
$\square \mathrm{V}_{\mathrm{C}} \square 5.75 \square \frac{1}{50 \times 80 \times 10^{-6}}$

e"Saral

- $\mathrm{VV}_{\mathrm{C}} 1437.5 \mathrm{~V}$

Across Inductor, $\mathrm{V}_{\mathrm{L}} \mathrm{\square} \mathrm{IX}_{\mathrm{L}} \square \mathrm{DI} \mathrm{L}$
$\square \square V_{\mathrm{L}}$ 5.75口 प505
प $\mathrm{DV}_{\mathrm{L}} \quad 1437.5 \mathrm{~V}$
Across LC combination, $\mathrm{V}_{\mathrm{LC}} \square \mathrm{I}\left(\mathrm{X}_{\mathrm{L}} \square \mathrm{X}\right)_{\mathrm{C}}$
At resonance, $X_{L} \square X_{C}$
$\square \mathrm{V}_{\mathrm{LC}} \mathrm{\square} 0$
Therefore, the rms potential drop across Resistor is 230 V , Capacitor is 1437.5 V , Inductor is 1437.5 V and the potential drop across LC combination is zero at resonating frequency.
12. An LC circuit contains a 20 mH inductor and a 50 C capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible. Let the instant the circuit is closed be $\mathrm{t} \boldsymbol{0}$.
a) What is the total energy stored initially? Is it conserved during LC oscillations?
Ans: It is given that,
Inductance of the inductor, L प $20 \mathrm{mH} \mathrm{C} 2010 \mathrm{D}^{\mathrm{D}} \mathrm{H}$
Capacitance of the capacitor, C 50 F 5010 FD प प ${ }^{\square 6}$
Initial charge on the capacitor, $\mathrm{Q} \square 10 \mathrm{mCD} \mathrm{C} 1010^{\square 3} \mathrm{C}$ It is known that,
$1 \mathrm{Q}^{2}$
Total energy stored initially in the circuit, E \quad _-
2 C
$\left(10 \square 10^{\square 32}\right)$

- $\square^{\text {E }}$ \qquad $2 \square \square 5010_{\square 6} \square 1 \mathrm{~J}$

Therefore, the total energy stored in the LC circuit will be conserved because there is no resistor $(\mathrm{R} \square 0)$ connected in the circuit.
b) What is the natural frequency of the circuit?

Ans: It is known that,

Natural frequency of the circuit, Q ㅁ \qquad
1
प००

10^{3}
प्र ———159.24Hz
$2 \square$

Natural angular frequency, $\mathrm{D}_{\mathrm{r}} \frac{}{\sqrt{\mathrm{LC}}}$

प००. $\frac{1}{\sqrt{10^{\sigma^{6}}}} \square^{10^{3} \mathrm{rad} / \mathrm{s}}$
Therefore, the natural frequency is 159.24 Hz and the natural angular frequency is $10^{3} \mathrm{rad} / \mathrm{s}$.
c) At what time is the energy stored (i) completely electrical (i.e., stored in the capacitor)? (ii) completely magnetic (i.e., stored in the inductor)? Ans:
(i) Completely electrical

It is known that,

Time period for LC oscillations, T_{-}

If energy stored is electrical, Q^{\prime} प Q
Therefore, it can be inferred that the energy stored in the capacitor is completely

光Saral

,T, where, T 6.3 ms .

22
(ii) Completely magnetic

Magnetic energy is maximum, when electrical energy Q^{\prime} is equal to 0 .
Therefore, it can be inferred that the energy stored is completely magnetic at time,
$63 \underline{T} 3 \mathrm{~T} 5 \mathrm{~T}$ t D , \qquad where, T — $6.3 \overline{\mathrm{~ms}}$.

444
d) At what times is the total energy shared equally between the inductor and the capacitor?
Ans: Consider, Q^{\prime} be the charge on capacitor when total energy is equally shared between the capacitor and the inductor at time t.
When total energy is equally shared between the inductor and capacitor, the energy stored in the capacitor $\square 12$ (maximum energy).

$1 \quad \mathrm{D}^{\prime} \mathrm{D}_{2} 11 \mathrm{Q} \mathrm{Q}_{2} \mathrm{Z}$

- 1- 马Q' \square^{2} - $-\mathrm{Q}^{2}$

2 C 4 C
Q
प पQ' $\overline{\sqrt{2}}$

It is known that, $Q^{\prime} \square Q \cos __{T} t$
$\mathrm{Q} 2^{\square}$ Qcos
\qquad
2 T

逍Saral

$\sqrt{ }$

$\square \cos 2^{\square}$ t $\square \sqrt[1]{\bar{\square}} \cos (2 n \square 1)-\quad$; n $\square 0,1,2,3 \ldots$. $\begin{array}{lll}\mathrm{T} & \frac{2}{\mathrm{~T}} & 4\end{array}$
$\square \square \mathrm{t} \quad(2 \mathrm{n} \square 1)$
8
Therefore, total energy is equally shared between the inductor and the capacitor
\square \qquad T 3T 5T at time, t
888
e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?
Ans: If a resistor is included in the circuit, then the total initial energy gets dissipated as heat energy in the circuit. The LC oscillation gets damped due to the resistance.

13. A coil of inductance 0.5 H and resistance $100 \square$ is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$

 ac supply.a) What is the maximum current in the coil?

Ans: It is given that,
Inductance of the inductor, $\mathrm{L} \square 0.5 \mathrm{H}$
Resistance of the resistor, R $\mathrm{C} 100 \mathrm{\square}$
Potential of the supply voltage, V $\quad 240 \mathrm{~V}$
Frequency of the supply, ZD 50 Hz
It is known that,
Peak voltage, $\mathrm{V}_{0} \mathrm{\square} 2 \mathrm{~V}$
$\square \square V_{0} \sqrt{2} \square 240$
प $\mathrm{ZV}_{0} \quad 339.41 \mathrm{~V}$
Angular frequency of the supply, १० प०2

Maximum current in the circuit, $\mathrm{I}_{0} \square \sqrt{{ }^{2,22 \mathrm{~L}}}$
R
339.41
$\square \mathrm{I}_{02}\left(\sqrt{\left.\sqrt[100)(0.50){ }_{22} \mathrm{D1.82A}\right]{ }} 100\right) \square$
Therefore, the maximum current in the coil is 1.82 A .
b) What is the time lag between the voltage maximum and the current maximum?
Ans: It is known that,
Equation for voltage, $\mathrm{V} \square \mathrm{V} \cos _{0} \square \mathrm{t}$
Equation for current, I $\mathrm{I} \operatorname{I} \cos \left(\mathrm{t}_{0} \quad \mathrm{\square} \quad \mathrm{\square D}\right)$
Where,
\square is the phase difference between voltage and current.

0 i.e., att $\square-{ }^{\square}, \mathrm{I}_{\mathrm{I}} \mathrm{I}_{0}$ (current is maximum)

Therefore, the time lag between maximum voltage and maximum current is \qquad

Q ODtan -
DL

R
$\square \tan \square]^{\frac{2 \pi \times 50 \times 0.5}{100}} 01.57$
믄 $\tan (1.57)^{\text {1 }}$
57.5^{\square}
प प प57.5 प -rad
180

Time lag, t—_
$57.5^{\text {口 }}$
— Dt

प पt $3.1910 \square^{{ }^{\mathrm{a}} \mathrm{s}}$
प Dt 3.2 ms
Therefore, the time lag between the maximum voltage and maximum current is 3.2 ms .
14. Obtain the answers (a) to (b) in Exercise 13 if the circuit is connected to a high frequency supply $(240 \mathrm{~V}, 10 \mathrm{kHz})$. Hence, explain the statement that at very high frequency, an inductor in a circuit nearly amounts to an open circuit. How does an inductor behave in a de circuit after the steady state?
Ans: It is given that,
Inductance of the inductor, $\mathrm{L} \square 0.5 \mathrm{H}$
Resistance of the resistor, R $\mathrm{D} 100 \mathrm{\square}$
Potential of the supply voltage, V C 240 V
Frequency of the supply, $\mathrm{CD} 10 \mathrm{kHz} \mathrm{D} 10^{4} \mathrm{~Hz}$

Voltage, $\mathrm{V}_{0} \mathrm{D}$ V $2 \mathrm{\square} 110$ 2V
a) Maximum current, $\widehat{0}_{0} \square_{2}$ V^{0}
$\sqrt{2 \mathrm{C}_{2}}$
$\sqrt{\sqrt{\text { RTU }}}$

Therefore, the maximum current in the coil is $1.110 \square^{\mathrm{a}_{2}} \mathrm{~A}$.
b) The time lag between maximum voltage and maximum current is ${ }_{-}{ }^{\square}$.

$$
\begin{aligned}
& \text { For phase difference } \mathrm{Q}: \tan \bar{\square} \\
& \text { 2 [[} 10^{4} 0.5 \\
& \text { Q DDtan } \\
& 100
\end{aligned}
$$ —L

R

89.82^{\square}

180

Time lag, t—_

$$
89.82^{\square}
$$

Therefore, the time lag between the maximum voltage and maximum current is 25口s.
It can be observed that I_{0} is very small in this case.
Thus, at high frequencies, the inductor amounts to an open circuit.
In a dc circuit, after a steady state is achieved, OL 0 . Thus, inductor L behaves like a pure conducting object.
15. A $100 \square \mathrm{~F}$ capacitor in series with a 40 r resistance is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz}$ supply.
a) What is the maximum current in the circuit?

Ans: It is given that,
Capacitance of the capacitor, CD100 DF 100 10 ${ }^{\text {a6 }} \mathrm{F}$
Resistance of the resistor, R — प40
Supply voltage, V C 110 V
Frequency oscillations, Z C 60 Hz
Angular frequency, प० प०० प०2 $260 \mathrm{rad} / \mathrm{s}$
It is known that,
For a RC circuit, Impedance: $\quad \sqrt{R^{2} \frac{1}{\square^{2} \mathrm{C}}} \mathrm{ZQ}$ Peak Voltage, $V_{0} \quad$ V $2 \sqrt{\square} 110 \sqrt{ }$ V^{0}
Maximum current; $\mathrm{I}_{0} \mathrm{\square}$
Z

$\square I_{0} \square \frac{1102}{\sqrt{1600 \square \frac{1}{(120 \partial \overbrace{}^{20})^{\mathrm{a}^{42}}}}} \square^{3.24 \mathrm{~A}}$
Therefore, the maximum current in the circuit is 3.24 A .
b) What is the time lag between the current maximum and the voltage maximum?
Ans: It is known that,
In a capacitor circuit, the voltage lags behind the current by a phase angle of \square.

光Saral

$\square \tan \overline{120 \pi \times 10^{-4} \times 40} 0.6635$
प०० $\tan (0.6635)^{\text {D1 }}$
33.56^{\square}
प०प33.56 $\square^{\circ}-\mathrm{rad}$
180
It is known that,

Time lag, t \square_{-}^{\square}
33.56^{\square}
ㅁ)
180120 ■

- पt $1.5510 \square^{\square 3} \mathrm{~s}$
$\square \square \mathrm{t} 1.55 \mathrm{~ms}$
Therefore, the time lag between maximum current and maximum voltage is 1.55 ms .

16. Obtain the answers to (a) and (b) in Exercise 15 if the circuit is connected to a $110 \mathrm{~V}, 12 \mathrm{kHz}$ supply? Hence, explain the statement that a capacitor is a conductor at very high frequencies. Compare this behaviour with that of a capacitor in a dc circuit after the steady state.
Ans: It is given that,
Capacitance of the capacitor, CD100~ DF 100 10口 ${ }^{\text {a6 }} \mathrm{F}$
Resistance of the resistor, R प प40
Supply voltage, V C 110 V
Frequency oscillations, $\quad \mathrm{D} \mid 2 \mathrm{kHz} \mathrm{C} 1210 \square^{3} \mathrm{~Hz}$

Peak Voltage, $V_{0} \square$ V $\mathbb{\square} 110 \sqrt{ }$
a) It is known that,

For a $R C$ circuit, Impedance: $\quad \sqrt{R^{2} \frac{1}{\square^{2} C}} Z \square$

$$
\begin{aligned}
& \underline{V}^{0} \\
& \text { Maximum current; } \mathrm{I}_{0} \mathrm{D} \\
& \text { Z } \\
& \square \square^{I_{0}}
\end{aligned}
$$

Therefore, the maximum current in the circuit is 3.9 A . b) It is known that,
In a capacitor circuit, the voltage lags behind the current by a phase angle of \square.
$\tan \operatorname{COC} 1-$
R DCR

प्रा $\tan \left(\begin{array}{ll}\left(\begin{array}{ll}1 & 1\end{array}\right)\end{array}\right.$
96
0.2^{\square}

180
It is known that,
Time lag, t _ ${ }^{\square}$
$0.2 \square$
— Dt180 \qquad 3
24밍

- Dt $0.0410 \square^{\square 6}$ s
— पt $0.04 \square \mathrm{~s}$
Therefore, the time lag between maximum current and maximum voltage is $0.04 \square \mathrm{~s}$.

It can be concluded that \square tends to become zero at high frequencies. At a high frequency, capacitor C acts as a conductor.
In a dc circuit, after the steady state is achieved, पर 0 . Therefore, capacitor C amounts to an open circuit.
17. Keeping the source frequency equal to the resonating frequency of the series $L C R$ circuit, if three elements, L, C and R are arranged in parallel, show that the total current in the parallel LCR circuit is minimum at this frequency. Obtain the current rms value in each branch of the circuit for the elements and source specified in Exercise 11 for this frequency. Ans: It is given that,
An inductor (L), a capacitor (C) and a resistor (R) is connected in parallel with each other in a circuit where,

Inductance, L D 5.0 H
Capacitance, C 80 F 8010 FD प प ${ }^{\square 6}$
Resistance, R — प40
Potential of the voltage source, V $\square 230 \mathrm{~V}$
It is known that,
Impedance (Z) of the given LCR circuit is given as:


```
2口 L
```

Where,

光Saral

\square is the angular frequency
1
At resonance: \qquad
पL
1

प००

$\sqrt{\sqrt{\text { LC }}}$

Therefore, the magnitude of Z is maximum at $50 \mathrm{rad} / \mathrm{s}$ and the total current is minimum.

पС

Rms current flowing through resistor $R: I_{R} \square_{-}$

R

230
$\square \mathrm{I}_{\mathrm{R}} \mathrm{\square} 40 \square 5.75 \mathrm{~A}$

Current rms value in inductor is 0.92 A , in capacitor is 0.92 A and in resistor is 5.75 A .
18. A circuit containing an 80 mH inductor and a $60 \square \mathrm{~F}$ capacitor in series is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The resistance of the circuit is negligible.
a) Obtain the current amplitude and rms values.

Ans：It is given that，
Inductance，L $\mathrm{C} 80 \mathrm{mH} \mathrm{C} 8010 \mathrm{D}^{\mathrm{D}} \mathrm{H}$
Capacitance，C口 प प प60 F60 $10^{\square 6} \mathrm{~F}$
Supply voltage，V C 230 V
Frequency， $\mathrm{\square D} 50 \mathrm{~Hz}$

Peak voltage，V_{0} प V 2 － $23023 \sqrt{V}$
It is known that，
Maximum current：$I_{0} \square \frac{0}{\left(\square 母 \frac{1}{\square^{C}}\right)}$

$\square \mathrm{I}_{0} \frac{2303}{1000} \mathrm{CD} 11.63 \mathrm{~A}$
（8ロロ ）
$6 \square$
1
The negative sign is because $\square \mathrm{DL}$ $\square \mathrm{C}$
Amplitude of maximum current，$\hbar_{0} \pitchfork 11.63 \mathrm{~A}$
प्रा $\overline{\sqrt{2}} \square \overline{\sqrt{2}} \quad$ Io $_{0} \quad \square 11.63$
प प्रा 8.22 A ，which is the rms value of current．
b）Obtain the rms values of potential drops across each element．
Ans：It is known that，
Potential difference across the inductor， $\mathrm{V}_{\mathrm{L}} \mathrm{Q}$ पा L
$\square V_{L}$ प8．22 100ロ

光Saral

प VV_{L} 206.61V
1
Potential difference across the capacitor, $\mathrm{V}_{\mathrm{C}} \mathrm{Cl}$
—C
$\square V_{C} \square 8.22 \square \frac{1}{100 \pi \times 60 \times 10^{-6}}$
$\square \mathrm{V}_{\mathrm{C}} 436.3 \mathrm{~V}$, which is the rms value of potential drop.
c) What is the average power transferred to the inductor?

Ans: Average power transferred to the inductor is zero as actual voltage leads the current by $-{ }_{-}$.

2
d) What is the average power transferred to the capacitor?

Ans: Average power transferred to the capacitor is zero as actual voltage lags the current by ${ }_{-}$.
e) What is the total average power absorbed by the circuit? ['Average' implies 'averaged over one cycle'.]
Ans: The total average power absorbed (averaged over one cycle) is zero.
19. Suppose the circuit in Exercise 18 has a resistance of $15 \square$. Obtain the average power transferred to each element of the circuit, and the total power absorbed.
Ans: It is given that,
Average power transferred to the resistor $\quad 788.44 \mathrm{~W}$
Average power transferred to the capacitor $\mathrm{\square} 0 \mathrm{~W}$
Total power absorbed by the circuit C 788.44 W

Inductance of inductor，L $\quad \mathrm{B} 80 \mathrm{mH} \square 8010 \square^{\square 3} \mathrm{H}$ Capacitance
of capacitor，CD प प $60 \mathrm{~F} \quad 6010^{\square 6} \mathrm{~F}$
Resistance of resistor，R प प15
Potential of voltage supply，V $\square 230 \mathrm{~V}$
Frequency of signal， ZD 50 Hz
Angular frequency of signal，पर प०० प्रे
2 П50Пロ100ロrad／s It is known that，

Now，
V
I \quad＿
Z
प पI $\frac{230}{31.728}$ 7．25A
The elements are connected in series to each other．Therefore，impedance of the circuit is given as current flowing in the circuit，

Average power transferred to resistance is given as： $\mathrm{P}_{\mathrm{R}} \square \mathrm{IR}^{2}$
$\square \mathrm{P}_{\mathrm{R}} \mathrm{\square} \square 7.25 \square^{2} \square 15 \square 788.44 \mathrm{~W}$
Average power transferred to capacitor， $\mathrm{P}_{\mathrm{C}} \square$ Average power transferred to inductor， $\mathrm{P}_{\mathrm{L}} \square 0$

Total power absorbed by the circuit: $\mathrm{P}_{\mathrm{T}} \square \mathrm{P}_{\mathrm{R}} \square \square \mathrm{P}_{\mathrm{C}} \mathrm{P}_{\mathrm{L}}$
$\mathrm{P}_{\mathrm{T}} \mathrm{Z}$
788.44~~ $\square 0$
$0 \quad 788.44 \mathrm{~W}$

Therefore, the total power absorbed by the circuit is 788.44 W .
20. A series LCR circuit with $L \square 0.12 H, C D 480 \mathrm{nF}, R \square 23 \Omega$ is connected to a 230 V variable frequency supply.
a) What is the source frequency for which current amplitude is maximum? Obtain this maximum value.
Ans: It is given that,
Inductance, L C 0.12 H

Resistance, R — प23
Supply voltage, V [230V
Peak voltage, $V_{0} \square 230 \square 2 \sqrt{\square} 325.22 \mathrm{~V}$
It is known that,

$$
\mathrm{V}^{0}
$$

Current flowing in the circuit, $\mathrm{I}_{0} \square$

Where,
I_{0} is maximum at resonance.

$$
1
$$

At resonance: $\square_{R} L \square$ \qquad 0
$\square_{R} C$
Where,
\square_{R} is the resonance angular frequency

$$
1
$$

ㅁ $\overline{\sqrt{\mathrm{LC}}}$
D_{R}

पロ

$$
\frac{1}{\sqrt{0.12 \square^{480} \bigcup^{0}}} \square_{R}
$$

逍Saral

CD $\square_{R} 4166.67 \mathrm{rad} / \mathrm{s}$ Resonant
frequency, $\square \square_{R} \square_{\underline{R}}$

$$
\mathrm{Q} \mathrm{\square}_{\mathrm{R}} \frac{4166.67}{2 \times 3.14 \square 663.48 \mathrm{~Hz}}
$$

V ${ }^{0}$

Maximum current, $\square_{I_{0}} \square_{\text {Max }} \square R$
$\square \square_{\mathrm{I}_{0}} \square_{\mathrm{Max}} \square^{\frac{325.22}{23}} \quad$ ロ14.14A
b) What is the source frequency for which average power absorbed by the circuit is maximum? Obtain the value of this maximum power. Ans:
It is known that,

$$
12
$$

Maximum average power absorbed by the circuit; $\left(\mathrm{P}_{\mathrm{V} \text { Max }}\right) \square _2 \square_{\mathrm{I}_{0}} \square_{\text {Max }} R$

Therefore, the resonant frequency, $\quad \mathrm{D} \mathrm{D}_{\mathrm{R}} 663.48 \mathrm{~Hz}$
c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
Ans: It is known that,
The power transferred to the circuit is half the power at resonant frequency.

Where,
R
-

光Saral

2L

23
 पर्य $\overline{2 \times 0.12} \square 95.83 \mathrm{rad} / \mathrm{s}$

1
Therefore, the change in frequency, प०० _ \square
$2 \square$
95.83

प० (——15.26Hz
$2 \square$
$\operatorname{CBCDD}_{\mathrm{R}} 663.48 \mathrm{D} 15.26 \mathrm{C} 678.74 \mathrm{~Hz}$

Therefore, at 648.22 Hz and 678.74 Hz frequencies, the power transferred is half.
At these frequencies, current amplitude: $I^{\frac{1}{\sqrt{2}}} \square_{I_{0}} \square_{\text {Max }}$
प पI' $\quad \frac{14.14}{\sqrt{2}} \square 10 \mathrm{~A}$
Therefore, the current amplitude is 10A.
d) What is the Q-factor of the given circuit? Ans:

It is known that,
Q-factor of the given circuit, $\mathrm{Q} \square^{\mathrm{Q}_{\mathrm{r}} \mathrm{L}}$
R

$$
\nabla \square Q \frac{4166.67 \times 0.12}{23} \quad \square 21.74
$$

Therefore, the Q-factor of the given circuit is 21.74 .
21. Obtain the resonant frequency and Q-factor of a series LCR circuit with $L \square 3.0 H, C D \square 27 \mathrm{~F}$ and $\mathrm{R} \square \square 7.4$. It is desired to improve the sharpness of the resonance of the circuit by reducing its 'full width at half maximum' by a factor of 2 . Suggest a suitable way.
Ans: It is given that,
Inductance, L D3.0H

> e'Saral है, तो सब सरल है।

e"Saral

Resistance,R प प7.4
It is known that,
At resonance, angular frequency of the source for the given LCR series circuit is 1

- \square_{r} $\overline{\sqrt{\text { LC }}}$

$\frac{10^{3}}{9}$
प D_{r} D111.11rad / s

Therefore, the resonant frequency is $111.11 \mathrm{rad} / \mathrm{s}$.
Q-factor of the series, $Q \square^{日_{r} L}$
R

$$
\frac{111.11 \times 3}{7.4} \square 45.0446
$$

Therefore, the Q-factor is 45.0446 .
To improve the sharpness of the resonance by reducing 'full width at half maximum' by a factor of 2 without changing \square_{r}, reduce the resistance to half. 7.4
 $\square 3.7$
2
Therefore, required resistance is 3.7 .

22. Answer the following questions:

a) In any ac circuit, is the applied instantaneous voltage equal to the algebraic sum of the instantaneous voltages across the series elements of the circuit? Is the same true for rms voltage?
Ans: Yes, in any ac circuit, the applied instantaneous voltage is equal to the algebraic sum of the instantaneous voltages across the series elements of the circuit.

逍Saral

The same is not true for rms voltage because voltages across different elements may not be in phase.
b) A capacitor is used in the primary circuit of an induction coil. Ans: Yes, a capacitor is used in the primary circuit of an induction coil. This is because, when the circuit is broken, a high induced voltage is used to charge the capacitor to avoid sparks.
c) An applied voltage signal consists of a superposition of a dc voltage and an ac voltage of high frequency. The circuit consists of an inductor and a capacitor in series. Show that the de signal will appear across C and the ac signal across L.
Ans: The dc signal will appear across capacitor C because for dc signals, the impedance of an inductor L is negligible while the impedance of a capacitor C is very high (almost infinite).
Therefore, a dc signal appears acrossC.
For an ac signal of high frequency, the impedance of Lis high and that of C is very low.
Thus, an ac signal of high frequency appears across L.
d) A choke coil in series with a lamp is connected to a de line. The lamp is seen to shine brightly. Insertion of an iron core in the choke causes no change in the lamp's brightness. Predict the corresponding observations if the connection is to an ac line.
Ans: When an iron core is inserted in the choke coil (which is in series with a lamp connected to an ac line), the lamp will glow dimly.
This is because the choke coil and the iron core increase the impedance of the circuit.
e) Why is choke coil needed in the use of fluorescent tubes with ac mains? Why can we not use an ordinary resistor instead of the choke coil?
Ans: As the choke coil reduces the voltage across the tube without wasting much power, it is used in the fluorescent tubes with ac mains. An ordinary resistor cannot be used instead of choke coil because it wastes power in the form of heat.
23. A power transmission line feeds input power at 2300 V to a step-down transformer with its primary windings having 4000 turns. What should be the number of turns in the secondary in order to get output power at 230V?
Ans: It is given that,
Input voltage, $\mathrm{V}_{1} \mathrm{C} 2300 \mathrm{~V}$
Number of turns in primary coil, $\mathrm{n}_{1} \square 4000$
Output voltage, $\mathrm{V}_{2} \mathrm{Z} 230 \mathrm{~V}$
Number of turns in secondary coil , $\mathrm{n}_{2} \mathrm{\square}$?
It is known that,

Therefore, the number of turns in the second winding is 400 .
24. At a hydroelectric power plant, the water pressure head is at a height of 300 m and the water flow available is $100 \mathrm{~m} / \mathbf{s}^{3}$. If the turbine generator efficiency is $\mathbf{6 0 \%}$, estimate the electric power available from the plant (
$\mathrm{g} \square \mathbf{9 . 8 m} / \mathrm{s}^{\mathbf{2}}$).
Ans: It is known that,
Height of water pressure head, h C 300 m
Volume of water flow per second, V $\mathrm{D} 100 \mathrm{~m} / \mathrm{s}^{3}$
Efficiency of turbine generator, n $\mathrm{D} 60 \% \mathrm{D} 0.6$
Acceleration due to gravity, g $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$
Density of water, $\rho \square 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
It is known that,

Electric power available from the plant-ID Dh gV

प पР $176.41^{10}{ }^{6} \mathrm{~W}$

- DP 176.4MW

Therefore, the estimated electric power available from the plant is 176.4 MW .
25. A small town with a demand of 800 kW of electric power at 220 V is situated 15 km away from an electric plant generating power at 440 V . The resistance of the two-wire line carrying power is $0.5 \square$ perkm. The town gets power from the line through a 400 2 20 V step-down transformer at a substation in the town.
a) Estimate the line power loss in the form of heat.

Ans: It is given that,
Total electric power required, P $\mathrm{C} 800 \mathrm{~kW} \mathrm{D} 80010 \mathrm{D}{ }^{3} \mathrm{~W}$
Supply voltage, V C 220 V
Voltage at which electric plant is generating power, V' $\square 440 \mathrm{~V}$
Distance between the town and power generating station, $\mathrm{d} \square 15 \mathrm{~km}$
Resistance of the two wire lines carrying power $\square 0.5 \mathrm{D} / \mathrm{km}$

A step-down transformer of rating 4000 D 220 V is used in the sub-station.
Input voltage, $\mathrm{V}_{1} \mathrm{\square} 4000 \mathrm{~V}$ Output voltage, $\mathrm{V}_{2} \mathrm{\square} 220 \mathrm{~V}$
It is known that,
P
Rms current in the wire lines: I
V_{1}
$800 \square 10^{3}$
प I I — \quad 200A
4000

Line power loss I R^{2}
$\square(200)^{2} \square 15$
$\square 60010{ }^{3} \mathrm{~W} \quad \mathrm{C} 600 \mathrm{~kW}$

逍Saral

Therefore，the line power loss is 600 kW ．
b）How much power must the plant supply，assuming there is negligible power loss due to leakage？
Ans：Assuming that there is negligible power loss due to leakage of the current：
Total power supplied by the plant $\square 800 \mathrm{~kW}[600 \mathrm{~kW}$ 1400 kW Therefore，the plant must supply 1400 kW of power．

c）Characterise the step up transformer at the plant．

Ans：It is known that，
Voltage drop in the power lineD IR
ロ पV 200 15ロロ3000V
Total voltage transmitted from the plant $\mathrm{C} 3000 \mathrm{C} 4000 \mathrm{D7000V}$ The power generated is 440 V ．
Therefore，the rating of the step－up transformer situated at the power plant is 440 V 7000 V ．

26．Do the same exercise as above with the replacement of the earlier transformer by a $40,000 \square 220 \mathrm{~V}$ step－down transformer（Neglect，as before， leakage losses though this may not be a good assumption any longer because of the very high voltage transmission involved）．Hence，explain why high voltage transmission is preferred？
Ans：It is given that，
Total electric power required，P $\mathrm{C} 800 \mathrm{~kW} \mathrm{D} 80010 \mathrm{\square}{ }^{3} \mathrm{~W}$
Supply voltage，V C 220 V
Voltage at which electric plant is generating power，$V^{\prime} \square 440 \mathrm{~V}$
Distance between the town and power generating station， $\mathrm{d} \square 15 \mathrm{~km}$
Resistance of the two wire lines carrying power $\mathrm{D} 0.5 \mathrm{D} / \mathrm{km}$
Total resistance of the wires，R $\mathrm{CD} 15 \mathrm{D} 150.5 \mathrm{D} \quad \mathrm{D} 15 \Omega$
The rating of a step－down transformer is $40000 \mathrm{~V}[220 \mathrm{~V}$ ．
Input voltage， $\mathrm{V}_{1} \mathrm{C} 40000 \mathrm{~V}$ Output
voltage， $\mathrm{V}_{2} \square 220 \mathrm{~V}$
a）It is known that，
Rms current in the wire lines: I $\square_{-}^{V_{1}}$
$\square \square I \frac{80010 \square^{3}}{40000} \square 20 \mathrm{~A}$

Line power loss \square I R ${ }^{2}$
$\square(20)^{2} \square 15$

- प6 $10^{3} \mathrm{~W} \square 6 \mathrm{~kW}$

Therefore, the line power loss is 6 kW .
b) Assume that there is negligible power loss due to leakage of the current: Total power supplied by the plant $\square 800 \mathrm{~kW} \square 6 \mathrm{~kW} \square 806 \mathrm{~kW}$ Therefore, the plant must supply 806 kW of power.
c) It is known that,

Voltage drop in the power line D IR

Total voltage transmitted from the plant C 300 C 40000 C 40300 V The power generated in the plant is generated at 440 V .
Therefore, the rating of the step-up transformer situated at the power plant is 440 V 40300 V .
Power loss during transmission $\frac{600}{1400} \square 100 \square 42.8 \%$
In previous exercise the power loss due to the same reason is

$\frac{6}{\square 806}$ - 100 - 0.744%

As the power loss is less for a high voltage transmission, High voltage transmissions are preferred for this purpose.

