FINAL JEE-MAIN EXAMINATION - APRIL,2019
 (Held On Friday 12 ${ }^{\text {th }}$ APRIL, 2019) TIME : 2:30 PM To 5:30 PM

MATHEMATIGS

1. Let A, B and C be sets such that $\phi \neq \mathrm{A} \cap \mathrm{B} \subseteq \mathrm{C}$. Then which of the following statements is not true?
(1) If $(\mathrm{A}-\mathrm{C}) \subseteq \mathrm{B}$, then $\mathrm{A} \subseteq \mathrm{B}$
(2) $(C \cup A) \cap(C \cup B)=C$
(3) If $(\mathrm{A}-\mathrm{B}) \subseteq \mathrm{C}$, then $\mathrm{A} \subseteq \mathrm{C}$
(4) $\mathrm{B} \cap \mathrm{C} \neq \phi$

Official Ans. by NTA (1)

Sol.

for $\mathrm{A}=\mathrm{C}, \mathrm{A}-\mathrm{C}=\phi$
$\Rightarrow \phi \subseteq \mathrm{B}$
But A $\not \subset \mathrm{B}$
\Rightarrow option 1 is NOT true
Let $x \in(C x \in(C \cup A) \cap(C \cup B)$
$\Rightarrow \mathrm{x} \in(\mathrm{C} \cup \mathrm{A})$ and $\mathrm{x} \in(\mathrm{C} \cup \mathrm{B})$
$\Rightarrow(\mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{A})$ and $(\mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{B})$
$\Rightarrow \mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{C} \quad($ as $\mathrm{A} \cup \mathrm{B} \subseteq \mathrm{C})$
$\Rightarrow \mathrm{x} \in \mathrm{C}$
$\Rightarrow(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B}) \subseteq \mathrm{C}$
Now $x \in C \Rightarrow x \in(C \cup A)$ and $x \in(C \cup B)$

$$
\begin{equation*}
\Rightarrow x \in(C \cup A) \cap(C \cup B) \tag{2}
\end{equation*}
$$

$\Rightarrow \mathrm{C} \subseteq(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B})$
\Rightarrow from (1) and (2)

$$
C=(C \cup A) \cap(C \cup B)
$$

\Rightarrow option 2 is true
Let $x \in A$ and $x \notin B$

$$
\begin{aligned}
& \Rightarrow \mathrm{x} \in(\mathrm{~A}-\mathrm{B}) \\
& \Rightarrow \mathrm{x} \in \mathrm{C} \quad(\text { as } \mathrm{A}-\mathrm{B} \subseteq \mathrm{C})
\end{aligned}
$$

Let $x \in A$ and $x \in B$

$$
\begin{aligned}
& \Rightarrow \mathrm{x} \in(\mathrm{~A} \cap \mathrm{~B}) \\
& \Rightarrow \mathrm{x} \in \mathrm{C}
\end{aligned} \quad(\text { as } \mathrm{A} \cap \mathrm{~B} \subseteq \mathrm{C}), ~ l
$$

TEST PAPER WIIH ANSWER \& SOLUIION

Hence $\quad x \in A \Rightarrow x \in C$ $\Rightarrow \mathrm{A} \subseteq \mathrm{C}$
\Rightarrow Option 3 is true
as

$$
\mathrm{C} \supseteq(\mathrm{~A} \cap \mathrm{~B})
$$

$$
\Rightarrow \mathrm{B} \cap \mathrm{C} \supseteq(\mathrm{~A} \cap \mathrm{~B})
$$

as

$$
\mathrm{A} \cap \mathrm{~B} \neq \phi
$$

$$
\Rightarrow \quad \mathrm{B} \cap \mathrm{C} \neq \phi
$$

\Rightarrow Option 4 is true.
2. If ${ }^{20} \mathrm{C}_{1}+\left(2^{2}\right){ }^{20} \mathrm{C}_{2}+\left(3^{2}\right){ }^{20} \mathrm{C}_{3}+\ldots \ldots .+\left(20^{2}\right)^{20} \mathrm{C}_{20}$ $=A\left(2^{\beta}\right)$, then the ordered pair (A, β) is equal to:
(1) $(420,18)$
(2) $(380,19)$
(3) $(380,18)$
(4) $(420,19)$

Official Ans. by NTA (1)
Sol. $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots .+{ }^{n} C_{n} x^{n}$
Diff. w.r.t. x
$\Rightarrow \mathrm{n}(1+\mathrm{x})^{\mathrm{n}-1}={ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}(2 \mathrm{x})+\ldots . .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{n}(\mathrm{x})^{\mathrm{n}-1}$
Multiply by x both side
$\Rightarrow \mathrm{nx}(1+\mathrm{x})^{\mathrm{n}-1}={ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_{2}\left(2 \mathrm{x}^{2}\right)+\ldots .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\left(\mathrm{n} \mathrm{x}^{\mathrm{n}}\right)$
Diff w.r.t. x
$\Rightarrow \mathrm{n}\left[(1+\mathrm{x})^{\mathrm{n}-1}+(\mathrm{n}-1) \mathrm{x}(1+\mathrm{x})^{\mathrm{n}-2}\right]$

$$
={ }^{n} C_{1}+{ }^{n} C_{2} 2^{2} x+\ldots .{ }^{n} C_{n}\left(n^{2}\right) x^{n-1}
$$

Put $\mathrm{x}=1$ and $\mathrm{n}=20$
$\Rightarrow{ }^{20} \mathrm{C}_{1}+2^{2}{ }^{20} \mathrm{C}_{2}+3^{2}{ }^{20} \mathrm{C}_{3}+\ldots .+(20)^{2}{ }^{20} \mathrm{C}_{20}$

$$
=20 \times 2^{18}[2+19]=420\left(2^{18}\right)=\mathrm{A}\left(2^{\beta}\right)
$$

3. A straight line L at a distance of 4 units from the origin makes positive intercepts on the coordinate axes and the perpendicular from the origin to this line makes an angle of 60° with the line $x+y=0$. Then an equation of the line L is :
(1) $(\sqrt{3}+1) x+(\sqrt{3}-1) y=8 \sqrt{2}$
(2) $(\sqrt{3}-1) x+(\sqrt{3}+1) y=8 \sqrt{2}$
(3) $\sqrt{3} x+y=8$
(4) $x+\sqrt{3} y=8$

Official Ans. by NTA (1)
ALLEN Ans. (1) or (2)

Saral

Final JEE-Main Exam April,2019/12-04-2019/Evening Session

Sol.

$\mathrm{m}_{1}=\tan 75^{\circ}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$
or $\mathrm{m}=\tan 15^{\circ}=\frac{\sqrt{3}-1}{\sqrt{3}+1}$
$\mathrm{m}_{2}=\frac{-1}{\mathrm{~m}_{1}}=\frac{-(\sqrt{3}-1)}{\sqrt{3}+1}$
or $\mathrm{m}_{2}=\frac{-1}{\mathrm{~m}_{1}}=\frac{-(\sqrt{3}+1)}{\sqrt{3}-1}$
$\Rightarrow y=m_{2} x+C \Rightarrow y=\frac{-(\sqrt{3}-1) x}{\sqrt{3}+1}+C \Rightarrow L$
or $\mathrm{y}=\frac{-(\sqrt{3}+1) \mathrm{x}}{\sqrt{3}-1}+\mathrm{C} \Rightarrow \mathrm{L}$
Distance from origin $=4$
$\therefore\left|\frac{C}{\sqrt{1+\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}}}\right|=4$ or $\left|\frac{C}{\sqrt{1+\frac{(\sqrt{3}+1)^{2}}{(\sqrt{3}-1)^{2}}}}\right|=4$
$\Rightarrow \mathrm{C}=\frac{8 \sqrt{2}}{(\sqrt{3}+1)}$ or $\mathrm{C}=\frac{8 \sqrt{2}}{(\sqrt{3}-1)}$
$\Rightarrow(\sqrt{3}-1) \mathrm{y}+(\sqrt{3}+1) \mathrm{x}=8 \sqrt{2}$
or $(\sqrt{3}-1) x+(\sqrt{3}+1) y=8 \sqrt{2}$
4. A value of $\theta \in(0, \pi / 3)$, for which

$$
\left|\begin{array}{ccc}
1+\cos ^{2} \theta & \sin ^{2} \theta & 4 \cos 6 \theta \\
\cos ^{2} \theta & 1+\sin ^{2} \theta & 4 \cos 6 \theta \\
\cos ^{2} \theta & \sin ^{2} \theta & 1+4 \cos 6 \theta
\end{array}\right|=0, \text { is : }
$$

(1) $\frac{7 \pi}{24}$
(2) $\frac{\pi}{18}$
(3) $\frac{\pi}{9}$
(4) $\frac{7 \pi}{36}$

Official Ans. by NTA (3)
Sol. $\quad \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$
$\left|\begin{array}{ccc}1 & -1 & 0 \\ \cos ^{2} \theta & 1+\sin ^{2} \theta & 4 \cos 6 \theta \\ \cos ^{2} \theta & \sin ^{2} \theta & 1+4 \cos 6 \theta\end{array}\right|=0$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
\cos ^{2} \theta & \sin ^{2} \theta & 1+4 \cos 6 \theta
\end{array}\right|=0 \\
& \Rightarrow(1+4 \cos 6 \theta)+\sin ^{2} \theta+1\left(\cos ^{2} \theta\right)=0 \\
& 1+2 \cos 6 \theta=0 \Rightarrow \cos 6 \theta=-1 / 2 \\
& 6 \theta=\frac{2 \pi}{3} \Rightarrow \theta=\frac{\pi}{9}
\end{aligned}
$$

5. If $[x]$ denotes the greatest integer $\leq x$, then the system of linear equations $[\sin \theta] x+[-\cos \theta] y=0$ $[\cot \theta] \mathrm{x}+\mathrm{y}=0$
(1) have infinitely many solutions if $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
(2) have infinitely many solutions if $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and has a unique solution if $\theta \in\left(\pi, \frac{7 \pi}{6}\right)$
(3) has a unique solution if $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and have infinitely many solutions if $\theta \in\left(\pi, \frac{7 \pi}{6}\right)$
(4) has a unique solution if $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$

Official Ans. by NTA (2)
Sol. $[\sin \theta] \mathrm{x}+[-\cos \theta] \mathrm{y}=0$ and $[\cos \theta] \mathrm{x}+\mathrm{y}=0$ for infinite many solution

$$
\left.\left[\begin{array}{lc}
{[\sin \theta]} \tag{1}\\
{[\cos \theta]}
\end{array}\right] \begin{gathered}
{[-\cos \theta]} \\
1
\end{gathered} \right\rvert\,=0
$$

ie $[\sin \theta]=-[\cos \theta][\cot \theta]$
when $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \Rightarrow \sin \theta \in\left(0, \frac{1}{2}\right)$

$$
-\cos \theta \in\left(0, \frac{1}{2}\right)
$$

$$
\cot \theta \in\left(-\frac{1}{\sqrt{3}}, 0\right)
$$

when $\theta \in\left(\pi, \frac{7 \pi}{6}\right) \Rightarrow \sin \theta \in\left(-\frac{1}{2}, 0\right)$

$$
\begin{aligned}
& -\cos \theta \in\left(\frac{\sqrt{3}}{2}, 1\right) \\
& \cot \theta \in(\sqrt{3}, \infty)
\end{aligned}
$$

when $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ then equation (i) satisfied there fore infinite many solution. when $\theta \in\left(\pi, \frac{7 \pi}{6}\right)$ then equation (i) not satisfied there fore infinite unique solution.
6. $\lim _{x \rightarrow 0} \frac{x+2 \sin x}{\sqrt{x^{2}-2 \sin x+1}-\sqrt{\sin ^{2} x-x+1}}$ is :
(1) 3
(2) 2
(3) 6
(4) 1

Official Ans. by NTA (2)
Sol. Rationalize
$\lim _{x \rightarrow 0} \frac{(x+2 \sin x)\left(\sqrt{x^{2}+2 \sin x+1}+\sqrt{\sin ^{2} x-x+1}\right)}{x^{2}+2 \sin x+1-\sin ^{2} x+x-1}$
$\lim _{x \rightarrow 0} \frac{(x+2 \sin x)(2)}{x^{2}+2 \sin x-\sin ^{2} x+x}$
$\frac{0}{0}$ form using L' hospital
$\Rightarrow \lim _{x \rightarrow 0} \frac{(1+2 \cos x) \times 2}{2 x+2 \cos x-2 \sin x \cos x+1}$
$\Rightarrow \frac{2 \times 3}{(2+1)}=2$
7. If $a_{1}, a_{2}, a_{3}, \ldots$. are in A.P. such that $a_{1}+a_{7}+a_{16}=40$, then the sum of the first 15 terms of this A.P. is :
(1) 200
(2) 280
(3) 120
(4) 150

Official Ans. by NTA (1)
Sol. $a_{1}+a_{7}+a_{16}=40$
$a+a+6 d+a+15 d=40$

$$
\Rightarrow 3 \mathrm{a}+21 \mathrm{~d}=40 \quad \Rightarrow \mathrm{a}+7 \mathrm{~d}=\frac{40}{3}
$$

$$
\mathrm{S}_{15}=\frac{15}{2}(2 \mathrm{a}+14 \mathrm{~d})=15(\mathrm{a}+7 \mathrm{~d})
$$

$$
S_{15}=15 \times \frac{40}{3} \Rightarrow 200 \quad S_{15}=200
$$

8. The length of the perpendicular drawn from the point $(2,1,4)$ to the plane containing the lines $\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ and
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})+\mu(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ is :
(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) $\frac{1}{3}$
(4) 3

Official Ans. by NTA (1)
Sol. perpendicular vector to the plane

$$
\overrightarrow{\mathrm{n}}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
1 & 2 & -1 \\
-1 & 1 & -2
\end{array}\right|=-3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}
$$

Eq. of plane
$-3(x-1)+3(y-1)+3 z=0$
$\Rightarrow \mathrm{x}-\mathrm{y}-\mathrm{z}=0$
$d_{(2,1,4)}=\frac{|2-1-4|}{\sqrt{1^{2}+1^{2}+1^{2}}}=\sqrt{3}$
9. If α, β and γ are three consecutive terms of a non-constant G.P. such that the equations $\alpha x^{2}+2 \beta x+\gamma=0$ and $x^{2}+x-1=0$ have a common root, then $\alpha(\beta+\gamma)$ is equal to :
(1) $\beta \gamma$
(2) 0
(3) $\alpha \gamma$
(4) $\alpha \beta$

Official Ans. by NTA (1)
Sol. $\alpha x^{2}+2 \beta x+\gamma=0$
Let $\beta=\alpha \mathrm{t}, \gamma=\alpha \mathrm{t}^{2}$
$\therefore \alpha \mathrm{x}^{2}+2 \alpha \mathrm{tx}+\alpha \mathrm{t}^{2}=0$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{tx}+\mathrm{t}^{2}=0$
$\Rightarrow(\mathrm{x}+\mathrm{t})^{2}=0$
$\Rightarrow \mathrm{x}=-\mathrm{t}$
it must be root of equation $x^{2}+x-1=0$
$\therefore \mathrm{t}^{2}-\mathrm{t}-1=0$
Now

$$
\alpha(\beta+\gamma)=\alpha^{2}\left(t+t^{2}\right)
$$

Option $1 \beta \gamma=\alpha \mathrm{t} . \alpha \mathrm{t}^{2}=\alpha^{2} \mathrm{t}^{3}=\mathrm{a}^{2}\left(\mathrm{t}^{2}+\mathrm{t}\right)$
(from equation 1)

Saral

10. The term independent of x in the expansion of $\left(\frac{1}{60}-\frac{x^{8}}{81}\right) \cdot\left(2 x^{2}-\frac{3}{x^{2}}\right)^{6}$ is equal to :
(1) 36
(2) -108
(3) -72
(4) -36

Official Ans. by NTA (4)
Sol. $\frac{1}{60}\left(2 x^{2}-\frac{3}{x^{2}}\right)^{6}-\frac{1}{81} \cdot x^{8}\left(2 x^{2}-\frac{3}{x^{2}}\right)^{6}$
its general term
$\frac{1}{60}{ }^{6} \mathrm{C}_{\mathrm{r}} 2^{6-\mathrm{r}}(-3)^{\mathrm{r}} \mathrm{x}^{12-\mathrm{r}}-\frac{1}{81}{ }^{6} \mathrm{C}_{\mathrm{r}} 2^{6-\mathrm{r}}(-3)^{\mathrm{r}} 12^{20-4 \mathrm{r}}$
for term independent of x, r for $I^{\text {st }}$ expression is 3 and r for second expression is 5
\therefore term independent of $x=-36$
11. Let $\alpha \in R$ and the three vectors
$\vec{a}=\alpha \hat{i}+\hat{j}+3 \hat{k}, \quad \vec{b}=2 \hat{i}+\hat{j}-\alpha \hat{k} \quad$ and
$\vec{c}=\alpha \hat{i}-2 \hat{j}+3 \hat{k}$. Then the set $S=\{\alpha: \vec{a}, \vec{b}$ and
$\overrightarrow{\mathrm{c}}$ are coplanar\}
(1) is singleton
(2) Contains exactly two numbers only one of which is positive
(3) Contains exactly two positive numbers
(4) is empty

Official Ans. by NTA (4)
Sol. $\left|\begin{array}{ccc}\alpha & 1 & 3 \\ 2 & 1 & -4 \\ \alpha & -2 & 3\end{array}\right|=0$
$\Rightarrow 3 \alpha^{2}+18=0$
$\Rightarrow \alpha \in \phi$
12. A value of α such that
$\int_{\alpha}^{\alpha+1} \frac{d x}{(x+\alpha)(x+\alpha+1)}=\log _{e}\left(\frac{9}{8}\right)$ is :
(1) $\frac{1}{2}$
(2) 2
(3) $-\frac{1}{2}$
(4) -2

Official Ans. by NTA (4)

Sol. $\quad \int_{\alpha}^{\alpha+1} \frac{(\mathrm{x}+\alpha+1)-(\mathrm{x}+\alpha)}{(\mathrm{x}+\alpha)(\mathrm{x}+\alpha+1)} \mathrm{dx}=(\ell \mathrm{n}|\mathrm{x}+\alpha|-\ell \mathrm{n}|\mathrm{x}+\alpha+1|)_{\alpha}^{\alpha+1}$
$=\ln \left|\frac{2 \alpha+1}{2 \alpha+2} \times \frac{2 \alpha+1}{2 \alpha}\right|=\ln \frac{9}{8}$
$\Rightarrow \alpha=-2,1$
13. A triangle has a vertex at $(1,2)$ and the mid points of the two sides through it are $(-1,1)$ and $(2,3)$. Then the centroid of this triangle is :
(1) $\left(\frac{1}{3}, 1\right)$
(2) $\left(\frac{1}{3}, 2\right)$
(3) $\left(1, \frac{7}{3}\right)$
(4) $\left(\frac{1}{3}, \frac{5}{3}\right)$

Official Ans. by NTA (2)
Sol. Let $\mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$
$\frac{\alpha+1}{2}=-1 \Rightarrow \alpha=-3$
$\frac{\beta+2}{2}=1 \Rightarrow \beta=0$
$\Rightarrow \mathrm{B}(-3,0)$
Now $\frac{\gamma+1}{2}=2 \Rightarrow \gamma=3$
$\frac{\delta+2}{2}=3 \Rightarrow \delta=4$
$\Rightarrow \mathrm{C}(3,4)$
\Rightarrow centroid of triangle is $\mathrm{G}\left(\frac{1}{3}, 2\right)$
14. Let $\alpha \in(0, \pi / 2)$ be fixed. If the integral
$\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} d x=$
$\mathrm{A}(\mathrm{x}) \cos 2 \alpha+\mathrm{B}(\mathrm{x}) \sin 2 \alpha+\mathrm{C}$, where C is a constant of integration, then the functions $\mathrm{A}(\mathrm{x})$ and $\mathrm{B}(\mathrm{x})$ are respectively :
(1) $x-\alpha$ and $\log _{e}|\cos (x-\alpha)|$
(2) $x+\alpha$ and $\log _{\mathrm{e}}|\sin (\mathrm{x}-\alpha)|$
(3) $x-\alpha$ and $\log _{e}|\sin (x-\alpha)|$
(4) $x+\alpha$ and $\log _{e}|\sin (x+\alpha)|$

Official Ans. by NTA (3)

Saral

Sol. $\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} d x=\int \frac{\sin (x+\alpha)}{\sin (x-\alpha)} d x$
Let $\mathrm{x}-\alpha=\mathrm{t}$
$\Rightarrow \int \frac{\sin (\mathrm{t}+2 \alpha)}{\sin \mathrm{t}} \mathrm{dt}=\int \cos 2 \alpha \mathrm{dt}+\int \cot (\mathrm{t}) \sin 2 \alpha \mathrm{dt}$
$=\mathrm{t} \cdot \cos 2 \alpha+\ell \mathrm{n}|\sin \mathrm{t}| \cdot \sin 2 \alpha+\mathrm{C}$
$=(\mathrm{x}-\alpha) \cos 2 \alpha+\ln |\sin (\mathrm{x}-\alpha)| \cdot \sin 2 \alpha+\mathrm{C}$
15. A circle touching the x-axis at $(3,0)$ and making an intercept of length 8 on the y-axis passes through the point :
(1) $(3,10)$
(2) $(2,3)$
(3) $(1,5)$
$(4)(3,5)$

Official Ans. by NTA (1)
Sol. Equaiton of circles are
$\left\{\begin{array}{l}(x-3)^{2}+(y-5)^{2}=25 \\ (x-3)^{2}+(y+5)^{2}=25\end{array}\right.$

16. For and initial screening of an admission test, a candidate is given fifty problems to solve. If the probability that the candidate can solve any problem is $\frac{4}{5}$, then the probability that he is unable to solve less than two problems is :
(1) $\frac{316}{25}\left(\frac{4}{5}\right)^{48}$
(2) $\frac{54}{5}\left(\frac{4}{5}\right)^{49}$
(3) $\frac{164}{25}\left(\frac{1}{5}\right)^{48}$
(4) $\frac{201}{5}\left(\frac{1}{5}\right)^{49}$

Official Ans. by NTA (2)
Sol. Let X be random varibale which denotes number of problems that candidate is unbale to solve
$\because \mathrm{p}=\frac{1}{5}$ and $\mathrm{X}<2$
$\Rightarrow \mathrm{P}(\mathrm{X}<2)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)$
$=\left(\frac{4}{5}\right)^{50}+{ }^{50} \mathrm{C}_{1} \cdot\left(\frac{1}{5}\right) \cdot\left(\frac{4}{5}\right)^{49}$
17. The derivative of $\tan ^{-1}\left(\frac{\sin x-\cos x}{\sin x+\cos x}\right)$, with respect to $\frac{x}{2}$, where $\left(x \in\left(0, \frac{\pi}{2}\right)\right)$ is :
(1) $\frac{1}{2}$
(2) $\frac{2}{3}$
(3) 1
(4) 2

Official Ans. by NTA (4)
Sol. $f(x)=\tan ^{-1}\left(\frac{\sin x-\cos x}{\sin x+\cos x}\right)$
$=\tan ^{-1}\left(\frac{\tan x-1}{\tan x+1}\right)=\tan ^{-1}\left(\tan \left(x-\frac{\pi}{4}\right)\right)$
$\because \mathrm{x}-\frac{\pi}{4} \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\therefore f(\mathrm{x})=\mathrm{x}-\frac{\pi}{4}$
\Rightarrow its derivative w.r.t. $\frac{x}{2}$ is $\frac{1}{1 / 2}=2$
18. Let S be the set of all $\alpha \in R$ such that the equation, $\cos 2 x+\alpha \sin x=2 \alpha-7$ has a solution. Then S is equal to :
(1) $[2,6]$
(2) $[3,7]$
(3) R
(4) $[1,4]$

Official Ans. by NTA (1)
Sol. $\cos 2 x+\alpha \sin x=2 \alpha-7$
$\Rightarrow 2 \sin ^{2} \mathrm{x}-\alpha \sin \mathrm{x}+2 \alpha-8=0$
$\sin ^{2} x-\frac{\alpha}{2} \sin x+\alpha-4=0$
$\Rightarrow \sin \mathrm{x}=2$ (rejected) or $\sin \mathrm{x}=\frac{\alpha-4}{2}$
$\Rightarrow\left|\frac{\alpha-4}{2}\right| \leq 1$
$\Rightarrow \alpha \in[2,6]$

Saral

19. The tangents to the curve $y=(x-2)^{2}-1$ at its points of intersection with the line $x-y=3$, intersect at the point :
(1) $\left(-\frac{5}{2},-1\right)$
(2) $\left(-\frac{5}{2}, 1\right)$
(3) $\left(\frac{5}{2},-1\right)$
(4) $\left(\frac{5}{2}, 1\right)$

Official Ans. by NTA (3)
Sol. Put $\mathrm{x}-2=\mathrm{X} \& \mathrm{y}+1=\mathrm{Y}$
\therefore given curve becomes $\mathrm{Y}=\mathrm{X}^{2}$ and $\mathrm{Y}=\mathrm{X}$

tangent at origin is X -axis
and tangent at $\mathrm{A}(1,1)$ is $\mathrm{Y}+1=2 \mathrm{X}$
\therefore there intersection is $\left(\frac{1}{2}, 0\right)$
$\therefore \mathrm{x}-2=\frac{1}{2} \& \mathrm{y}+1=0$
therefore $x=\frac{5}{2}, y=-1$
20. A group of students comprises of 5 boys and n girls. If the number of ways, in which a team of 3 students can randomly be selected from this group such that there is at least one boy and at least one girl in each team, is 1750 , then n is equal to :
(1) 25
(2) 28
(3) 27
(4) 24

Official Ans. by NTA (1)
Sol. ${ }^{5} \mathrm{C}_{1} \cdot{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{2} \cdot{ }^{\mathrm{n}} \mathrm{C}_{1}=1750$
$n^{2}+3 n=700$
$\therefore \mathrm{n}=25$
21. The equation of a common tangent to the curves, $y^{2}=16 x$ and $x y=-4$ is :
(1) $x+y+4=0$
(2) $x-2 y+16=0$
(3) $2 x-y+2=0$
(4) $x-y+4=0$

Official Ans. by NTA (4)

Sol. tangent to the parabola $y^{2}=16 x$ is $y=m x+\frac{4}{m}$ solve it by curve $x y=-4$

$$
\text { i.e. } m x^{2}+\frac{4}{m} x+4=0
$$

condition of common tangent is $\mathrm{D}=0$

$$
\begin{aligned}
& \therefore \mathrm{m}^{3}=1 \\
& \Rightarrow \mathrm{~m}=1
\end{aligned}
$$

\therefore equation of common tangent is $\mathrm{y}=\mathrm{x}+4$
22. Let $z \in C$ with $\operatorname{Im}(z)=10$ and it satisfies $\frac{2 z-n}{2 z+n}=2 i-1$ for some natural number n. Then:
(1) $\mathrm{n}=20$ and $\operatorname{Re}(\mathrm{z})=-10$
(2) $\mathrm{n}=20$ and $\operatorname{Re}(\mathrm{z})=10$
(3) $\mathrm{n}=40$ and $\operatorname{Re}(\mathrm{z})=-10$
(4) $\mathrm{n}=40$ and $\operatorname{Re}(\mathrm{z})=10$

Official Ans. by NTA (3)
Sol. Put z $=\mathrm{x}+10 \mathrm{i}$
$\therefore 2(\mathrm{x}+10 \mathrm{i})-\mathrm{n}=(2 \mathrm{i}-1) .[2(\mathrm{x}+10 \mathrm{i})+\mathrm{n}]$ compare real and imginary coefficients

$$
\mathrm{x}=-10, \mathrm{n}=40
$$

23. The general solution of the differential equation $\left(y^{2}-x^{3}\right) d x-x y d y=0(x \neq 0)$ is :
(where c is a constant of integration)
(1) $y^{2}+2 x^{3}+c x^{2}=0$
(2) $y^{2}+2 x^{2}+c x^{3}=0$
(3) $y^{2}-2 x^{3}+c x^{2}=0$
(4) $y^{2}-2 x^{2}+c x^{3}=0$

Official Ans. by NTA (1)
Sol. $\mathrm{xy} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y}^{2}+\mathrm{x}^{3}=0$
put $y^{2}=k \Rightarrow y \frac{d y}{d x}=\frac{1}{2} \frac{d k}{d x}$
\therefore given differential equation becomes

$$
\frac{\mathrm{dk}}{\mathrm{dx}}+\mathrm{k}\left(-\frac{2}{\mathrm{x}}\right)=-2 \mathrm{x}^{2}
$$

I.F. $=\mathrm{e}^{\int-\frac{2}{\mathrm{x}} \mathrm{dx}}=\frac{1}{\mathrm{x}^{2}}$
\therefore solution is $\mathrm{k} \cdot \frac{1}{\mathrm{x}^{2}}=\int-2 \mathrm{x}^{2} \cdot \frac{1}{\mathrm{x}^{2}} \mathrm{dx}+\lambda$

$$
y^{2}+2 x^{3}=\lambda x^{2}
$$

take $\lambda=-\mathrm{c}$ (integration constant)
24. A person throws two fair dice. He wins Rs. 15 for throwing a doublet (same numbers on the two dice), wins Rs. 12 when the throw results in the sum of 9 , and loses Rs. 6 for any other outcome on the throw. Then the expected gain/loss (in Rs.) of the person is :
(1) 2 gain
(2) $\frac{1}{2} \operatorname{loss}$
(3) $\frac{1}{4}$ loss
(4) $\frac{1}{2}$ gain

Official Ans. by NTA (2)
Sol. win Rs. $15 \rightarrow$ number of cases $=6$
win Rs. $12 \rightarrow$ number of cases $=4$
loss Rs. $6 \rightarrow$ number of cases $=26$
$p($ expected gain/loss $)=15 \times \frac{6}{36}+12 \times \frac{4}{36}-$ $6 \times \frac{26}{36}=-\frac{1}{2}$
25. Let $f(x)=5-|x-2|$ and $g(x)=|x+1|, x \in R$. If $f(x)$ attains maximum value at α and $g(x)$ attains minimum value at β, then $\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{x^{2}-6 x+8}$ is equal to :
(1) $1 / 2$
(2) $-3 / 2$
(3) $3 / 2$
(4) $-1 / 2$

Official Ans. by NTA (1)
Sol. Maxima of $f(x)$ occured at $x=2$ i.e. $\alpha=2$
Minima of $g(x)$ occured at $x=-1$ i.e. $\beta=-1$
$\therefore \lim _{x \rightarrow 2} \frac{(x-1)(x-2)(x-3)}{(x-2)(x-4)}=\frac{1}{2}$
26. The angle of elevation of the top of vertical tower standing on a horizontal plane is observed to be 45° from a point A on the plane. Let B be the point 30 m vertically above the point A. If the angle of elevation of the top of the tower from B be 30°, then the distance (in m) of the foot of the tower from the point A is:
(1) $15(3-\sqrt{3})$
(2) $15(3+\sqrt{3})$
(3) $15(1+\sqrt{3})$
(4) $15(5-\sqrt{3})$

Official Ans. by NTA (2)

Sol.

$\tan 45^{\circ}=1=\frac{x+30}{y} \Rightarrow x+30=y$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{x}{y} \Rightarrow x=\frac{y}{\sqrt{3}}$

$$
\begin{equation*}
\text { from (i) and (ii) } \quad y=15(3+\sqrt{3}) \tag{ii}
\end{equation*}
$$

27. The Boolean expression $\sim(p \Rightarrow(\sim q))$ is equivalent to :
(1) $(\sim p) \Rightarrow q$
(2) $p \vee q$
(3) $q \Rightarrow \sim p$
(4) $\mathrm{p}^{\wedge} \mathrm{q}$

Official Ans. by NTA (4)
Sol. $\sim(\mathrm{p} \rightarrow(\sim \mathrm{q}))=\sim(\sim \mathrm{p} \vee \sim \mathrm{q})$
$=\mathrm{p} \wedge \mathrm{q}$
28. A plane which bisects the angle between the two given planes $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}-4=0$ and $x+2 y+2 z-2=0$, passes through the point:
(1) $(2,4,1)$
(2) $(2,-4,1)$
(3) $(1,4,-1)$
(4) $(1,-4,1)$

Official Ans. by NTA (2)
Sol. equation of bisector of angle
$\frac{2 x-y+2 z-4}{3}= \pm \frac{x+2 y+2 z-2}{3}$
$(+)$ gives $x-3 y=2$
(-) gives $3 x+y+4 z=6$
therefore option (ii) satisfy

Saral

Final JEE-Main Exam April,2019/12-04-2019/Evening Session
29. If the area (in sq. units) bounded by the parabola $y^{2}=4 \lambda x$ and the line $y=\lambda x, \lambda>0$, is $\frac{1}{9}$, then λ is equal to :
(1) 24
(2) 48
(3) $4 \sqrt{3}$
(4) $2 \sqrt{6}$

Official Ans. by NTA (1)

Sol.

Area $=\frac{1}{9}=\int_{0}^{\frac{4}{\lambda}}(\sqrt{4 \lambda x}-\lambda x) d x$
$\Rightarrow \lambda=24$
30. An ellipse, with foci at $(0,2)$ and $(0,-2)$ and minor axis of length 4 , passes through which of the following points?
(1) $(1,2 \sqrt{2})$
(2) $(2, \sqrt{2})$
(3) $(2,2 \sqrt{2})$
(4) $(\sqrt{2}, 2)$

Official Ans. by NTA (4)
Sol. given that $\mathrm{be}=2$ and $\mathrm{a}=2$
(here $\mathrm{a}<\mathrm{b}$)
$\because \mathrm{a}^{2}=\mathrm{b}^{2}\left(1-\mathrm{e}^{2}\right)$
$\therefore \mathrm{b}^{2}=8$
\therefore equation of ellipse $\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{8}=1$

