

FINAL JEE-MAIN EXAMINATION - APRIL, 2019

(Held On Monday 08th APRIL, 2019) TIME: 2:30 PM To 5:30 PM

CHEMISTRY

1. Calculate the standard cell potential in(V) of the cell in which following reaction takes place : $Fe^{2+}(aq) + Ag^{+}(aq) \rightarrow Fe^{3+}(aq) + Ag(s)$ Given that

$$E^o_{Ag^+/Ag} = xV$$

$$E_{Ee^{2+}/Ee}^{o} = yV$$

$$E_{Ee^{3+}/Ee}^{o} = zV$$

$$(1) x + 2y - 3z$$

$$(2) x - z$$

$$(3) x - y$$

$$(4) x + y - z$$

Official Ans. by NTA (1)

Sol.
$$Fe^{+2}(aq) + Ag^{+}(aq) \rightarrow Fe^{+3}(aq) + Ag(s)$$

Cell reaction

anode :
$$Fe^{+2}(aq) \rightarrow Fe^{+3}(aq) + e^{\Theta}$$
;

$$E_{Fe^{+2}/Fe^{+3}}^{o} = mV$$

cathode :
$$Ag^+$$
 (aq) + $e^{\Theta} \rightarrow Ag(s)$;

$$E^o_{Ag^+/Ag} = xV$$

 \Rightarrow cell standard potential = (m + x)V

∴ to find 'm';

$$Fe^{+2} + 2e^{\Theta} \rightarrow Fe$$
;

$$E_1^o = yV \Rightarrow \Delta_1^o G = -(2Fy)$$

$$Fe^{+3} + 3e^{\Theta} \rightarrow Fe$$
;

$$E_2^o = zV \implies \Delta_2^o G = -(3Fz)$$

$$Fe^{+2}(aq) \rightarrow Fe^{+3}(aq) + e^{\Theta};$$

$$E_3^o = mV \implies \Delta_3^o G = -(1Fm)$$

$$\Delta_3^{\circ}G = \Delta G_1^{\circ} - \Delta G_2^{\circ} = (-2Fy + 3Fz) = -Fm$$

$$\Rightarrow$$
 m = $(2y - 3z)$

$$\Rightarrow$$
 E_{cell} = (x + 2y - 3z)V

TEST PAPER WITH ANSWER & SOLUTION

2. The major product in the following reaction is:

$$\begin{array}{c}
N \\
N \\
N
\end{array}
+ CH_3I \xrightarrow{Base}$$

$$(1) \bigvee_{\mathbf{N}}^{\mathbf{N}\mathbf{H}_{2}} \bigvee_{\mathbf{N}}^{\mathbf{N}\mathbf{H}_{2}} (2) \bigvee_{\mathbf{C}\mathbf{H}_{3}}^{\mathbf{N}\mathbf{H}_{2}}$$

Official Ans. by NTA (2) ALLEN Ans. (Bonus)

- **Sol.** because one double bond is missing in all given option. So aromaticity is lost in both the ring.
- **3.** For the following reactions, equilibrium constants are given:

$$S(s) + O_2(g) \rightleftharpoons SO_2(g); K_1 = 10^{52}$$

 $2S(s) + 3O_2(g) \rightleftharpoons 2SO_3(g); K_2 = 10^{129}$

The equilibrium constant for the reaction,

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 is:

(1)
$$10^{181}$$
 (2) 10^{154} (3) 10^{25} (4) 10^{77}

Official Ans. by NTA (3)

Sol.
$$S(s) + O_2(g) \rightleftharpoons SO_2(g)$$
 $K_1 = 10^{52}$...(1)
 $2S(s) + 3O_2(g) \rightleftharpoons 2SO_3(g)$ $K_2 = 10^{129}$...(2)
 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $K_3 = x$
multiplying equation (1) by 2;

$$2SO(s) + 2O_2(g) \Longrightarrow 2SO_2(g)$$
 $K'_1 = 10^{104} ...(3)$

 \Rightarrow Substracting (3) from (2); we get

$$2SO_2(g)+O_2(g) \Longrightarrow 2SO_3(g);$$

$$K_{eq} = 10^{(129 - 104)} = 10^{25}$$

- **4.** The ion that has sp³d² hybridization for the central atom, is:
 - (1) [ICI₂]
- (2) $[IF_6]^-$
- (3) $[ICI_4]^-$
- (4) $[BrF_2]^-$

Official Ans. by NTA (3)

Sol. Chemical species Hybridisation of central atom

ICl₂

 sp^3d

 IF_6^-

 sp^3d^3

ICl₄

 sp^3d^2

BrF,

 sp^3d

5. The structure of Nylon-6 is:

$$(1) = \begin{bmatrix} O & H \\ I & I \\ CH_2)_6 - C - N \end{bmatrix}_n$$

$$(2) = \begin{bmatrix} O & H \\ I & I \\ (CH_2)_4 - C - N \end{bmatrix}_n$$

(3)
$$\begin{bmatrix} O & H \\ C - (CH_2)_5 - N \end{bmatrix}_{r}$$

(4)
$$\begin{bmatrix} O & H \\ C - (CH_2)_6 - N \end{bmatrix}$$

Official Ans. by NTA (3)

Sol.
$$\begin{bmatrix} O & H \\ I & I \\ C - (CH_2)_5 - N \end{bmatrix}_T$$

Nylon-6

6. The major product of the following reaction is:

$$\begin{array}{c} O \\ \hline C1 \end{array} \xrightarrow{\begin{array}{c} (1) \ ^{1}BuOK \\ \hline \begin{array}{c} (2) \ Conc. \ H_{2}SO_{4}/\Delta \end{array} \end{array}}$$

$$(1) \qquad (2) \qquad (2)$$

$$(3) \qquad (4) \qquad (0)$$

Official Ans. by NTA (4)

Sol.

7. The major product of the following reaction is:

$$\begin{array}{c}
CH_3 \\
\hline
 & (1) Cl_2/hv \\
\hline
 & (2) H_2O, \Delta
\end{array}$$

$$CO_2H$$
 CHO
 CHO
 CHO
 CHO

Official Ans. by NTA (4)

Sol.
$$CH_3$$
 $CHCl_2$ CHO

$$CHCl_2$$
 CHO

$$Cl_2/\Delta$$
 Cl_2/Δ Cl Cl Cl

- The percentage composition of carbon by mole in methane is:
 - (1)80%
- (2) 25%
- (3) 75%
- (4) 20%

Official Ans. by NTA (4)

- Sol. CH₄
 - % by mole of carbon = $\frac{1 \text{ mol atom}}{5 \text{ mol atom}} \times 100$
- 9. The IUPAC symbol for the element with atomic number 119 would be:
 - (1) unh
- (2) uun
- (3) une

= 20%

(4) uue

Official Ans. by NTA (4)

- Sol. Symbol Atomic number 106 unh 110 uun 109 une 119 uue
- 10. The compound that inhibits the growth of tumors is:
 - (1) $cis-[Pd(Cl)_2(NH_3)_2]$
 - (2) cis- $[Pt(Cl)_2(NH_3)_2]$
 - (3) trans- $[Pt(Cl)_2(NH_3)_2]$
 - (4) trans- $[Pd(Cl)_2(NH_3)_2]$

Official Ans. by NTA (2)

- **Sol.** $cis-[PtCl_2(NH_3)_2]$ is used in chemotherapy to inhibits the growth of tumors.
- 11. The covalent alkaline earth metal halide (X = Cl, Br, I) is:

 - (1) CaX_2 (2) SrX_2 (3) BeX_2 (4) MgX_2

Official Ans. by NTA (3)

- **Sol.** All halides of Be are predominantly covalent in nature.
- **12.** The major product obtained in the following reaction is:

$$(1) \underbrace{ \begin{array}{c} H \\ NCH_3 \\ H_2N \end{array} }_{OH} \underbrace{ \begin{array}{c} H \\ NCH_3 \\ CN \end{array} }_{O}$$

$$(3) \begin{picture}(3){\put(10,0){\line(1,0){100}}} \put(10,0){\line(1,0){\line(1,0){100}}} \put(10,0){\line(1,0){\line(1,0){\line(1,0){100}}}} \put(10,0){\line(1,0){\l$$

Official Ans. by NTA (1)

Sol.

- 13. The statement that is **INCORRECT** about the interstitial compounds is:
 - (1) They have high melting points
 - (2) They are chemically reactive
 - (3) They have metallic conductivity
 - (4) They are very hard

Official Ans. by NTA (2)

- Sol. Generally interstitial compounds are chemicaly
- 14. The maximum prescribed concentration of copper in drinking water is:
 - (1) 5 ppm
- (2) 0.5 ppm
- (3) 0.05 ppm
- (4) 3 ppm

Official Ans. by NTA (4)

- Sol. The maximum prescribed concentration of Cu in drinking water is 3 ppm.
- 15. The calculated spin-only magnetic moments (BM) of the anionic and cationic species of $[Fe(H_2O)_6]_2$ and $[Fe(CN)_6]$, respectively, are :
 - (1) 4.9 and 0
- (2) 2.84 and 5.92
- (3) 0 and 4.9
- (4) 0 and 5.92

Official Ans. by NTA (3)

Complex is $[Fe (H_2O)_6]_2$ $[Fe(CN)_6]$

Complex ion	Configuration	No. of unpaired electrons	Magnetic moment
$[Fe(H_2O)_6]^{2+}$	$t_{2g}^{4}e_{g}^{2}$	4	4.9 BM
$[Fe(CN)_6]^{4-}$	${\mathsf t_{2g}}^6 \mathsf e_{\mathsf g}^{0}$	0	0

0.27 g of a long chain fatty acid was dissolved **16.** in 100 cm³ of hexane. 10 mL of this solution was added dropwise to the surface of water in a round watch glass. Hexane evaporates and a monolayer is formed. The distance from edge to centre of the watch glass is 10 cm. What is the height of the monolayer?

[Density of fatty acid = 0.9 g cm⁻³, π = 3]

- $(1) 10^{-8} \text{ m}$
- (2) 10⁻⁶ m
- (3) 10⁻⁴ m
- (4) 10⁻² m

Official Ans. by NTA (2)

Sol. Radius of watchglass= 10 cm

$$\Rightarrow$$
 surface area = πr^2 = 3 × (10 cm)²
= 300 cm²

mass of fatty acid in 10 ml solution

$$= \frac{10 \times 0.27}{100} = 0.027 \,\mathrm{gm}$$

volume of fatty acid =
$$\frac{0.027 \,\text{g}}{0.9 \,\text{g/ml}} = 0.03 \,\text{cm}^3$$

$$\Rightarrow Height = \frac{volume \text{ of fatty acid}}{surface \text{ area of watch glass}}$$

$$= \frac{0.03 \text{ cm}^3}{300 \text{ cm}^2} = 0.0001 \text{ cm} = 10^{-6} \text{ m}$$

17. Among the following molecules / ions,

$$C_2^{2-}, N_2^{2-}, O_2^{2-}, O_2$$

which one is diamagnetic and has the shortest bond length?

- $(1) C_2^{2-}$
- (2) N_2^{2-} (3) O_2

Official Ans. by NTA (1)

Sol.

Chemical Species	Bond Order	Magnetic behaviour
C_2^{2-}	3	diamagnetic
N_2^{2-}	2	paramagnetic
O_2	2	paramagnetic
O_2^{2-}	1	diamagnetic

B.O.
$$\propto \frac{1}{\text{bond length}}$$

18. 5 moles of an ideal gas at 100 K are allowed to undergo reversible compression till its temperature becomes 200 K.

> If $C_V = 28 \text{ JK}^{-1}\text{mol}^{-1}$, calculate ΔU and ΔpV for this process. (R = $8.0 \text{ JK}^{-1} \text{ mol}^{-1}$)

- (1) $\Delta U = 14 \text{ kJ}; \Delta(pV) = 4 \text{ kJ}$
- (2) $\Delta U = 14 \text{ kJ}; \Delta(pV) = 18 \text{ kJ}$
- (3) $\Delta U = 2.8 \text{ kJ}$; $\Delta(pV) = 0.8 \text{ kJ}$
- (4) $\Delta U = 14 \text{ kJ}; \Delta(pV) = 0.8 \text{ kJ}$

Official Ans. by NTA (1)

Sol. n = 5; $T_i = 100 \text{ K}$; $T_f = 200 \text{ K}$;

$$C_V = 28 \text{ J/mol K}$$
; Ideal gas

$$\Delta U = nC_V \Delta T$$

$$= 5 \text{ mol} \times 28 \text{ J/mol K} \times (200 - 100) \text{ K}$$

$$= 14,000 J = 14 kJ$$

$$\Rightarrow C_p = C_v + R = (28 + 8) \text{ J/mol K}$$
$$= 36 \text{ J/mol K}$$

$$\Rightarrow \Delta H = \frac{\text{nC}_{\text{p}}\Delta T}{\text{mol}} = 5 \text{ mol} \times 36 \text{ J/mol } K \times 100 \text{ K}$$
$$= 18000 \text{ J} = 18 \text{ kJ}$$

$$\Delta H = \Delta U + \Delta (PV)$$

$$\Rightarrow \Delta(PV) = \Delta H - \Delta U = (18 - 14) \text{ kJ} = 4 \text{ kJ}$$

19. Which one of the following alkenes when treated with HCl yields majorly an anti Markovnikov product?

(1)
$$F_3C - CH = CH_2$$

(2)
$$Cl - CH = CH_2$$

$$(3) CH3O - CH = CH2$$

(4)
$$H_2N - CH = CH_2$$

Official Ans. by NTA (1)

Sol.
$$CF_3$$
- CH = CH_2
 \xrightarrow{HCl}
 CF_3 - CH - CH_2
 \xrightarrow{H}
 CH_2
 H
 CI
 CF_3 - CH - CH_2

Due to higher e- withdrawing nature of CF₃

It follow anti markovnikoff product

20. For a reaction scheme $A \xrightarrow{k_1} B \xrightarrow{k_2} C$, if the rate of formation of B is set to be zero then the concentration of B is given by :

$$(1) \left(\frac{\mathbf{k}_1}{\mathbf{k}_2}\right) [\mathbf{A}]$$

(2)
$$(k_1 + k_2)$$
 [A]

(3)
$$k_1 k_2 [A]$$

$$(4) (k_1 - k_2) [A]$$

Official Ans. by NTA (1)

Sol.
$$A \xrightarrow{K_1} B \xrightarrow{K_2} C$$

$$\frac{d[B]}{dt} = 0 = K_1[A] - K_2[B]$$

$$\Rightarrow [B] = \frac{K_1}{K_2}[A]$$

- **21.** Which of the following compounds will show the maximum enol content?
 - (1) CH₃COCH₂COCH₃
 - (2) CH₃COCH₃
 - (3) CH₃COCH₂CONH₂
 - (4) CH₃COCH₂COOC₂H₅

Official Ans. by NTA (1)

Sol. Solution

$$CH_3 - C - CH_2 - C - CH_3 \longrightarrow CH_3 - C \longrightarrow CH_3$$
Keto
$$CH_3 - C - CH_2 - C - CH_3 \longrightarrow CH_3 - C \longrightarrow CH_3$$

Due to intramolecular H-bonding and resonance stabilisation enol content is maximum

- 22. The correct statement about ICl_5 and ICl_4^- is
 - (1) ICl₅ is trigonal bipyramidal and ICl₄ is tetrahedral.
 - (2) ICl₅ is square pyramidal and ICl₄ is tetrahedral.
 - (3) ICl₅ is square pyramidal and ICl₄⁻ is square planar.
 - (4) Both are isostructural.

Official Ans. by NTA (3)

Sol.

Chemical species	Hybridisation	Shape
ICl ₅	sp^3d^2	Square pyramidal
ICl ₄	sp^3d^2	Square planar

23. The major product obtained in the following reaction is

$$OHC \xrightarrow{CH_3} \xrightarrow{O} \xrightarrow{NaOH}$$

$$(1) \qquad (2) \qquad H_3C \qquad H_3C \qquad CH_3$$

$$(3) \begin{array}{c} H_3C \\ CH_2 \\ CH_2 \\ \end{array} \qquad (4) \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$$

Official Ans. by NTA (4)

Sol.

$$\begin{array}{c} \text{CH}_3 \\ \text{OHC} \\ \hline \\ \begin{array}{c} \text{NaOH} \\ \Delta \\ \\ \text{Intramolecular} \\ \text{aldol condensation} \end{array}$$

- **24.** Fructose and glucose can be distinguished by :
 - (1) Fehling's test
 - (2) Barfoed's test
 - (3) Benedict's test
 - (4) Seliwanoff's test

Official Ans. by NTA (4)

- **Sol.** Seliwanoff's test is used to distinguished aldose and ketose group.
- 25. If p is the momentum of the fastest electron ejected from a metal surface after the irradiation of light having wavelength λ , then for 1.5 p momentum of the photoelectron, the wavelength of the light should be:

(Assume kinetic energy of ejected photoelectron to be very high in comparison to work function)

- $(1) \frac{1}{2} \lambda$
- $(2) \ \frac{3}{4}\lambda$
- $(3) \ \frac{2}{3}\lambda$
- $(4) \frac{4}{9}\lambda$

Official Ans. by NTA (4)

Sol. $hv - \phi = KE$

$$\Rightarrow \left(\frac{hc}{\lambda}\right)_{\text{incident}} = KE + \phi$$

$$\left(\frac{hc}{\lambda}\right)_{\text{incident}} \simeq KE$$

$$KE = \frac{p^2}{2m} = \frac{hc}{\lambda_{incident}} = \frac{hc}{\lambda} \qquad ...(1)$$

$$\Rightarrow \frac{p^2 \times (1.5)^2}{2m} = \frac{hc}{\lambda'} \qquad ...(2)$$

divide (1) and (2)

$$(1.5)^2 = \frac{\lambda}{\lambda'}$$

$$\Rightarrow \lambda' = \frac{4\lambda}{9}$$

26. Consider the bcc unit cells of the solids 1 and 2 with the position of atoms as shown below. The radius of atom B is twice that of atom A. The unit cell edge length is 50% more in solid 2 than in 1. What is the approximate packing efficiency in solid 2?

(1) 45% (2) 65% (3) 90% (4) 75% **Official Ans. by NTA (3)**

Sol. p.f. =
$$\frac{\left(z_{\text{eff}} \times \frac{4}{3} \pi r_{A}^{3}\right)_{A} + \left(z_{\text{eff}} \times \frac{4}{3} \pi r_{B}^{3}\right)_{B}}{a^{3}}$$

$$2(r_A + r_B) = \sqrt{3}a$$

$$\Rightarrow 2(r_A + 2r_A) = \sqrt{3}a$$

$$\Rightarrow 2\sqrt{3} r_A = a$$

$$\Rightarrow p.f. = \frac{1 \times \frac{4}{3} \pi r_A^3 + \frac{4}{3} \pi \left(8 r_A^3\right)}{8 \times 3\sqrt{3} r_A^3} = \frac{9 \times \frac{4}{3} \pi}{8 \times 3\sqrt{3}} = \frac{\pi}{2\sqrt{3}}$$

p. efficiency =
$$\frac{\pi}{2\sqrt{3}} \times 100 \approx 90\%$$

- 27. Polysubstitution is a major drawback in:
 - (1) Reimer Tiemann reaction
 - (2) Friedel Craft's acylation
 - (3) Friedel Craft's alkylation
 - (4) Acetylation of aniline

Official Ans. by NTA (3)

Sol. In Friedal crafts alkylation product obtained is more activated and hence polysubtitution will take place.

- 28. The Mond process is used for the
 - (1) extraction of Mo
 - (2) Purification of Ni
 - (3) Purification of Zr and Ti
 - (4) Extraction of Zn

Official Ans. by NTA (2)

- **Sol.** Mond's process is used for the purification of Nickel.
- **29.** The strength of 11.2 volume solution of H_2O_2 is : [Given that molar mass of H = 1 g mol⁻¹ and O = 16 g mol⁻¹]
 - (1) 13.6%
- (2) 3.4%
- (3) 34%
- (4) 1.7%

Official Ans. by NTA (2)

- **Sol.** Volume strength = $11.2 \times \text{molarity} = 11.2$
 - \Rightarrow molarity = 1 M
 - \Rightarrow strength = 34 g/L

$$\Rightarrow$$
 % w/w = $\frac{34}{1000} \times 100 = 3.4\%$

30. For the solution of the gases w, x, y and z in water at 298K, the Henrys law constants (K_H) are 0.5, 2, 35 and 40 kbar, respectively. The correct plot for the given data is:-

Official Ans. by NTA (3)

Sol.
$$p = k_{H} \times \left(\frac{n_{gas}}{n_{H_{2}O} + n_{gas}}\right)$$
$$= k_{H} \left(1 - \frac{n_{H_{2}O}}{n_{H_{2}O} + n_{gas}}\right)$$
$$\Rightarrow p = k_{H} - k_{H} \times \chi_{H_{2}O}$$
$$p = (-k_{H}) \times \chi_{H_{2}O} + k_{H}$$