

NEET(UG) 2019

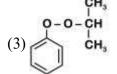
CHEMISTRY

Q46. The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is-

(1) 10σ bonds and 3π bonds

(2) 8σ bonds and 5π bonds

(3) 11σ bonds and 2π bonds


(4) 13σ bonds and no π bonds

Q47. The structure of intermediate A in the following reaction, is-

$$CH \stackrel{CH_3}{\longleftarrow} A \xrightarrow{H^*} OH O$$

$$O + H_3C \stackrel{O}{\longrightarrow} CH_3$$

Q48. The correct structure of tribromooctaoxide is-

Q49. 4d, 5p, 5f and 6p orbitals are arranged in the order of decreasing energy. The correct option is-

(1)
$$5f > 6p > 5p > 4d$$

(2)
$$6p > 5f > 5p > 4d$$

(3)
$$6p > 5f > 4d > 5p$$

Q50. Which of the following reactions are disproportionation reaction?

(a)
$$2Cu^+ \rightarrow Cu^{2+} + Cu^0$$

(b)
$$3\text{MnO}_4^{2-} + 4\text{H}^+ \rightarrow 2\text{MnO}_4^- + \text{MnO}_2 + 2\text{H}_2\text{O}$$

(c)
$$2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$$

(d)
$$2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^{\oplus}$$

Select the correct option from the following

$$(3)(a),(c)$$
 and (d)

Q51. Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a contant external pressure of 2 bar. The work done by the gas is-

(Given that 1 L bar = 100 J)

$$(1) - 30 J$$

- Q52. Among the following, the one that is not a green house gas is
 - (1) Nitrous oxide
- (2) Methane
- (3) Ozone
- (4) Sulphur dioxide

Q53. For the cell reaction

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_{2}(aq)$$

 $E_{cell}^{\odot}=0.24V$ at 298K. The standard Gibbs energy $\left(\Delta_{r}\mathbf{G}^{\odot}\right)$ of the cell reaction is :

[Given that Faraday constant $F = 96500 \text{ C mol}^{-1}$]

 $(1) - 46.32 \text{ kJ mol}^{-1}$

 $(2) - 23.16 \text{ kJ mol}^{-1}$

(3) 46.32 kJ mol⁻¹

- (4) 23.16 kJ mol⁻¹
- **Q54.** Enzymes that utilize ATP in phosphate transfer require an alkaline earth metal (M) as the cofactor. M is:
 - (1) Be
- (2) Mg
- (3) Ca
- (4) Sr
- **Q55.** The most suitable reagent for the following conversion, is:

$$H_3C-C\equiv C-CH_3 \longrightarrow H_3C \longrightarrow H$$
cis-2-butene

(1) Na/liquid NH₃

(2) H₂, Pd/C, quinoline

(3) Zn/HCl

- $(4) Hg^{2+}/H^+, H_2O$
- **Q56.** Which is the correct thermal stability order for H_2E (E = O, S, Se, Te and Po)?
 - (1) $H_{2}S < H_{2}O < H_{2}Se < H_{2}Te < H_{2}Po$
 - (2) $H_2O < H_2S < H_2Se < H_2Te < H_2Po$
 - $(3) H_{2}Po < H_{2}Te < H_{2}Se < H_{2}S < H_{2}O$
 - (4) $H_{2}Se < H_{2}Te < H_{2}Po < H_{2}O < H_{3}S$
- Q57. Which of the following is incorrect statement?
 - (1) PbF₄ is covalent in nature
 - (2) SiCl₄ is easily hydrolysed
 - (3) GeX_4 (X = F, Cl, Br, I) is more stable than GeX_2
 - (4) SnF₄ is ionic in nature
- **Q58.** Match the following:
 - (a) Pure nitrogen

(i) Chlorine

(b) Haber process

(ii) Sulphuric acid

(c) Contact process

(iii) Ammonia

(d) Deacon's process

(iv) Sodium azide or Barium azide

Which of the following is the correct option?

- (a) (b) (c) (d)
- (1) (i) (ii) (iii) (iv)
- (2) (ii) (iv) (i) (iii)
- (3) (iii) (iv) (ii) (i)
- (4) (iv) (iii) (ii) (i)

- Q59. Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory?
 - $(1) O_{2}$
- $(2) N_{2}$
- $(3) C_{2}$
- (4) Be,
- **Q60.** For the second period elements the correct increasing order of first ionisation enthalpy is:
 - (1) Li < Be < B < C < N < O < F < Ne
 - (2) Li < B < Be < C < O < N < F < Ne
 - (3) Li < B < Be < C < N < O < F < Ne
 - (4) Li < Be < B < C < O < N < F < Ne
- **Q61.** The biodegradable polymer is:
 - (1) Nylon-6,6
- (2) Nylon-2-Nylon 6 (3) Nylon-6
- (4) Buna-S
- **Q62.** pH of a saturated solution of Ca(OH), is 9. The solubility product (K_{sp}) of Ca(OH), is:
 - $(1) 0.5 \times 10^{-15}$
- (2) 0.25×10^{-10}
- $(3)\ 0.125 \times 10^{-15}$
- (4) 0.5×10^{-10}
- Q63. If the rate constant for a first order reaction is k, the time (t) required for the completion of 99% of the reaction is given by:
 - (1) t = 0.693/k
- (2) t = 6.909/k
- (3) t = 4.606/k
- (4) t = 2.303/k

- **Q64.** The non-essential amino acid among the following is:
 - (1) Valine
- (2) Leucine
- (3) Alanine
- (4) Lysine
- **Q65.** Among the following, the reaction that proceeds through an electrophilic substitution, is:

$$(1) \qquad \qquad \stackrel{+}{\longrightarrow} \text{Ci} \stackrel{\text{Cu}_2\text{Cl}_2}{\longrightarrow} \qquad \qquad \text{Ci+N}$$

$$(3) \xrightarrow{\text{CI}} + \text{CI}_2 \xrightarrow{\text{UV light}} \text{CI} \xrightarrow{\text{CI}} \text{CI}$$

(4)
$$\sim$$
 CH₂OH+HCI $\xrightarrow{\text{heat}}$ CH₂CI+H₂O

Q66. The mixture that forms maximum boiling azeotrope is:

(1) Water + Nitric acid

- (2) Ethanol + Water
- (3) Acetone + Carbon disulphide
- (4) Heptane + Octane

Q67. For the chemical reaction

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The correct option is:

- (1) $-\frac{1}{3}\frac{d[H_2]}{dt} = -\frac{1}{2}\frac{d[NH_3]}{dt}$
- $(2) -\frac{d[N_2]}{dt} = 2\frac{d[NH_3]}{dt}$

(3) $-\frac{d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$

(4) $3\frac{d[H_2]}{dt} = 2\frac{d[NH_3]}{dt}$

Q68. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :

- (1) 10
- (2)20
- (3)30
- (4)40

Q69. The compound that is most difficult to protonate is:

(1) H O H

(2) H₃C

(3) H₃C CH

(4) Ph O H

Q70. For an ideal solution, the correct option is:

- (1) $\Delta_{mix} S = 0$ at constant T and P
- (2) $\Delta_{mix} V \neq at constant T and P$
- (3) $\Delta_{mix} H = 0$ at constant T and P
- (4) $\Delta_{\text{mix}} G = 0$ at constant T and

Q71. Conjugate base for Brönsted acids H₂O and HF are:

- (1) OH^- and H_2F^+ , respectively
- (2) H_3O^+ and F^- , respectively
- (3) OH⁻ and F⁻, respectively
- (4) H_3O^+ and H_2F^+ , respectively

Q72. Which mixture of the solutions will lead to the formation of negatively charged colloidal [AgI]I sol

- (1) 50 mL of 1 M AgNO₃+ 50 mL of 1.5 M KI
 - (2) $50 \text{ mL of } 1 \text{ M AgNO}_3 + 50 \text{ mL of } 2 \text{ M KI}$
 - (3) $50 \text{ mL of } 2 \text{ M AgNO}_3 + 50 \text{ mL of } 1.5 \text{ M KI}$
 - (4) 50 mL of 0.1 M AgNO₃ + 50 mL of 0.1 M KI

- Q73. Among the following, the narrow spectrum antibiotic is:
 - (1) Penicillin G
- (2) Ampicillin
- (3) Amoxycillin
- (4) Chloramphenicol
- Q74. An alkene "A" on reaction with O₃ and Zn–H₂O gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene "A" gives "B" as the major product. The structure of product "B" is:
 - CH₃
 (1) CI-CH₂-CH₂-CH
 CH₃

СН₂СІ (2) Н₃С-СН₂-СН-СН₃

(3) H₃C-CH₂-C-CH₃

- СН, | | Н₃С-СН-СН | | | СІ СН₃
- **Q75.** What is the correct electronic configuration of the central atom in K_4 [Fe(CN)₆] based on crystal field theory?
 - $(1)\ t_{2g}^4 e_g^2$
- (2) $t_{2g}^6 e_g^0$
- $(3) e^3 t_2^3$
- $(4) e^4 t_2^2$
- Q76. Identify the incorrect statement related to PCl₂ from the following:
 - (1) Three equatorial P–Cl bonds make an angle of 120° with each other
 - (2) Two axial P-Cl bonds make an angle of 180° with each other
 - (3) Axial P-Cl bonds are longer than equatorial P-Cl bonds
 - (4) PCl₅ molecule is non-reactive
- Q77. Which will make basic buffer?
 - (1) 50 mL of 0.1 M NaOH + 25 mL of 0.1 MCH₃COOH
 - (2) 100 mL of 0.1 M CH₃COOH + 100 mL of 0.1 MNaOH
 - (3) 100 mL of 0.1 M HCl + 200 mL of 0.1 MNH4OH
 - (4) 100 mL of 0.1 M HCl + 100 mL of 0.1 MNaOH
- **Q78.** The major product of the following reaction is:

Q79.	Match	the Xen	on comp	ounds	in Colu	mn-I with its structure in Column-II and assign the
	Colur	nn-I				Column-II
	(a) X	eF ₄				(i) Pyramidal
	(b) X	eF ₆				(ii) Square planar
	(c) XeOF ₄					(iii) Distorted octahedral
	(d) X	eO_3				(iv) Square pyramidal
	Code	•				
		(a)	(b)	(c)	(d)	
	(1)	(i)	(ii)	(iii)	(iv)	
	(2)	(ii)	(iii)	(iv)	(i)	
	(3)	(ii)	(iii)	(i)	(iv)	
	(4)	(iii)	(iv)	(i)	(ii)	
Q80.	The ma	anganat	e and per	rmanga	nate ion	ns are tetrahedral, due to :
	(1) T1	ne π -bo	nding in	volves	overlap	o of p-orbitals of oxygen with d-orbitals of manganese
	(2) T1	nere is n	o π-bon	ding		
	(3) Tl	ne π-boi	nding in	volves	overlap	of p-orbitals of oxygen with p-orbitals of manganese
	(4) Tl	ne π-boi	nding in	volves	overlap	of d-orbitals of oxygen with d-orbitals of manganese
Q81.	Which	of the fo	ollowing			
	(1)[S]	$[iF_6]^{2-}$		(2) [0	GeCl ₆] ²⁻	(3) $[Sn(OH)_6]^{2-}$ (4) $[SiCl_6]^{2-}$
Q82.	For a reacti		olving o	ne elec	tron E°	= 0.59 V at 298 K, the equilibrium constant for the cell
	Giv	en that	2.303R	$\frac{T}{T} = 0.0$	059V a	t T = 298K
	L		-			
	` /	0×10^2				
	` '	0×10^{5}				
		0×10^{1}				
	(4) 1.	0×10^3	0			
002	3371. 1. 1.	- C41 C	. 11	•	1	
Q83.			ollowing		-	ric hydroxide?
	(1) Si	(OH) ₂		(2) C	a(OH) ₂	$(3) \operatorname{Mg(OH)}_{2} \qquad (4) \operatorname{Be(OH)}_{2}$
Q84.	Δ σας	at 350	K and 15	har ha	s molar	volume 20 percent smaller than that for an ideal gas under
Qu4.	_					ion about the gas and its compressibility factor (Z) is:
						pminant (2) $Z > 1$ and repulsive forces are dominant
						sminant (4) $Z < 1$ and repulsive forces are dominant

Q85. A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is:

(1) C_2A_3

(2) $C_3 A_2$

(3) $C_3 A_4$

(4) C₁A₂

Q86.	In which case change in entropy is negative? (1) Evaporation of water	(2) Expansion of a g	as at constanttemperature				
	(3) Sublimation of solid to gas	$(4) 2H(g) \rightarrow H_2(g)$					
Q87.	Which of the following series of transitions in t	the spectrum of hydroge	en atom fall in visible region?				
	(1) Lyman series (2) Balmer series	(3) Paschen series	(4) Brackett series				
Q88.	The method used to remove temporary hardness	ess of water is:					
	(1) Calgon's method	(2) Clark's method					
	(3) Ion-exchange method	(4) Synthetic resins r	method				
Q89.	Which one is malachite from the following?						
	(1) CuFeS2 (2) Cu(OH)2	$(3) \operatorname{Fe_3O_4}$	$(4) \text{CuCO}_3.\text{Cu(OH)}_2$				
Q90.	The correct order of the basic strength of met is:	hyl substituted amines i	n aqueous solution				
	(1) $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$	$(2) (CH_2)_2 N > CH_2$	$NH_2 > (CH_2)_2NH$				
	(3) $(CH_3)_3 N > (CH_3)_2 NH > CH_3 NH_2$						
Q91.	The Earth Summit held in Rio de Janeiro in 19	992 was called					
	(1) to reduce CO ₂ emissions and global warming						
	(2) for conservation of biodiversity and sustainable utilization of its benefits						
	(3) to assess threat posed to native species by	y invasive weed species	S				
	(4) for immediate steps to discontinue use of	CFCs that were damag	ing the ozone layer				
Q92.	Colostrum the yellowish fluid, secreted by mother during the initial days of lactation is very essential to impart immunity to the new born infants because it contains						
	(1) Natural killer cells						
	(2) Monocytes						
	(3) Macrophages						
	(4) Immunoglobulin A						
Q93.	Grass leaves curl inwards during very dry we following	eather. Select the most a	appropriate reason from the				
	(1) Closure of stomata						
	(2) Flaccidity of bulliform cells						
	(3) Shrinkage of air spaces in spongy mesoph	ıyll					
	(4) Tyloses in vessels						
Q94.	The shorter and longer arms of a submeta	centric chromosome a	re referred to as-				
	(1) s-arm and l-arm respectively	(2) p-arm and q-arm	respectively				
	(3) q-arm and p-arm respectively	(4) m-arm and n-arn	n respectively				

Q95.	Respiratory Quotient (RQ) value of tripalm				palmitin is	S			
	(1) 0.9	9		(2) 0.7	7		(3) 0.07		(4) 0.09
Ω06	Which	aftha fa	llovvina		manaia	l blaad ab	alastaral laxvari	na aaan	+9
Q90.		of the fo yclospor	_	(2) Sta		i biood Cii	olesterol loweri (3) Streptokina		(4) Lipases
	(1) 0)	Clospor	1111	(2) 50			(3) Streptoking	.50	(1) Espases
Q97.	Match	the follo	wing str	uctures	with the	eir respect	tive location in o	rgans	
	(a) Cr	ypts of I	Lieberku	hn			(i) Pancreas		
	(b) Glisson's Capsule						(ii) Duodenum		
	(c) Islets of Langerhans						(iii) Small intest	ine	
	(d) Br	unner's	Glands				(iv) Liver		
	Select the correct option from the following								
		(a)	(b)	(c)	(d)				
	(1)	(iii)	(i)	(ii)	(iv)				
	(2)	(ii)	(iv)	(i)	(iii)				
	(3)	(iii)	(iv)	(i)	(ii)				
	(4)	(iii)	(ii)	(i)	(iv)				
Q98.	Whiel	n of the f	following	is the n	nost im	portant ca	ause for animals	and plai	nts being driven to extinc-
C	tion?								8
	(1) Ha	abitat los	s and fra	gmenta	tion		(2) Drought an	d floods	S
	(3) Ec	conomic	exploitat	ion			(4) Alien specie	es invasi	ion
000	Whial	a nort of	the brain	ig rogn	angihla :	fan thanna	aragulation?		
Q99.		rebrum		risrespo	onsidie .	ioi theim	oregulation? (2) Hypothalan	one.	
	` '	orpus cal					(4) Medulla ob		
	(3) CC	приз са	llosum				(4) Wiedana oo	longata	
Q100	. Consi	der follo	wing fea	tures					
	(a) Or	gan syst	em level	of orga	nisation	1			
	(b) Bi	lateral sy	mmetry						
	` '			_		n of body	7		
			rect option		_	_			
		-	all the a						
	` '	-	Arthropo						
	` '		Arthropo						
	` ′	-	la, Mollu						
	(4) Ar	melida, l	Mollusca	a and Cl	ordata				
Q101	. Select	the cor	rect sequ	ence of	organs	in the alir	mentary canal of	cockro	ach starting from
	mouth	1	-						
	(1) Ph	narynx –	→ Oesop	hagus –	→ Crop	\rightarrow Gizza	$ard \rightarrow Ileum \rightarrow 0$	Colon –	→ Rectum
	(2) Ph	narynx –	→ Oesop	hagus –	→ Gizza	$ard \rightarrow Cr$	$op \rightarrow Ileum \rightarrow 0$	Colon –	→ Rectum
	(3) Ph	narynx –	→ Oesop	hagus -	→ Gizz	$ard \rightarrow Ile$	eum?Crop → C	Colon —	Rectum

(4) Pharynx \rightarrow Oesophagus \rightarrow Ileum \rightarrow Crop? Gizzard \rightarrow Colon \rightarrow Rectum

	(1) O	zone and	l Ammo	nia		(2) Oxygen and Nitrogen				
	(3) Ni	itrogen a	nd Sulp	hur dio	xide	(4) Carbon dioxide and Methane				
Q103.	Which	of the fo	llowing	muscu	lar disorders i	s inherited?				
	(1) Te	etany				(2) Muscular dystrophy				
	(3) M	yastheni	a gravis			(4) Botulism				
Q104.	The c	iliated ep	oithelial	cells are	e required to 1	move particles or mucus in a specific direction.				
	In hui	mans, the	ese cells	are ma	inly present in	ı				
	(1) Bi	ile duct a	nd Bror	nchioles		(2) Fallopian tubes and Pancreatic duct				
	(3) Eu	ıstachiar	ı tube aı	nd Saliv	ary duct	(4) Bronchioles and Fallopian tubes				
Q105.		h the Col	umn-I v	with Col	umn-II					
	Colur	nn-I				Column-II				
	(a) P	- wave				(i) Depolarisation of ventricles				
	(b) Q	RS comp	olex			(ii) Repolarisation of ventricles				
	(c) T	- wave				(iii) Coronary ischemia				
	(d) Re	eduction	in the			(iv) Depolarisation of size of T-wave atria				
						(v) Repolarisation of atria				
	Select	t the com	rect opt	ion.						
		(a)	(b)	(c)	(d)					
	(1)	(iv)	(i)	(ii)	(iii)					
	(2)	(iv)	(i)	(ii)	(v)					
	(3)	(ii)	(i)	(v)	(iii)					
	(4)	(ii)	(iii)	(v)	(iv)					
O106.	Which	h one of	the follo	wing is	not a method	of in situ conservation of biodiversity?				
		iosphere		_		(2) Wildlife Sanctuary				
	` /	otanical ((4) Sacred Grove				
0105	.	1	• 1		1	0 0 51 070/ 01 1 11				
Q107.	-		_		_	s from 2 to 5 kg. 97% of the newborn with an average s 99% of the infants born with weight from 2 to 2.5 kg				
	_			_		process is taking place?				
	(1) Di	irectiona	l Selecti	on		(2) Stabilizing Selection				
	(3) Di	isruptive	Selection	on		(4) Cyclical Selection				
Q108.	The c	orrect se	equence	ofphas	ses of cell cyc	ele is-				
		$I \rightarrow G_1 -$	-	-	•	$(2) G_1 \rightarrow G_2 \rightarrow S \rightarrow M$				
		$\rightarrow G_1$	-			$(4) G_1 \rightarrow S \rightarrow G_2 \rightarrow M$				

Q102. Which of the following pairs of gases is mainly responsible for green house effect?

(3) Guanine and cytosine (4) Cytosine and thymine

<u>6</u> 5	<u>arai</u>						
Q109.	How does steroid horr	none influence the cellu	ılar activities?				
	(1) Changing the perm	eability of the cell mem	brane				
	(2) Binding to DNA ar	nd forming a gene-horn	none complex				
	(3) Activating cyclic A	MP located on the cell	membrane				
	(4) Using aquaporin cl	nannels as second mess	senger				
Q110.	Which of the following	statements is not corre	ect?				
	(1) Lysosomes have no	ımerous hydrolytic enz	ymes				
	(2) The hydrolytic enz	ymes of lysosomes are	active under acidic pH				
	(3) Lysosomes are membrane bound structures						
	(4) Lysosomes are form	med by the process of p	packaging in the endopla	smic reticulum			
Q111.	Which one of the follow is incorrect?	ving statements regardi	ng post-fertilization deve	elopment in flowering plants			
	(1) Ovary develops int	o fruit					
	(2) Zygote develops in	to embryo					
	(3) Central cell develo	ps into endosperm					
	(4) Ovules develop int	o embryo sac					
Q112.	Concanavalin A is						
	(1) an alkaloid	(2) an essential oil	(3) a lectin	(4) a pigment			
Q113.	Which one of the followscale, for industrial pro		entially required for grov	ving microbes on al arge			
	(1) BOD incubator	(2) Sludge digester	(3) Industrial oven	(4) Bioreactor			
Q114.	Consider the following	statement:					
	e e		and to enzyme protein	is called prosthetic group.			
	-		ts bound prosthetic grou				
	Select the correct option						
	(1) Both (A) and (B) a	re true.					
	(2) (A) is true but (B):	is false.					
	(3) Both (A) and (B) a						
	(4) (A) is false but (B)	is true.					
Q115.	Purines found both in	DNA and RNA are					
	(1) Adenine and thymir	ne					
	(2) Adenine and guanin	ne					

O116. Select the correct sequence for transport of sperm ce	cells in male reproductive system	m.
--	-----------------------------------	----

,	(1)	Testis →	Enidida	mia \	Voce	offeren	tio \	Data	tootic \	Inquino	Loonal	\ 1	Troth	-0
(\rightarrow	Epiaia	yııııs →	vasa	eneren	ıtıa →	Retei	$lesus \rightarrow$	mguma	i Canan	→ ı	o reun	a

- (2) Seminiferous tubules → Rete testis → Vasa efferentia → Epididymis → Vas deferens → Ejaculatory duct → Urethra → Urethral meatus
- (3) Seminiferous tubules → Vasa efferentia → Epididymis → Inguinal canal → Urethra
- (4) Testis → Epididymis → Vasa efferentia → Vas deferens → Ejaculatory duct → Inguinal canal → Urethra → Urethral meatus

Q117. Match the hominids with their correct brain size:

- (a) Homo habilis (i) 900 cc
- (b) Homo neanderthalensis (ii) 1350 cc
- (c) Homo erectus (iii) 650-800 cc
- (d) Homo sapiens (iv) 1400 cc

Select the correct option.

- (a)
- (b)
- (d)

(c)

(iv)

(i)

(i)

- (1) (iii)
- (i)
- (ii)

- (2) (iii)
- (ii)
- (iv)

- (3) (iii)
- (iv)
- (ii)

- (4) (iv)
- (iii)
- (i) (ii)

Q118. Variations caused by mutation, as proposed by Hugo de Vries are-

(1) random and directional

(2) random and directionless

(3) small and directional

(4) small and directionless

Q119. Which of the following pair of organelles does not contain DNA?

- (1) Mitochondria and Lysosomes
- (2) Chloroplast and Vacuoles

(3) Lysosomes and Vacuoles

(4) Nuclear envelope and Mitochondria

Q120. Due to increasing air-borne allergens and pollutants, many people in urban areas are suffering from respiratory disorder causing wheezing due to

- (1) benign growth on mucous lining of nasal cavity
- (2) inflammation of bronchi and bronchioles
- (3) proliferation of fibrous tissues and damage of the alveolar walls
- (4) reduction in the secretion of surfactants by pneumocytes.

Q121. Select the incorrect statement.

- (1) Male fruit fly is heterogametic
- (2) In male grasshoppers 50% of sperms have no sex-chromosome
- (3) In domesticated fowls, sex of progeny depends on the type of sperm rather than egg
- (4) Human males have one of their sex-chromosome much shorter than the other

	(1) Is	opropan	ol				(2) Chilled ethano	1	
	(3) M	[ethanol	at room	temper	ature		(4) Chilled chloro	form	
Q123.	Selec	t the cor	rect gro	up of bi	ocontrol	agents.			
	(1)B	acillus th	nuringien	nsis, Tob	acco mo	saic virus	s, Aphids		
	(2) Tı	(2) Trichoderma, Baculovirus, Bacillus thuringiensis							
	(3) O	scillatori	ia, Rhizo	bium, T	richoder	ma			
	(4) N	ostoc, A	zospirill	ium, Nu	cleopoly	hedrovir	ıs		
0404	G 1								
Q124.		t the inco							
	(1) Inbreeding increases homozygosity(2) Inbreeding is essential to evolve pureling								
		•			-		•	1 1 2 2	
						_	hat reduce fertility	-	
	(4) In	ibreeding	g helps 1	n accum	iulation (of superio	or genes and elimi	nation of undesirable genes	
0125	Matc	h the foll	lowing c	roanisn	ns with th	ne produc	ts they produce		
Q123.		actobaci	_	'i gariisii	is with th	пертоцие	(i) Cheese		
	` /						(ii) Curd cerevisia	ne.	
	(b) Saccharomyces(c) Aspergillus niger(d) Acetobacter aceti						(iii) Citric Acid		
							(iv) Bread		
	()						(v) Acetic Acid		
	Selec	t the cor	rect opt	ion.					
		(a)	(b)	(c)	(d)				
	(1)	(ii)	(iv)	(v)	(iii)				
	(2)	(ii)	(iv)	(iii)	(v)				
	(3)	(iii)	(iv)	(v)	(i)				
	(4)	(ii)	(i)	(iii)	(v)				
		()	()						
Q126.	What	is the di	rection	ofmove	ment of	sugars in	phloem?		
	(1) N	on-multi	idirection	nal			(2) Upward		
	(3) D	ownwar	rd				(4) Bi-directional		
Q127.		-		_	nete dev	elops into	embryo without fo	ertilization. This	
	1	omenon		n as					
		utogamy	7				(2) Parthenocarpy		
	(3) Sy	yngamy					(4) Parthenogene	Sis	
O128.	Persi	stent nuc	cellus in	the seed	l is know	/n as			
		halaza			erisperm		(3) Hilum	(4) Tegmen	

Q122. DNA precipitation out of a mixture of biomolecules can be achieved by treatment with

Q129. What map unit (Centimorgan) is adopted in the construction of genetic maps? (1) A unit of distance between two expressed genes representing 10% cross over. (2) A unit of distance between two expressed genes representing 100% cross over. (3) A unit of distance between genes on chromosomes, representing 1% cross over. (4) A unit of distance between genes on chromosomes, representing 50% cross over. Q130. What would be the heart rate of a person if the cardiac output is 5 L, blood volume in the ventricles at the end of diastole is 100 mL and at the end of ventricular systole is 50 mL? (2) 75 beats per minute (1) 50 beats per minute (3) 100 beats per minute (4) 125 beats per minute Q131. Thiobacillus is a group of bacteria helpful in carrying out. (1) Nitrogen fixation (2) Chemoautotrophic fixation (3) Nitrification (4) Denitrification Q132. Which of the following factors is responsible for the formation of concentrated urine? (1) Low levels of antidiuretic hormone (2) Maintaining hyperosmolarity towards inner medullary interstitium in the kidneys. (3) Secretion of erythropoietin by Juxtaglomerular complex (4) Hydrostatic pressure during glomerular filtration Q133. Which of the following statements regarding mitochondria is incorrect? (1) Outer membrane is permeable to monomers of carbohydrates, fats and proteins. (2) Enzymes of electron transport are embedded in outer membrane. (3) Inner membrane is convoluted with infoldings. (4) Mitochondrial matrix contains single circular DNA molecule and ribosomes. Q134. Xylem translocates. (1) Water only (2) Water and mineral salts only (3) Water, mineral salts and some organic nitrogen only (4) Water, mineral salts, some organic nitrogen and hormones

Q135. Cell in G₀ phase:

(1) exit the cell cycle (2) enter the cell cycle (3) suspend the cell cycle (4) terminate the cell cycle

Q136. Which of the statements given below is not true about formation of Annual Rings in trees?

- (1) Annual ring is a combination of spring wood and autumn wood produced in a year
- (2) Differential activity of cambium causes light and dark bands of tissue early and late wood respectively.
- (3) Activity of cambium depends upon variation in climate.
- (4) Annual rings are not prominent in trees of temperate region.

Q137.	Which of the following ecological pyramids is generally inverted?							
	(1) Pyramid of number	rs in grassland	(2) Pyramid of energy					
	(3) Pyramid of biomas	s in a forest	(4) Pyramid of biomass in a sea					
Q138.	Placentation in which o	ovules develop on the in	ner wall of the ovary or i	in peripheral part, is				
	(1) Basal	(2) Axile	(3) Parietal	(4) Free central				
Q139.	Which of the following atmosphere?	protocols did aim for re	ducing emission of chlor	rofluorocarbons into the				
	(1) Montreal Protocol		(2) Kyoto Protocol					
	(3) Gothenburg Protoc	col	(4) Geneva Protocol					
Q140.	Which of the following	contraceptive methods	do involve a role of hori	mone?				
	(1) Lactational amenorrhea, Pills Emergency contraceptives.							
	(2) Barrier method, Lactational amenorrhea, Pills.							
	(3) CuT, Pills, Emergency contraceptives.							
	(4) Pills, Emergency co	ontraceptives, Barrier m	ethods.					
Q141.	tively. What will be his	Expiratory Capacity if t	of an athlete is 500 mL he Residual Volume is 1	200 mL?				
	$(1) 1500 \mathrm{mL}$	(2) 1700 mL	(3) 2200 mL	(4) 2700 mL				
Q142.	What is the fate of the	male gametes discharge	d in the synergid?					
		other(s) degenerate (s)						
	(2) All fuse with the eg	g.						
	(3) One fuses with the	egg, other(s) fuse(s) wit	h synergid nucleus.					
	(4) One fuses with the	egg and other fuses with	central cell nuclei.					
Q143.	What is the site of perc	eption of photoperiod n	ecessary for induction o	f flowering in plants?				
	(1) Lateral buds	(2) Pulvinus	(3) Shoot apex	(4) Leaves				
Q144.	Select the correctly writ	ten scientific name of Ma	ango which was first desc	ribed by Carolus Linnaeus.				
	(1) Mangifera indica C	ar. Linn.	(2) Mangifera indica L	inn.				
	(3) Mangifera indica		(4) Mangifera Indica					
Q145.	Following statements of tify the incorrect statements of the statements of the statement of		ics of the enzyme Restric	ction Endonuclease. Iden-				
	•		tified position within the	DNA.				
	•		d cuts only one of the tv					
	(3) The enzyme cuts the	ne sugar-phosphate bacl	kbone at specific sites or	n each strand.				

(4) The enzyme recognizes a specific palindromic nucleotide sequence in the DNA.

Q140.	• •		ne time, is first observed in.	yte with developing young					
	(1) Liverworts	(2) Mosses	(3) Pteridophytes	(4) Gymnosperms					
Q147.	pink flowers were obtained pink flowers. Characteristics (1) This experiment describes the control of the contr	In Antirrhinum (Snapdragon), a red flower was crossed with a white flower and in F ₁ generation pink flowers were obtained. When pink flowers were selfed, the F ₂ generation showed white, red and pink flowers. Choose the incorrect statement from the following: (1) This experiment does not follow the Principle of Dominance. (2) Pink colour in F ₁ is due to incompletedominance.							
	(3) Ratio of F_2 is $\frac{1}{4}$ (1)	Red): $\frac{2}{4}$ (Pink): $\frac{1}{4}$ (White)						
	(4) Law of Segregation	on does not apply in	this experiment						
Q148.	Conversion of glucose to glucose-6-phosphate, the first irreversible reaction of glycolysis, is catalyzed by								
	(1) Aldolase		(2) Hexokinase						
	(3) Enolase		(4) Phosphofructokii	nase					
Q149.	Drug called 'Heroin'	is synthesized by							
	(1) methylation of mo	orphine	(2) acetylation of mo	rphine					
	(3) glycosylation of m	norphine	(4) nitration of morpl	nine					
Q150.	Select the hormone-releasing Intra-Uterine Devices.								
	(1) Vaults, LNG-20		(2) Multiload 375, Pr	rogestasert					
	(3) Progestasert, LN	G-20	(4) Lippes Loop, Mu	ıltiload 375					
Q151.	_		-	is 0.4, then what will be the recessive individuals in the					
	(1) 0.36(AA); 0.48(A	Aa); 0.16(aa)	(2) 0.16(AA); 0.24(A	Aa); 0.36(aa)					
	(3) 0.16(AA); 0.48(A	Aa); 0.36(aa)	(4) 0.16(AA); 0.36(A)	Aa); 0.48(aa)					
Q152.	Which of the following	ng is true for Golden	rice?						
	(1) It is Vitamin A enr	riched, with a gene fr	om daffodil						
	(2) It is pest resistant,	with a gene from Ba	cillus thuringiensis						
	(3) It is drought tolera	ant, developed using	Agrobacterium vector						
	(4) It has yellow grain	ns, because of a gene	introduced from a primitiv	re variety of rice					
Q153.	Pinus seed cannot gen	rminate and establish	ed without fungal association	on. This is because:					
	(1) its embryo is imma	ature.							

(2) it has obligate association with mycorrhizae.

(4) its seeds contain inhibitors that present germination.

(3) it has very hard seed coat.

Q154.	4. Which of the following features of genetic code does allow bacteria to produce hum						
	insulin by recombinant DNA technolog	y?					
	(1) Genetic code is not ambiguous	(2) Genetic code is redundant					
	(3) Genetic code is nearly universal	(4) Genetic code is specific					
Q155.	Which of the following sexually transm	itted diseases is not completely curable?					
	(1) Gonorrhoea	(2) Genital warts					
	(3) Genital herpes	(4) Chlamydiasis					
Q156.	Which of the following statements is	incorrect?					
	(1) Viroids lack a protein coat.						
	(2) Viruses are obligate parasites.						
	(3) Infective constituent in viruses is the protein coat.						
	(4) Prions consist of abnormally folded	proteins.					
O157.	Match the following organisms with the	ir respective characteristics :					
	(a) Pila	(i) Flame cells					
	(b) Bombyx	(ii) Comb plates					
	(c) Pleurobrachia	(iii) Radula					
	(d) Taenia	(iv) Malpighian tubules					
	Select the correct option from the follow	ving:					
	(a) (b) (c) (d)						
	(1) (iii) (ii) (iv)						
	(2) (iii) (iv) (ii) (i)						
	(3) (ii) (iv) (iii) (i)						
	(4) (iii) (ii) (iv) (i)						
O158	Expressed Sequence Tags (ESTs) refer	rs to :					
Q150.	(1) Genes expressed as RNA	3 60 .					
	(2) Polypeptide expression						
	(3) DNA polymorphism						
	(4) Novel DNA sequences						
	(1) 110 TOLDI (LI BOQUOLOGO						
Q159.	Which is of the following statements is	ncorrect?					

(1) Morels and truffles are edible delicacies.

(2) Claviceps is a source of many alkaloids and LSD.

(3) Conidia are produced exogenously and ascospores endogenously.

(4) Yeasts have filamentous bodies with long thread-like hyphae.

(1) T.H. Morgan(3) Alfred Sturtevant

Q160.	Match Column - I with	Column - II							
	Column - I	Column - II							
	(a) Saprophyte	(i) Symbiotic	associatio	n of fungi with pl	ant roots				
	(b) Parasite	Parasite (ii) Decomposition of dead organic materials							
	(c) Lichens (iii) Living on living plants or animals								
	(d) Mycorrhiza (iv) Symbiotic association of algae and fungi								
	Choose the correct answer from the option								
	given below								
	(a) (b) (c) (d)								
	(1) (i) (ii) (iii) (iv)								
	(2) (iii) (ii) (i) (iv)								
	(3) (ii) (i) (iii) (iv)								
	(4) (ii) (iii) (iv) (i)								
Q161.	Which of the following	-	orters is in	-	•				
	(1) GLUT I	(2) GLUT II		(3) GLUT III	(4) GLUT IV				
Q162.	Which of the following	_	nses is res	-					
	(1) Auto-immune respo			(2) Humoral imn					
	(3) Inflammatory immune response (4) Cell-mediated immune response								
01.0	TI C	1 . 1	1. 1 .	1					
Q163.	Use of an artificial kidn	-		nay result in:					
	(a) Nitrogenous waste build-up in the body(b) Non-elimination of excess potassium ions								
		- /		1.					
	(c) Reduced absorption		is from ga	stro-intestinal tra	ct				
	(d) Reduced RBC prod			i-t-2					
	_	Which of the following options is the most appropriate?							
	(2) (b) and (c) are corr	(1) (a) and (b) are correct							
	(3) (c) and (d) are corr								
	(4) (a) and (d) are corr								
	(+) (a) and (d) are con	cci							
O164.	Which of the following	g statements i	is correct	?					
Q 10.0					us covering of the eye-ball.				
	(2) Cornea consists of								
	(3) Cornea is convex, t				•				
	` '	-			ensitive portion the eye.				
	· /		2		1				
Q165.	The frequency of recondistance between gene			airs on the same o	chromosome as a measure of	the			

(2) Gregor J. Mendel

(4) Sutton Boveri

Q166.	Match the following genes of the Lac operon with their respective products:			
	(a) i gene	(i) β -galactosidase		
	(b) z gene	(ii) Permease		
	(c) a gene	(iii) Repressor		
	(d) y gene	(iv) Transacetylase		
	Select the correct option.			
	(a) (b) (c) (d) (1) (i) (iii) (ii) (iv)			
	(1) (i) (iii) (ii) (iv) (2) (iii) (i) (ii) (iv)			
	(3) (iii) (i) (iv) (ii)			
	(4) (iii) (iv) (i) (ii)			
Q167.	It takes very long time for pineapple plants to produce flowers. Which combination of hormones can be applied to artificially induce flowering in pineapple plants throughout the year to increase yield?			
	(1) Auxin and Ethylene	(2) Gibberellin and Cytokinin		
	(3) Gibberellin and Abscisic acid	(4) Cytokinin and Abscisic acid		
0.4.60				
Q168.	. Identify the cells whose secretion protects the lining of gastro-intestinal tract from various			
	enzymes. (1) Chief Cells (2) Goblet Cells	(3) Oxyntic Cells (4) Duodenal Cells		
	(1) 0(2) 0.0	(1) 2 40 30144 2014		
Q169.	69. Which of the following can be used as a biocontrol agent in the treatment of plant dise			
	(1) Trichoderma (2) Chlorella	(3) Anabaena (4) Lactobacillus		
0170) DII : 1 1			
Q170.	Phloem in gymnosperms lacks: (1) Albuminous cells and sieve cells	(2) Sieve tubes only		
	(3) Companion cells only	(4) Both sieve tubes and companion cells		
Q171.	 Extrusion of second polar body from egg nucleus occurs : (1) after entry of sperm but before fertilization (2) after fertilization 			
	(3) before entry of sperm into ovum			
	(4) simultaneously with first cleavage			
Q172. Under which of the following conditions will there be no change in the reading frame of following				
	mRNA?			
	5'AACAGCGGUGCUAUU3'			
	(1) Insertion of G at 5 th position			
	(2) Deletion of G from 5 th position			
	(3) Insertion of A and G at 4th and 5 th positions			
0173	(4) Deletion of GGU from 7 th , 8 th and 9 th positions The concept of "Omnis cellula-e cellula" regarding cell division was first proposed by			
Q1/3.	(1) Rudolf Virchow (2) Theodor Schwann			
	(2) Heodol Schwalli	(7) Sementer (7) Institute		
0174	What triggers activation of protoxin to active Bt toxin of Bacillus thuringiensis in boll worm?			
~±′ Ι•	(1) Body temperature	(2) Moist surface of midgut		
	•			
	(3) Alkaline pH of gut	(4) Acidic pH of stomach		

Q173.	test for typhoid.			
	(1) Plasmodium vivax / U	TI test	(2) Streptococcus pneumoniae / Widal test	
	(3) Salmonella typhi/Ant	hrone test	(4) Salmonella typhi/Widal test	
Q176.	What is the genetic disorder in which an individual has an overall masculine development gynaecomastia, and is sterile?			
	(1) Turner's syndrome		(2) Klinefelter's syndrome	
	(3) Edward syndrome		(4) Down's syndrome	
Q177.	Polyblend, a fine powder of recycled modified			
	plastic, has proved to be	a good material for		
	(1) Making plastic sacks		(2) Use as a fertilizer	
	(3) Construction of roads		(4) Making tubes and pipes	
Q178.	Which of these following methods is the most suitable for disposal of nuclear waste?			
	(1) Shoot the waste into space			
	(2) Bury the waste under Antarctic ice-cover			
	(3) Dump the waste within rocks under deep ocean			
	(4) Bury the waste within rocks deep below the Earth's surface			
O179.	Match the following hormones with the respective disease			
	(a) Insulin	•	(i) Addison's disease	
	(b) Thyroxin		(ii) Diabetes insipidus	
	(c) Corticoids		(iii) Acromegaly	
	(d) Growth Hormone		(iv) Goitre	
	(v) Diabetes mellitus			
	Select the correct option.			
	(a)(b)(c)(d)			
	(1)(v)(i)(ii)(iii)			
	(2) (ii) (iv) (iii) (i)			
	(3) (v) (iv) (i) (iii)			
	(4) (ii) (iv) (i) (iii)			
Q180.	Select the correct option.			
	(1) 8 th, 9 th and 10 th pairs of ribs articulate directly with the sternum.			

(2) 11 th and 12 th pairs of ribs are connected to the sternum with the help of hyaline cartilage.(3) Each rib is a flat thin bone and all the ribs are connected dorsally to the thoracic vertebrae and

(4) There are seven pairs of vertebrosternal, three pairs of vertebrochondral and two pairs of

ventrally to the sternum.

vertebral ribs.