FINAL JEE-MAIN EXAMINATION - APRIL,2019
(Held On Monday 08 ${ }^{\text {th }}$ APRIL, 2019) TIME: 9:30 AM To 12:30 PM

CHEMISTRY

1. The vapour pressures of pure liquids A and B are 400 and 600 mmHg , respectively at 298 K . On mixing the two liquids, the sum of their initial volumes is equal to the volume of the final mixture. The mole fraction of liquid B is 0.5 in the mixture. The vapour pressure of the final solution, the mole fraction of components A and B in vapour phase, respectively are-
(1) $500 \mathrm{mmHg}, 0.5,0.5$
(2) $450 \mathrm{mmHg}, 0.4,0.6$
(3) $450 \mathrm{mmHg}, 0.5,0.5$
(4) $500 \mathrm{mmHg}, 0.4,0.6$

Official Ans. by NTA (4)
Sol. $P_{\text {total }}=X_{A} \cdot P_{A}^{0}+X_{B} \cdot P_{B}^{0}=0.5 \times 400+0.5 \times 600$ $=500 \mathrm{mmHg}$
Now, mole fraction of A in vapour,
$\mathrm{Y}_{\mathrm{A}}=\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\text {total }}}=\frac{0.5 \times 400}{500}=0.4$
and mole fraction of B in vapour,
$Y_{B}=1-0.4=0.6$
Correct option : (4)
2. If solubility product of $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ is denoted by $\mathrm{K}_{\text {sp }}$ and its molar solubility is denoted by S , then which of the following relation between S and $\mathrm{K}_{\text {sp }}$ is correct
(1) $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{929}\right)^{1 / 9}$
(2) $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{216}\right)^{1 / 7}$
(3) $\mathrm{S}=\left(\frac{\mathrm{K}_{\text {sp }}}{144}\right)^{1 / 6}$
(4) $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{6912}\right)^{1 / 7}$

Official Ans. by NTA (4)
Sol. $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Zr}^{4+}$ (aq. $)+4 \mathrm{PO}_{4}^{3-}$ (aq.)
3S M $\quad 4 \mathrm{~S} \mathrm{M}$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Zr}^{4+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{4}=(3 \mathrm{~S})^{3} \cdot(4 \mathrm{~S})^{4}=6912 \mathrm{~S}^{7}$
$\therefore \mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{6912}\right)^{1 / 7}$
Correct option : (4)

TEST PAPER WITH ANSWER \& SOLUTION

3. In order to oxidise a mixture one mole of each of $\mathrm{FeC}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}, \mathrm{FeSO}_{4}$ and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in acidic medium , the number of moles of KMnO_{4} required is -
(1) 3
(2) 2
(3) 1
(4) 1.5

Official Ans. by NTA (2)
Sol. $\mathrm{n}_{\text {eq. }} \mathrm{KMnO}_{4}=\mathrm{n}_{\text {eq. }}\left[\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}+\mathrm{FeSO}_{4}\right]$ or $\mathrm{n} \times 5=1 \times 3+1 \times 6+1 \times 1$
$\therefore \mathrm{n}=2$
Correct option : (2)
4. In the following compounds, the decreasing order of basic strength will be -
(1) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3}$
(2) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\mathrm{NH}_{3}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
(3) $\mathrm{NH}_{3}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$

Official Ans. by NTA (1)
Sol. Basic strength order
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}>\mathrm{NH}_{3}$
2° amine $\quad 1^{\circ}$ amine
Correct option : (1)
5. Diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ reacts independently with O_{2} and $\mathrm{H}_{2} \mathrm{O}$ to produce, respectively
(1) HBO_{2} and $\mathrm{H}_{3} \mathrm{BO}_{3}$
(2) $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$
(3) $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$
(4) $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\left[\mathrm{BH}_{4}\right]^{-}$

Official Ans. by NTA (3)
Sol. $\mathrm{B}_{2} \mathrm{H}_{6}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{H}_{2}$
$\mathrm{B}_{2} \mathrm{H}_{6}+3 \mathrm{O}_{2} \longrightarrow \mathrm{~B}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
Correct option : (3)
6. An organic compound ' X ' showing the following solubility profile is -

(1) m-Cresol
(2) Oleic acid
(3) o-Toluidine
(4) Benzamide

Official Ans. by NTA (1)

Sol.

* Oleic acid is also soluble in NaHCO_{3}
* o-toluidine is not soluble in NaOH as well as NaHCO_{3}
* Benzamide is also not soluble in $\mathrm{NaOH} \&$ NaHCO_{3}.
Correct option : (1)

7. Coupling of benzene diazonium chloride with 1-napthol in alkaline medium will give
(1)

(2)

(3)

8. With respect to an ore, Ellingham diagram helps to predict the feasibility of its -
(1) Vapour phase refining
(2) Zone refining
(3) Electrolysis
(4) Thermal reduction

Official Ans. by NTA (4)
Sol. Ellingham diagram helps in predicting the feasibiltiy of thermal reduction of ores.
Correct option : (4)
11. The following ligand is

(1) Bidentate
(3) Tetradentate

Official Ans. by NTA (3)

Sol. Donating atoms are both nitrogen \& oxygen. Correct option : (3)
12. The correct order of hydration enthalpies of alkali metal ions is -
(1) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(2) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}$
(3) $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(4) $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{K}^{+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}$

Official Ans. by NTA (1)
Sol. Hydration enthalpy depends upon ionic potential (charge / size). As ionic potential increases hydration enthalpy increases.
Correct option : (1)
13. An organic compound neither reacts with neutral ferric chloride solution nor with Fehling solution, It however, reacts with Grignard reagent and gives positive iodoform test. The compound is -
(1)

(2)

(3)

(4)

Sol.

Correct option : (1)
14. The quantum number of four electrons are given below -
I. $\mathrm{n}=4, l=2, \mathrm{~m}_{l}=-2, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
II. $\mathrm{n}=3, l=2, \mathrm{~m}_{l}=1, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
III. $\mathrm{n}=4, l=1, \mathrm{~m}_{l}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
IV. $\mathrm{n}=3, l=1, \mathrm{~m}_{l}=1, \mathrm{~m}_{\mathrm{s}}=-1 / 2$

The correct order of their increasing energies will be -
(1) IV $<$ III $<$ II $<$ I
(2) IV $<$ II $<$ III $<$ I
(3) I $<$ II $<$ III $<$ IV
(4) I $<$ III $<$ II $<$ IV

Official Ans. by NTA (2)
Sol. According to $(\mathrm{n}+\ell$) rule : $3 \mathrm{p}<3 \mathrm{~d}<4 \mathrm{p}<4 \mathrm{~d}$ Correct option : (2)
15. Assertion : Ozone is destroyed by CFCs in the upper stratosphere
Reason : Ozone holes increase the amount of UV radiation reaching the earth.
(1) Assertion and reason are correct, but the reason is not the explanation for the assertion
(2) Assertion is false, but the reason is correct
(3) Assertion and reason are incorrect, Assertion and reason are both correct
(4) And the reason is the correct explanation for the assertion
Official Ans. by NTA (1)

Sol. The upper stratosphere consists of ozone $\left(\mathrm{O}_{3}\right)$, which protect us from harmful ultraviolet (UV) radiations coming from sun.
Correct option : (1)
16. The size of the iso-electronic species $\mathrm{Cl}^{-}, \mathrm{Ar}$ and Ca^{2+} is affected by -
(1) Principal quantum number of valence shell
(2) Nuclear charge
(3) Azimuthal qunatum number of valence shell
(4) Electron-electron interaction in the outer orbitals

Official Ans. by NTA (2)
Sol. For isoelectronic species the size is compared by nuclear charge.
Correct option: (2)
17. Given that: $\mathrm{E}_{\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}}^{0}=+1.23 \mathrm{~V}$,

$$
\mathrm{E}_{\mathrm{S}_{2} \mathrm{O}_{8}^{2}-/ \mathrm{SO}_{4}^{2-}}^{0}=+2.05 \mathrm{~V}
$$

$\mathrm{E}_{\mathrm{Br}_{2} / \mathrm{Br}} 0=+1.09 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Au}^{3+} / \mathrm{Au}}^{0}=+1.4 \mathrm{~V}$
The strongest oxidizing agent is -
(1) O_{2}
(2) Br_{2}
(3) $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
(4) Au^{3+}

Official Ans. by NTA (3)
Sol. For strongest oxidising agent, standard reduction potential should be highest.
Correct option : (3)
18. For silver, $\mathrm{C}_{\mathrm{p}}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)=23+0.01 \mathrm{~T}$. If the temperature (T) of 3 moles of silver is raised from 300 K to 1000 K at 1 atm pressure, the value of $\Delta \mathrm{H}$ will be close to
(1) 21 kJ
(2) 16 kJ
(3) 13 kJ
(4) 62 kJ

Official Ans. by NTA (4)

Sol. $\Delta H=n \int_{T_{1}}^{T_{2}} \mathrm{C}_{\mathrm{p}, \mathrm{m}} \mathrm{dT}=3 \times \int_{300}^{1000}(23+0.01 \mathrm{~T}) \mathrm{dT}$
$=3\left[23(1000-300)+\frac{0.01}{2}\left(1000^{2}-300^{2}\right)\right]$
$=61950 \mathrm{~J} \approx 62 \mathrm{~kJ}$
Correct option : (4)
19. Which of the following amines can be prepared by Gabriel phthalimide reaction?
(1) Neo-pentylamine
(2) n-butylamine
(3) triethylamine
(4) t-butylamine

Official Ans. by NTA (2)
Sol. Gabriel phthalimide synthesis :

Correct option : (2)
20. Which is wrong with respect to our responsibility as a human being to protect our environment?
(1) Avoiding the use of floodlighted facilities
(2) Restricting the use of vehicles
(3) Using plastic bags
(4) Setting up compost tin in gardens

Official Ans. by NTA (3)
Sol. Correct option : (3)
21. Maltose on treatment with dilute HCI gives :
(1) D-Galactose
(2) D-Glucose
(3) D-Glucose and D-Fructose
(4) D-Fructose

Official Ans. by NTA (2)

Correct option : (2)
22. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Official Ans. by NTA (3)

Sol.

Fridel-craft acylation. -Cl group is an ortho \& para directing
Correct option : (3)
23. The correct order of the spin-only magnetic moment of metal ions in the following low spin complexes, $\left[\mathrm{V}(\mathrm{CN})_{6}\right]^{4-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$,
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, is :
(1) $\mathrm{V}^{2+}>\mathrm{Cr}^{2+}>\mathrm{Ru}^{3+}>\mathrm{Fe}^{2+}$
(2) $\mathrm{V}^{2+}>\mathrm{Ru}^{3+}>\mathrm{Cr}^{2+}>\mathrm{Fe}^{2+}$
(3) $\mathrm{Cr}^{2+}>\mathrm{V}^{2+}>\mathrm{Ru}^{3+}>\mathrm{Fe}^{2+}$
(4) $\mathrm{Cr}^{2+}>\mathrm{Ru}^{3+}>\mathrm{Fe}^{2+}>\mathrm{V}^{2+}$

Official Ans. by NTA (1)
Sol. According to question all the complexes are low spin.

Complex	Configuration	No. of unpaired electrons
$\left[\mathrm{V}(\mathrm{CN})_{6}\right]^{4-}$	$\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{0}$	3
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	$\mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{e}^{\text {a }}{ }^{0}$	2
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}\right.$	$\mathrm{t}_{2 \mathrm{~g}}{ }^{5} \mathrm{e}_{\mathrm{g}}{ }^{0}$	1
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$	$\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{0}$	0

Correct option : (1)
24. 100 mL of a water sample contains 0.81 g of calcium bicarbonate and 0.73 of magnesium bicarbonate. The hardness of this water sample expressed in terms of equivalents of CaCO_{3} is: (molar mass of calcium bicarbonate is 162 g mol^{-1} and magnesium bicarbonate is $146 \mathrm{gmol}^{-1}$)
(1) $1,000 \mathrm{ppm}$
(2) $10,000 \mathrm{ppm}$
(3) 100 ppm
(4) $5,000 \mathrm{ppm}$

Official Ans. by NTA (2)

Sol. $\mathrm{n}_{\text {eq. }} . \mathrm{CaCO}_{3}=\mathrm{n}_{\mathrm{eq}} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{n}_{\mathrm{eq}} \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
or, $\frac{\mathrm{W}}{100} \times 2=\frac{0.81}{162} \times 2+\frac{0.73}{146} \times 2$
$\therefore \mathrm{w}=1.0$
\therefore Hardness $=\frac{1.0}{100} \times 10^{6}=10000 \mathrm{ppm}$
Correct option : (2)
25. Adsorption of a gas follows Freundlich adsorption isotherm x is the mass of the gas adsorbed on mass m of the adsorbent. The plot of $\log \frac{x}{m}$ versus $\log p$ is shown in the given graph. $\frac{\mathrm{x}}{\mathrm{m}}$ is proportional to :

(1) $\mathrm{p}^{3 / 2}$
(2) p^{3}
(3) $\mathrm{p}^{2 / 3}$
(4) p^{2}

Official Ans. by NTA (3)
Sol. $\frac{x}{m}=K \cdot p^{1 / n}$
$\therefore \log \frac{\mathrm{x}}{\mathrm{m}}=\log \mathrm{K}+\frac{1}{\mathrm{n}} \cdot \log \mathrm{P}$
slope $=\frac{1}{\mathrm{n}}=\frac{2}{3}$
$\therefore \frac{\mathrm{x}}{\mathrm{m}}=\mathrm{K} \cdot \mathrm{p}^{2 / 3}$
Correct option : (3)
26. The major product of the following reactions:

Official Ans. by NTA (4)

Sol.

Correct option : (4)
27. For the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$, the values of initial rate at different reactant concentrations are given in the table below. The rate law for the reaction is :

$[\mathrm{A}]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathrm{B}]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
0.05	0.05	0.045
0.10	0.05	0.090
0.20	0.10	0.72

(1) Rate $=k[A][B]$
(2) Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{2}$
(3) Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
(4) Rate $=k[A]^{2}[B]$

Official Ans. by NTA (3)
Sol. $r=K[A]^{x}[B]^{y}$
$0.045=K(0.05)^{\mathrm{x}}(0.05)^{\mathrm{y}}$
$0.090=K(0.10)^{\mathrm{x}}(0.05)^{\mathrm{y}}$
$0.72=K(0.20)^{x}(0.10)^{y}$
From (1) $\div(2), \frac{0.045}{0.090}=\left(\frac{0.05}{0.10}\right)^{x} \Rightarrow x=1$

From (2) $\div(3), \frac{0.090}{0.720}=\left(\frac{0.10}{0.20}\right)^{x} \cdot\left(\frac{0.05}{0.10}\right)^{y} \Rightarrow y=2$
Hence, $\mathrm{r}=\mathrm{K}[\mathrm{A}][\mathrm{B}]^{2}$
Correct option : (3)
28. The IUPAC name of the following compound is :

(1) 2-Methyl-3Hydroxypentan-5-oic acid
(2) 4,4-Dimethyl-3-hydroxy butanoic acid
(3) 3-Hydroxy-4 -methylpentanoic acid
(4) 4-Methyl-3-hydroxypentanoic acid

Official Ans. by NTA (3)

Sol.

3-Hydroxy-4-methylpentanoic acid

- COOH principal functional group

Correct option : (3)
29. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Official Ans. by NTA (4)

Sol.

30. Element ' B ' forms ccp structure and ' A ' occupies half of the octahedral voids, while oxygen atoms occupy all the tetrahedral voids. The structure of bimetallic oxide is :
(1) $\mathrm{A}_{2} \mathrm{BO}_{4}$
(2) $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{O}$
(3) $\mathrm{A}_{4} \mathrm{~B}_{2} \mathrm{O}$
(4) $\mathrm{AB}_{2} \mathrm{O}_{4}$

Official Ans. by NTA (4)
Sol. $\mathrm{Z}_{\mathrm{B}}=4, \mathrm{Z}_{\mathrm{A}}=4 \times \frac{1}{2}=2, \mathrm{Z}_{\mathrm{O}}=8$
Formula ; $\quad \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{O}_{8} \equiv \mathrm{AB}_{2} \mathrm{O}_{4}$
Correct option : (4)

