

FINAL NEET(UG)-2020 EXAMINATION

(Held On Sunday 13th SEPTEMBER, 2020)

CHEMISTRY

136. Match the following and identify the correct option.

- (a) $CO(g) + H_2(g)$
- (i) $Mg(HCO_3)_2 +$ $Ca(HCO_3)_2$
- (b) Temporary hardness of water
- (ii) An electron deficient hydride
- (c) B_2H_6
- (iii) Synthesis gas
- (d) H_2O_2
- (iv) Non-planar structure

	(a)	(b)	(c)	(d)
(1)	(i)	(iii)	(ii)	(iv)
(2)	(iii)	(i)	(ii)	(iv)
(3)	(iii)	(ii)	(i)	(iv)
(4)	(iii)	(i∨)	(ii)	(i)

Ans. (2)

- **Sol.** (a) $CO + H_2$
- ... (iii) synthesis gas
- (b) Temporary Hardness ... (i) Mg(HCO₃)₂ + Ca(HCO₃)₂
- (c) B_2H_6
- ... (ii) Electron deficient (6e⁻)
- (d) H_2O_2
- ... (iv) Non-planar structure

- 137. A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following?
 - (1) Hyperconjugation
 - (2) –I effect of –CH₃ groups
 - (3) +R effect of -CH₃ groups
 - (4) -R effect of -CH₃ groups

Ans. (1)

Tert. Butyl

Sec. Butyl carbocation

Carbocation

More stable due to Hyperconjugation effect.

TEST PAPER WITH ANSWER & SOLUTION

138. What is the change in oxidation number of carbon in the following reaction?

$$CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)$$

- (1) 0 to -4
- (2) + 4 to + 4
- (3) 0 to +4
- (4) -4 to +4

Ans. (4)

Sol. $CH_{4(q)} + 4Cl_{2(q)} \rightarrow CCl_{4(\ell)} + 4HCl_{(q)}$

 $CH_4(-4)$

 $CCl_4(+4)$

-4 to +4

- **139.** Sucrose on hydrolysis gives:
 - (1) α -D-Fructose + β -D-Fructose
 - (2) β -D-Glucose + α -D-Fructose
 - (3) α -D-Glucose + β -D-Glucose
 - (4) α -D-Glucose + β -D-Fructose

Ans. (4)

- **Sol.** Sucrose $\xrightarrow{H_3O^+} \alpha$ -D-Glucose + β -D-Fructose
- 140. The calculated spin only magnetic moment of Cr^{2+} ion is:
 - (1) 2.84 BM
- (2) 3.87 BM
- (3) 4.90 BM
- (4) 5.92 BM

Ans. (3)

Sol.
$$Cr^{+2} = 3d^4$$
 11111 $n=4$

$$\mu = \sqrt{n(n+2)}$$
 B.M. $= \sqrt{4(6)}$ = $= \sqrt{24}$ B.M. $= 4.90$ B.M.

- **141.** Identify a molecule which does not exist.
 - (1) O_2
- (2) He₂
- (3) Li₂
- (4) C_2

Ans. (2)

Sol. $He_2 = Total electron = 4$

$$=\sigma_{1\sigma}^2 \ \sigma_{1\sigma}^{*2} \ \Rightarrow \ B.O. = \frac{1}{2}[Nb-Na] = \frac{1}{2}[2-2] = 0$$

Bond order = 0, so He₂ does not exist.

- **142.** Which of the following oxoacid of sulphur has -O-O- linkage ?
 - (1) $H_2S_2O_7$, pyrosulphuric acid
 - (2) H_2SO_3 , sulphurous acid
 - (3) H₂SO₄, sulphuric acid
 - (4) H₂S₂O₈, peroxodisulphuric acid

Ans. (4)

Sol.
$$H-O-S+O-H$$

$$O = O = O$$

$$O =$$

- **143.** Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?
 - (1) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
 - (2) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
 - (3) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
 - (4) $F^- < SCN^- < C_2O_4^{2-} < CN^-$

Ans. (2)

- Sol. According to spectrochemical series.
- **144.** The number of Faradays(F) required to produce 20 g of calcium from molten $CaCl_2$ (Atomic mass of $Ca = 40 \text{ g mol}^{-1}$) is :
 - (1) 4
- (2) 1
- (3) 2
- (4) 3

Ans. (2)

Sol.
$$Ca^{+2} + 2e^{-} \rightarrow Ca_{(s)}$$

v.f. = 2

As per faraday's 1st law

Charge passed in faraday = g.eq of product

$$=\frac{20}{40} \times 2 = 1F$$

- **145.** Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give :
 - (1) Isobutyl alcohol
 - (2) Isopropyl alcohol
 - (3) Sec. butyl alcohol
 - (4) Tert. butyl alcohol

Ans. (4)

$$CH_3$$

 CH_3 – C – CH_3 (Tert. butyl alcohol)
 OH

- 146. Which of the following is a cationic detergent?
 - (1) Sodium dodecylbenzene sulphonate
 - (2) Sodium lauryl sulphate
 - (3) Sodium stearate
 - (4) Cetyltrimethyl ammonium bromide

Ans. (4)

- **Sol.** C₁₉H₄₂N⁺Br⁻ (cationic detergent) 12th NCERT (16.5.2) Synthetic detergents
- **147.** Identify the incorrect statement.
 - (1) The oxidation states of chromium in CrO_4^{2-} and $Cr_2O_7^{2-}$ are not the same
 - (2) Cr^{2+} (d^4) is a stronger reducing agent than Fe^{2+} (d^6) in water.
 - (3) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.
 - (4) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.

Ans. (1)

- **Sol.** Chromate $(CrO_4^{-2}) \Rightarrow$ oxidation state = + 6 dichromate $(Cr_2O_7^{-2}) \Rightarrow$ oxidation state = + 6 oxidation state are same.
- **148.** Which of the following alkane cannot be made in good yield by Wurtz reaction ?
 - (1) n-Butane
 - (2) n-Hexane
 - (3) 2,3-Dimethylbutane
 - (4) n-Heptane

Ans. (4)

Sol. n-Heptane can not be made in good yield using Wurtz reaction since it is unsymmetrical alkane.

- 149. Urea reacts with water to form A which will decompose to form B. B when passed through Cu²⁺ (aq), deep blue colour solution C is formed. What is the formula of C from the following?
 - (1) $CuCO_3 \cdot Cu(OH)_2$
- (2) CuSO₄
- (3) $[Cu(NH_3)_4]^{2+}$
- (4) Cu(OH)₂

Ans. (3)

Sol.
$$NH_2CONH_2 + H_2O \rightarrow CO_2 + NH_4OH$$
 (A)

$$NH_4OH \xrightarrow{\Delta} NH_3 + H_2O$$
(B)

$$Cu^{+2}(aq) + 4NH_3 \rightarrow [Cu(NH_3)_4]^{+2}$$
 (deep blue)

- **150.** The freezing point depression constant (K_f) of benzene is 5.12 K kg mol⁻¹. The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off upto two decimal places) :
 - (1) 0.60 K (2) 0.20 K (3) 0.80 K (4) 0.40 K

Ans. (4)

Sol.
$$\Delta T_f = K_f \times m$$

= 5.12 × 0.078
 $\Delta T_f = 0.40 \text{ K}$

- **151.** The number of protons, neutrons and electrons in $^{175}_{71}Lu$, respectively, are :
 - (1) 175, 104 and 71
- (2) 71, 104 and 71
- (3) 104, 71 and 71
- (4) 71, 71 and 104

Ans. (2)

Sol.
$$_{71}^{175}$$
Lu $p^{+} = 71$ $n^{0} = 175 - 71 = 104$ $e^{-} = 71$

152. Identify compound X in the following sequence of reactions:

$$CH_3 \longrightarrow X \xrightarrow{Cl_2/h\nu} X \xrightarrow{H_2O} X$$

$$(1) \bigcirc CCl_3$$

$$(2) \bigcirc CH$$

$$CH_2Cl$$

$$(3) \bigcirc (4) \bigcirc CHCl_2$$

Ans. (4)

Sol.
$$CH_3$$
 $CH \subset Cl$ CHO $H_2O \subset H_2O \subset$

- **153.** Identify the **correct** statement from the following:
 - (1) Pig iron can be moulded into a variety of shapes.
 - (2) Wrought iron is impure iron with 4% carbon.
 - (3) Blister copper has blistered appearance due to evolution of CO₂.
 - (4) Vapour phase refining is carried out for Nickel by Van Arkel method.

Ans. (1)

- **Sol.** Pig iron contains impurities (C, S, Si, P etc) having malleable nature that's why can be moulded.
- **154.** Which of the following set of molecules will have zero dipole moment ?
 - (1) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
 - (2) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene
 - (3) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
 - (4) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene

Ans. (1)

Sol. BF₃, BeF₂, CO₂ & 1, 4 - dichloro benzene all are symmetrical structure.

$$F \xrightarrow{B} F$$

$$\mu = 0$$

$$F \xrightarrow{Be} F$$

$$\bigcirc \rightleftharpoons C \rightleftharpoons O \qquad \qquad \downarrow \stackrel{\uparrow Cl}{\bigcirc} \mu = 0$$

$$\downarrow \mu = 0$$

- 155. Paper chromatography is an example of:
 - (1) Column chromatography
 - (2) Adsorption chromatography
 - (3) Partition chromatography
 - (4) Thin layer chromatography

Ans. (3)

- **Sol.** 11th NCERT (12.8.5) chromatography
- **156.** Identify the incorrect match :

Name

IUPAC Official Name

- (a) Unnilunium
- (i) Mendelevium
- (b) Unniltrium
- (ii) Lawrencium
- (c) Unnilhexium
- (iii) Seaborgium
- (d) Unununnium
- (iv) Darmstadtium
- (1) (d), (iv)
- (2) (a), (i)
- (3) (b), (ii)
- (4) (c), (iii)

Ans. (1)

- **Sol.** Unununium (Z = 111) it is Rontgentum (Rg) not darmstadtium.
- **157.** Find out the solubility of Ni(OH)₂ in 0.1M NaOH. Given that the ionic product of Ni(OH)₂ is 2×10^{-15} .
 - (1) $1 \times 10^8 \text{ M}$
 - (2) $2 \times 10^{-13} \text{ M}$
 - (3) $2 \times 10^{-8} \text{ M}$
 - (4) 1×10^{-13} M

Ans. (2)

Sol. $\alpha = 1$ for NaOH

$$NaOH_{(aq)} \longrightarrow Na^{+}_{0.1M}(aq) + OH^{-}_{0.1M}(aq)$$

Ni(OH)₂(s)
$$\longrightarrow$$
 Ni⁺²_s(aq) + 2OH⁻_{0,1,2s}(aq)

Ionic product =
$$(S') (0.1 + 2S')^2$$

$$2 \times 10^{-15} = S'(0.1)^2$$

$$S' = 2 \times 10^{-13} \text{ M}$$

- ${f 158.}$ Which of the following is a natural polymer ?
 - (1) poly (Butadiene-acrylonitrile)
 - (2) cis-1,4-polyisoprene
 - (3) poly (Butadiene-styrene)
 - (4) polybutadiene

Ans. (2)

- **Sol.** 12th NCERT (15.2.4)
- **159.** Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as :
 - (1) Cross Aldol condensation
 - (2) Aldol condensation
 - (3) Cannizzaro's reaction
 - (4) Cross Cannizzaro's reaction

Ans. (1)

Sol.
$$CHO$$
 CH_3 CH_3 CH_3 CH_3 CH_3

- **160.** The mixture which shows positive deviation from Raoult's law is :-
 - (1) Chloroethane + Bromoethane
 - (2) Ethanol + Acetone
 - (3) Benzene + Toluene
 - (4) Acetone + Chloroform

Ans. (2)

- **Sol.** Hydrogen bond of ethanol gets weakened by addition of acetone.
- **161.** The rate constant for a first order reaction is $4.606 \times 10^{-3}~\text{s}^{-1}$. The time required to reduce 2.0 g of the reactant to 0.2 g is :
 - (1) 1000 s
- (2) 100 s
- (3) 200 s
- (4) 500 s

Ans. (4)

Sol. $k = 4.606 \times 10^{-3} s^{-1}$

$$kt = 2.303 \log_{10} \frac{2}{0.2}$$

$$4.606 \times 10^{-3} \times t = 2.303 \times log10$$

$$t = \frac{1000}{2} = 500 \, s$$

- **162.** HCl was passed through a solution of CaCl₂, MgCl₂ and NaCl. Which of the following compound(s) crystallise(s) ?
 - (1) NaCl, MgCl₂ and CaCl₂
 - (2) Both MgCl₂ and CaCl₂
 - (3) Only NaCl
 - (4) Only MgCl₂

Ans. (3)

Sol. When HCl is passed thorugh the mixture Cl⁻ ion concentration increases. Hence ionic product [Na⁺] [Cl⁻]

becomes more than solubility product.

So NaCl will precipitate out.

Filtrate $\xrightarrow{HCl gas passed}$ pure NaCl precipitation (common ion effect)

- **163.** The correct option for free expansion of an ideal gas under adiabatic condition is :
 - (1) q > 0, $\Delta T > 0$ and w > 0
 - (2) q = 0, $\Delta T = 0$ and w = 0
 - (3) q = 0, $\Delta T < 0$ and w > 0
 - (4) q < 0, $\Delta T = 0$ and w = 0

Ans. (2)

Sol. free expansion of ideal gas

$$P_{ext} = 0$$

$$W_{pv} = 0$$

$$q = 0 \text{ (adiabatic process)}$$

$$\Delta E = q + w$$

$$\Delta E = 0$$

$$\Delta E = nC_{vm} \Delta T = 0$$

$$q = 0, \Delta T = 0, w = 0$$

- **164.** Identify the **correct** statements from the following:
 - (a) CO₂(g) is used as refrigerant for ice-cream and frozen food.
 - (b) The structure of C_{60} contains twelve six carbon rings and twenty five carbon rings.
 - (c) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline.
 - (d) CO is colorless and odourless gas.
 - (1) (c) and (d) only
 - (2) (a) and (b) and (c) only
 - (3) (a) and (c) only
 - (4) (b) and (c) only

Ans. (1)

- **Sol.** Correct statement are (c) and (d)
 - (c) use of zeolite (3d-silicate)
 - (d) CO-neutral, colourless & odourless gas.
- **165.** Hydrolysis of sucrose is given by the following reaction.

Sucrose + $H_2O \rightleftharpoons Glucose$ + Fructose

If the equilibrium constant (K_c) is 2×10^{13} at 300K, the value of $\Delta_r G^\Theta$ at the same temperature will be:

- (1) $-8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(4 \times 10^{13})$
- (2) $-8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$
- (3) 8.314 J mol⁻¹ K⁻¹ × 300 K × ln(2 × 10^{13})
- (4) 8.314 J mol⁻¹ K⁻¹ × 300 K × ln(3 × 10^{13})

Ans. (2)

Sol. $K_c = 2 \times 10^{13}$

T = 300K

 $\Delta G^{\circ} = -RT \ln k_{eq}$

 $\Delta G^{\circ} = -8.314 \text{ JK}^{-1} \text{ mol}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$

166. Which of the following amine will give the carbylamine test?

$$(1) \bigvee_{}^{\text{NHC}_2\text{H}_5} \qquad (2) \bigvee_{}^{\text{NH}_2}$$

Ans. (2)

test (isocyanide test)

167. An alkene on ozonolysis gives methanal as one of the product. Its structure is :

(1)
$$CH_2CH_2CH_3$$
 $CH=CH-CH$

$$(3) CH2 - CH2 - CH3 CH2 - CH = CH2$$

Ans. (4)

Sol.
$$CH_2$$
-CH=CH₂ CH_2 -CHO
$$CH_2$$
-CHO
$$Methanal$$

 $\textbf{168.} \ \, \text{Anisole on cleavage with HI gives:}$

$$OH + C_2H_5I$$

Ans. (2)

- **169.** Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:
 - (a) β-Elimination reaction
 - (b) Follow Zaitsev rule
 - (c) Dehydrohalogenation reaction
 - (d) Dehydration reaction

(1) (a), (b), (d)

(2) (a), (b), (c)

(3) (a), (c), (d)

(4) (b), (c), (d)

Ans. (2)

sec. alkyl halide

- * This reaction is an example of β -elimination.
- * Hydrogen is removed from β -carbon and halgoen from α -carbon, hence, dehydrohalgoenation reaction.
- * Generally in E2 reaction Zaitsev alkene is formed as major product (more stable alkene).
- **170.** An increase in the concentration of the reactants of a reaction leads to change in :
 - (1) collision frequency
 - (2) activation energy
 - (3) heat of reaction
 - (4) threshold energy

Ans. (1)

Sol. Collision frequency

 $Z_{12} \propto \text{number of reactant molecules per unit volume}.$

- 171. Which of the following is a basic amino acid:
 - (1) Lysine
 - (2) Serine
 - (3) Alanine
 - (4) Tyrosine

Ans. (1)

Sol.
$$\ddot{N}H_2 \xrightarrow{COOH} H$$
 $(CH_2)_4 - NH_2$

Lysine

Since it contains more number of $-NH_2$ groups as compared to -COOH groups hence it is basic amino acid.

- **172.** The following metal ion activates many enzymes, participates in the oxidation of glucose to produdce ATP and with Na, is responsible for the transmission of nerve signals.
 - (1) Potassium
 - (2) Iron
 - (3) Copper
 - (4) Calcium

Ans. (1)

- **Sol.** Biological importance of sodium & potassium.
- **173.** For the reaction $2Cl(g) \rightarrow Cl_2(g)$, the **correct** option is:
 - (1) $\Delta_r H < 0$ and $\Delta_r S < 0$
 - (2) $\Delta_r H > 0$ and $\Delta_r S > 0$
 - (3) $\Delta_r H > 0$ and $\Delta_r S < 0$
 - (4) $\Delta_r H < 0$ and $\Delta_r S > 0$

Ans. (1)

Sol. $2Cl(g) \longrightarrow Cl_2(g)$

 $\Delta_r S < 0$ and $\Delta_r H < 0$

174. Match the following:

Oxide Nature (a) CO (i) Basic (b) BaO (ii) Neutral (c) Al₂O₃ (iii) Acidic (d) Cl₂O₇ (iv) Amphoteric

Which of the following is **correct** option?

	(a)	(b)	(c)	(d)
(1)	(i∨)	(iii)	(ii)	(i)
(2)	(i)	(ii)	(iii)	(iv)
(3)	(ii)	(i)	(iv)	(iii)
(4)	(iii)	(iv)	(i)	(ii)

Ans. (3)

Sol. (a) CO (ii) Neutral

- (b) BaO (i) Basic
- (c) Al₂O₃ (iv) Amphoteric
- (d) Cl₂O₇ (iii) Acidic

- **175.** Measuring Zeta potential is useful in determining which property of colloidal solution?
 - (1) Size of the colloidal particles
 - (2) Viscosity
 - (3) Solubility
 - (4) Stability of the colloidal particles

Ans. (4)

- **Sol.** Greater the Zeta potential more will be the stability of colloidal particles.
- **176.** A mixture of N_2 and Ar gases in a cylinder contains 7g of N_2 and 8g of Ar. If the total pressure of the mixture of gases in the cylinder is 27 bar, the partial pressure of N_2 is:

[Use atomic masses (in g mol^{-1}) : N = 14, Ar = 40]

- (1) 18 bar
- (2) 9 bar
- (3) 12 bar
- (4) 15 bar

Ans. (4)

Sol. N₂ Ar

7 gram 8 gram

moles

$$\frac{7}{28} = \frac{1}{4}$$
 $\frac{8}{40} = \frac{1}{5}$

 $(Partial pressure)_{N_2} = P_T \times (mole fraction)_{N_2}$

$$= 27 \times \frac{1/4}{1/4 + 1/5}$$

$$= 27 \times \frac{1/4}{9/20}$$

$$= 27 \times \frac{20}{4 \times 9}$$

 $= 3 \times 5$

= 15 bar

- **177.** Which of the following is **not** correct about carbon monoxide?
 - (1) It is produced due to incomplete combustion
 - (2) It forms carboxyhaemoglobin
 - (3) It reduce oxygen carrying ability of blood
 - (4) The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxyhaemoglobin.

Ans. (4)

Sol. Not correct

Carboxyhaemoglobin (haemoglobin bound to CO) is more stable than oxyhaemoglobin.

178. An element has a body centered cubic (bcc) structure with a cell edge of 288 pm. The atomic radius is:

(1)
$$\frac{4}{\sqrt{2}} \times 288 \, \text{pm}$$

(1)
$$\frac{4}{\sqrt{2}} \times 288 \,\mathrm{pm}$$
 (2) $\frac{\sqrt{3}}{4} \times 288 \,\mathrm{pm}$

(3)
$$\frac{\sqrt{2}}{4} \times 288 \, \text{pm}$$
 (4) $\frac{4}{\sqrt{3}} \times 288 \, \text{pm}$

(4)
$$\frac{4}{\sqrt{3}} \times 288 \, \text{pm}$$

Ans. (2)

Sol. $\sqrt{3}a = 4r$ (for bcc lattice)

$$r = \frac{\sqrt{3}}{4} \times 288 \text{ pm}$$

- 179. Which one of the following has maximum number of atoms?
 - (1) \log of Li(s) [Atomic mass of Li = 7]
 - (2) 1g of Ag(s) [Atomic mass of Ag = 108]
 - (3) 1g of Mg(s) [Atomic mass of Mg = 24]
 - (4) 1g of $O_2(g)$ [Atomic mass of O = 16]

Ans. (1)

Sol. Number of atoms

$$= \frac{w}{\text{molar mass}} \times N_{A} \times \text{atomicity}$$

$$(1) \quad \frac{1}{7} \times N_A \times 1$$

$$(2) \quad \frac{1}{108} \times N_A \times 1$$

$$(3) \quad \frac{1}{24} \times N_A \times 1$$

$$(4) \quad \frac{1}{32} \times N_A \times 2$$

- **180.** On electrolysis of dil. sulphuric acid using Platinum (Pt) electrode, the product obtained at anode will be:
 - (1) SO_2 gas
 - (2) Hydrogen gas
 - (3) Oxygen gas
 - (4) H_2S gas

Ans. (3)

Sol. H₂SO₄

At Anode : $2H_2O \rightarrow O_{2(g)} + 4H_{(aq)}^+ + 4e^-$ Oxygen gas will liberate at anode