FINAL JEE-MAIN EXAMINATION - APRIL,2019 (Held On Wednesday 10 ${ }^{\text {th }}$ APRIL, 2019) TIME: 2:30 PM To 5:30 PM

MATHEMATIOS

1. The distance of the point having position vector $-\hat{i}+2 \hat{j}+6 \hat{k}$ from the straight line passing through the point $(2,3,-4)$ and parallel to the vector, $6 \hat{i}+3 \hat{j}-4 \hat{k}$ is :
(1) 7
(2) $4 \sqrt{3}$
(3) $2 \sqrt{13}$
(4) 6

Official Ans. by NTA (1)

Sol.

$\mathrm{AD}=\left|\frac{\overrightarrow{\mathrm{AP}} \cdot \vec{n}}{|\overrightarrow{\mathrm{n}}|}\right|=\sqrt{61}$
$\Rightarrow \mathrm{PD}=\sqrt{\mathrm{AP}^{2}-\mathrm{AD}^{2}}=\sqrt{110-61}=7$
2. If both the mean and the standard deviation of 50 observations $x_{1}, x_{2} \ldots, x_{50}$ are equal to 16 , then the mean of $\left(x_{1}-4\right)^{2},\left(x_{2}-4\right)^{2}, \ldots . .\left(x_{50}-4\right)^{2}$ is
(1) 525
(2) 380
(3) 480
(4) 400

Official Ans. by NTA (4)
Sol. $\operatorname{Mean}(\mu)=\frac{\sum \mathrm{x}_{\mathrm{i}}}{50}=16$
standard deviation $(\sigma)=\sqrt{\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{50}-(\mu)^{2}}=16$
$\Rightarrow(256) \times 2=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{50}$
\Rightarrow New mean
$=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-4\right)^{2}}{50}=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}+16 \times 50-8 \sum \mathrm{x}_{\mathrm{i}}}{50}$
$=(256) \times 2+16-8 \times 16=400$

TEST PAPER WITH ANSWER \& SOLUIION

3. A perpendicular is drawn from a point on the line $\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{-1}=\frac{\mathrm{z}}{1}$ to the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=3$ such that the foot of the perpendicular Q also lies on the plane $x-y+z=3$. Then the co-ordinates of Q are :
(1) $(2,0,1)$
(2) $(4,0,-1)$
(3) $(-1,0,4)$
(4) $(1,0,2)$

Official Ans. by NTA (1)
Sol. Let point P on the line is $(2 \lambda+1,-\lambda-1, \lambda)$ foot of perpendicular Q is given by
$\frac{x-2 \lambda-1}{1}=\frac{y+\lambda+1}{1}=\frac{z-\lambda}{1}=\frac{-(2 \lambda-3)}{3}$
$\because Q$ lies on $x+y+z=3 \& x-y+z=3$
$\Rightarrow x+z=3 \& y=0$
$y=0 \Rightarrow \lambda+1=\frac{-2 \lambda+3}{3} \Rightarrow \lambda=0$
$\Rightarrow \mathrm{Q}$ is $(2,0,1)$
4. The tangent and normal to the ellipse $3 x^{2}+5 y^{2}=32$ at the point $P(2,2)$ meet the x-axis at Q and R , respectively. Then the area (in sq. units) of the triangle PQR is :
(1) $\frac{14}{3}$
(2) $\frac{16}{3}$
(3) $\frac{68}{15}$
(4) $\frac{34}{15}$

Official Ans. by NTA (3)
Sol. $3 x^{2}+5 y^{2}=32$

$$
\left.\frac{d y}{d x}\right|_{(2,2)}=-\frac{3}{5}
$$

Tangent : $y-2=-\frac{3}{5}(x-2) \Rightarrow Q\left(\frac{16}{3}, 0\right)$
Normal : $y-2=\frac{5}{3}(x-2) \Rightarrow R\left(\frac{4}{5}, 0\right)$

Area is $=\frac{1}{2}(\mathrm{QR}) \times 2=\mathrm{QR}=\frac{68}{15}$.
5. Let λ be a real number for which the system of linear equations
$x+y+z=6$
$4 x+\lambda y-\lambda z=\lambda-2$
$3 x+2 y-4 z=-5$
has infinitely many solutions. Then λ is a root of the quadratic equation.
(1) $\lambda^{2}-3 \lambda-4=0$
(2) $\lambda^{2}-\lambda-6=0$
(3) $\lambda^{2}+3 \lambda-4=0$
(4) $\lambda^{2}+\lambda-6=0$

Official Ans. by NTA (2)
Sol. $\mathrm{D}=0$
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 4 & \lambda & -\lambda \\ 3 & 2 & -4\end{array}\right|=0 \Rightarrow \lambda=3$
6. The smallest natural number n, such that the coefficient of x in the expansion of $\left(x^{2}+\frac{1}{x^{3}}\right)^{n}$ is ${ }^{\mathrm{n}} \mathrm{C}_{23}$, is :
(1) 35
(2) 38
(3) 23
(4) 58

Official Ans. by NTA (2)
Sol. $\mathrm{T}_{\mathrm{r}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{2 \mathrm{n}-2 \mathrm{r}} \cdot \mathrm{x}^{-3 \mathrm{r}}$
$2 \mathrm{n}-5 \mathrm{r}=1 \Rightarrow 2 \mathrm{n}=5 \mathrm{r}+1$
for $\mathrm{r}=15$. $\mathrm{n}=38$
smallest value of n is 38 .
7. A spherical iron ball of radius 10 cm is coated with a layer of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / \mathrm{min}$. When the thickness of the ice is 5 cm , then the rate at which the thickness (in $\mathrm{cm} / \mathrm{min}$) of the ice decreases, is :
(1) $\frac{1}{9 \pi}$
(2) $\frac{5}{6 \pi}$
(3) $\frac{1}{18 \pi}$
(4) $\frac{1}{36 \pi}$

Official Ans. by NTA (3)
Sol. $\quad V=\frac{4}{3} \pi\left((10+h)^{3}-10^{3}\right)$
$\frac{\mathrm{dV}}{\mathrm{dt}}=4 \pi(10+\mathrm{h})^{2} \frac{\mathrm{dh}}{\mathrm{dt}}$
$-50=4 \pi(10+5)^{2} \frac{\mathrm{dh}}{\mathrm{dt}}$

$\Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=-\frac{1}{18} \frac{\mathrm{~cm}}{\mathrm{~min}}$
8. If $5 x+9=0$ is the directrix of the hyperbola $16 x^{2}-9 y^{2}=144$, then its corresponding focus is :
(1) $\left(-\frac{5}{3}, 0\right)$
(2) $(5,0)$
(3) $(-5,0)$
(4) $\left(\frac{5}{3}, 0\right)$

Official Ans. by NTA (3)

Sol. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
$a=3, b=4 \& e=\sqrt{1+\frac{16}{9}}=\frac{5}{3}$
corresponding focus will be (-ae, 0) i.e., $(-5,0)$.
9. The sum $1+\frac{1^{3}+2^{3}}{1+2}+\frac{1^{3}+2^{3}+3^{3}}{1+2+3}+\ldots$.
$\left.+\frac{1^{3}+2^{3}+3^{3}+\ldots .+15^{3}}{1+2+3+\ldots .+15}-\frac{1}{2}(1+2+3+\ldots .+15)\right]$
(1) 1240
(2)1860
(3) 660
(4) 620

Official Ans. by NTA (4)

Sol. Sum $=\sum_{n=1}^{15} \frac{1^{3}+2^{3}+\ldots . n^{3}}{1+2+\ldots .+n}-\frac{1}{2} \cdot \frac{15.16}{2}$
$=\sum_{n=1}^{15} \frac{n(n+1)}{2}-60$
$=\sum_{n=1}^{15} \frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2-(\mathrm{n}-1))}{6}-60$
$=\frac{15.16 .17}{6}-60=620$
10. If the line $a x+y=c$, touches both the curves $x^{2}+y^{2}=1$ and $y^{2}=4 \sqrt{2} x$, then $|c|$ is equal to :
(1) $1 / 2$
(2) 2
(3) $\sqrt{2}$
(4) $\frac{1}{\sqrt{2}}$

Official Ans. by NTA (3)
Sol. Tangent to $y^{2}=4 \sqrt{2} x$ is $y=m x+\frac{\sqrt{2}}{m}$ it is also tangent to $x^{2}+y^{2}=1$
$\Rightarrow\left|\frac{\sqrt{2} / \mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}}\right|=1 \Rightarrow \mathrm{~m}= \pm 1$
\Rightarrow Tagent will be $y=x+\sqrt{2}$ or $y=-x-\sqrt{2}$ compare with $\mathrm{y}=-\mathrm{ax}+\mathrm{C}$
$\Rightarrow \mathrm{a}= \pm 1 \& \mathrm{C}= \pm \sqrt{2}$
11. If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$,
where $-1 \leq \mathrm{x} \leq 1,-2 \leq \mathrm{y} \leq 2, \mathrm{x} \leq \frac{\mathrm{y}}{2}$, then for all $x, y, 4 x^{2}-4 x y \cos \alpha+y^{2}$ is equal to
(1) $4 \sin ^{2} \alpha-2 x^{2} y^{2}$
(2) $4 \cos ^{2} \alpha+2 x^{2} y^{2}$
(3) $4 \sin ^{2} \alpha$
(4) $2 \sin ^{2} \alpha$

Official Ans. by NTA (3)
Sol. $\cos ^{-1} \mathrm{x}-\cos ^{-1} \frac{\mathrm{y}}{2}=\alpha$
$\cos \left(\cos ^{-1} x-\cos ^{-1} \frac{y}{2}\right)=\cos \alpha$
$\Rightarrow \mathrm{x} \times \frac{\mathrm{y}}{2}+\sqrt{1-\mathrm{x}^{2}} \sqrt{1-\frac{\mathrm{y}^{2}}{4}}=\cos \alpha$
$\Rightarrow\left(\cos \alpha-\frac{x y}{2}\right)^{2}=\left(1-x^{2}\right)\left(1-\frac{y^{2}}{4}\right)$
$x^{2}+\frac{y^{2}}{4}-x y \cos \alpha=1-\cos ^{2} \alpha=\sin ^{2} \alpha$
12. If $\int x^{5} e^{-x^{2}} d x=g(x) e^{-x^{2}}+c$, where c is a constant of integration, then $g(-1)$ is equal to :
(1) $-\frac{5}{2}$
(2) 1
(3) $-\frac{1}{2}$
(4) -1

Official Ans. by NTA (1)

Sol. Let $\mathrm{x}^{2}=\mathrm{t}$ $2 x d x=d t$
$\Rightarrow \frac{1}{2} \int \mathrm{t}^{2} \cdot \mathrm{e}^{-\mathrm{t}} \mathrm{dt}=\frac{1}{2}\left[-\mathrm{t}^{2} \cdot \mathrm{e}^{-\mathrm{t}}+\int 2 \mathrm{t} \cdot \mathrm{e}^{-\mathrm{t}} \cdot \mathrm{dt}\right]$
$=\frac{1}{2}\left(-\mathrm{t}^{2} \cdot \mathrm{e}^{-\mathrm{t}}\right)+\left(-\mathrm{t} \cdot \mathrm{e}^{-\mathrm{t}}+\int 1 . \mathrm{e}^{-\mathrm{t}} \cdot \mathrm{dt}\right)$
$=-\frac{t^{2} e^{-t}}{2}-t e^{-t}-e^{-t}=\left(-\frac{t^{2}}{2}-t-1\right) e^{-t}$
$=\left(-\frac{x^{4}}{2}-x^{2}-1\right) e^{-x^{2}}+C$
$g(x)=-1-x^{2}-\frac{x^{4}}{2}+\mathrm{ke}^{\mathrm{x}^{2}}$
for $k=0$
$g(-1)=-1-1-\frac{1}{2}=-\frac{5}{2}$
13. The locus of the centres of the circles, which touch the circle, $x^{2}+y^{2}=1$ externally, also touch the y-axis and lie in the first quadrant, is :
(1) $y=\sqrt{1+4 x}, x \geq 0$
(2) $x=\sqrt{1+4 y}, y \geq 0$
(3) $x=\sqrt{1+2 y}, y \geq 0$
(4) $y=\sqrt{1+2 x}, x \geq 0$

Official Ans. by NTA (4)

Sol.

$\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}}=|\mathrm{h}|+1$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{x}^{2}+1+2 \mathrm{x}$
$\Rightarrow y^{2}=1+2 \mathrm{x}$
$\Rightarrow \mathrm{y}=\sqrt{1+2 \mathrm{x}} ; \quad \mathrm{x} \geq 0$.
14. Lines are drawn parallel to the line $4 x-3 y+2=0$, at a distance $\frac{3}{5}$ from the origin.
Then which one of the following points lies on any of these lines ?
(1) $\left(-\frac{1}{4}, \frac{2}{3}\right)$
(2) $\left(\frac{1}{4}, \frac{1}{3}\right)$
(3) $\left(-\frac{1}{4},-\frac{2}{3}\right)$
(4) $\left(\frac{1}{4},-\frac{1}{3}\right)$

Official Ans. by NTA (1)
Sol. Required line is $4 x-3 y+\lambda=0$

$\Rightarrow \lambda= \pm 3$.
So, required equation of line is $4 x-3 y+3=0$ and $\quad 4 x-3 y-3=0$
(1) $4\left(-\frac{1}{4}\right)-3\left(\frac{2}{3}\right)+3=0$
15. The area (in sq. units) of the region bounded by the curves $\mathrm{y}=2^{\mathrm{x}}$ and $\mathrm{y}=|\mathrm{x}+1|$, in the first quadrant is :
(1) $\frac{3}{2}-\frac{1}{\log _{e} 2}$
(2) $\frac{1}{2}$
(3) $\log _{e} 2+\frac{3}{2}$
(4) $\frac{3}{2}$

Official Ans. by NTA (1)
Sol. Required Area
$\int_{0}^{1}\left((x+1)-2^{x}\right) d x$

$=\left(\frac{x^{2}}{2}+x-\frac{2^{x}}{\ln 2}\right)_{0}^{1}$
$=\left(\frac{1}{2}+1-\frac{2}{\ln 2}\right)-\left(0+0-\frac{1}{\ln 2}\right)$
$=\frac{3}{2}-\frac{1}{\ln 2}$
16. If the plane $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+3=0$ has the distances $\frac{1}{3}$ and $\frac{2}{3}$ units from the planes $4 x-2 y+4 z+\lambda=0$ and $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+\mu=0$, respectively, then the maximum value of $\lambda+\mu$ is equal to :
(1) 15
(2) 5
(3) 13
(4) 9

Official Ans. by NTA (3)
Sol. $4 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}+6=0$
$\frac{|\lambda-6|}{\sqrt{16+4+16}}=\left|\frac{\lambda-6}{6}\right|=\frac{1}{3}$
$|\lambda-6|=2$
$\lambda=8,4$
$\frac{|\mu-3|}{\sqrt{4+4+1}}=\frac{2}{3}$
$|\mu-3|=2$
$\mu=5,1$
\therefore Maximum value of $(\mu+\lambda)=13$.
17. If z and w are two complex numbers such that $|z w|=1$ and $\arg (z)-\arg (w)=\frac{\pi}{2}$, then $:$
(1) $\overline{\mathrm{Z}} \mathrm{W}=\mathrm{i}$
(2) $\overline{\mathrm{Z}} \mathrm{W}=-\mathrm{i}$
(3) $\mathrm{z} \overline{\mathrm{w}}=\frac{1-\mathrm{i}}{\sqrt{2}}$
(4) $\mathrm{Z} \overline{\mathrm{w}}=\frac{-1+\mathrm{i}}{\sqrt{2}}$

Official Ans. by NTA (2)
Sol. $|z| \cdot|w|=1 \quad z=r e^{i(\theta+\pi / 2)}$ and $w=\frac{1}{r} e^{i \theta}$
$\overline{\mathrm{Z}} . \mathrm{w}=\mathrm{e}^{-\mathrm{i}(\theta+\pi / 2)} . \mathrm{e}^{\mathrm{i} \theta}=\mathrm{e}^{-\mathrm{i}(\pi / 2)}=-\mathrm{i}$
$z \cdot \bar{w}=e^{i(\theta+\pi / 2)} \cdot \mathrm{e}^{-\mathrm{i} \theta}=\mathrm{e}^{\mathrm{i}(\pi / 2)}=\mathrm{i}$
18. Let a, b and c be in G. P. with common ratio r, where $\mathrm{a} \neq 0$ and $0<\mathrm{r} \leq \frac{1}{2}$. If $3 \mathrm{a}, 7 \mathrm{~b}$ and 15 c are the first three terms of an A. P., then the $4^{\text {th }}$ term of this A . P . is :
(1) $\frac{7}{3} \mathrm{a}$
(2) a
(3) $\frac{2}{3} \mathrm{a}$
(4) 5 a

Official Ans. by NTA (2)
Sol. $\mathrm{b}=\mathrm{ar}$
$\mathrm{c}=a \mathrm{ar}^{2}$
$3 \mathrm{a}, 7 \mathrm{~b}$ and 15 c are in A.P.
$\Rightarrow 14 \mathrm{~b}=3 \mathrm{a}+15 \mathrm{c}$
$\Rightarrow 14(\mathrm{ar})=3 \mathrm{a}+15 \mathrm{ar}^{2}$
$\Rightarrow 14 \mathrm{r}=3+15 \mathrm{r}^{2}$
$\Rightarrow 15 \mathrm{r}^{2}-14 \mathrm{r}+3=0 \quad \Rightarrow(3 \mathrm{r}-1)(5 \mathrm{r}-3)=0$
$r=\frac{1}{3}, \frac{3}{5}$.

Only acceptable value is $\mathrm{r}=\frac{1}{3}$, because
$\mathrm{r} \in\left(0, \frac{1}{2}\right]$
\therefore c. $d=7 b-3 a=7 a r-3 a=\frac{7}{3} a-3 a=-\frac{2}{3} a$
$\therefore 4^{\text {th }}$ term $=15 \mathrm{c}-\frac{2}{3} \mathrm{a}=\frac{15}{9} \mathrm{a}-\frac{2}{3} \mathrm{a}=\mathrm{a}$
19. The integral $\int_{\pi / 6}^{\pi / 3} \sec ^{2 / 3} x \operatorname{cosec}^{4 / 3} x d x$ equal to :
(1) $3^{7 / 6}-3^{5 / 6}$
(2) $3^{5 / 3}-3^{1 / 3}$
(3) $3^{4 / 3}-3^{1 / 3}$
(4) $3^{5 / 6}-3^{2 / 3}$

Official Ans. by NTA (1)

Sol. $I=\int \frac{1}{\cos ^{2 / 3} \mathrm{x}^{1 / 3} \mathrm{x} \cdot \sin \mathrm{x}} \mathrm{dx}$
$=\int \frac{\tan ^{2 / 3} x}{\tan ^{2} x} \cdot \sec ^{2} x \cdot d x$
$=\int \frac{\sec ^{2} x}{\tan ^{4 / 3} x} \cdot d x \quad\left\{\tan x=t, \sec ^{2} x d x=d t\right\}$
$=\int \frac{\mathrm{dt}}{\mathrm{t}^{4 / 3}}=\frac{\mathrm{t}^{-1 / 3}}{-1 / 3}=-3\left(\mathrm{t}^{-1 / 3}\right)$
$\Rightarrow \mathrm{I}=-3 \tan (\mathrm{x})^{-1 / 3}$
$\Rightarrow \mathrm{I}=\left.\frac{3}{(\tan \mathrm{x})^{1 / 3}}\right|_{\pi / 6} ^{\pi / 3}=-3\left(\frac{1}{(\sqrt{3})^{1 / 3}}-(\sqrt{3})^{1 / 3}\right)$
$=3\left(3^{1 / 3}-\frac{1}{3^{1 / 6}}\right)=3^{7 / 6}-3^{5 / 6}$
20. Let $y=y(x)$ be the solution of the differential equation, $\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x$, $\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, such that $\mathrm{y}(0)=1$. Then :
(1) $y^{\prime}\left(\frac{\pi}{4}\right)+y^{\prime}\left(\frac{-\pi}{4}\right)=-\sqrt{2}$
(2) $y^{\prime}\left(\frac{\pi}{4}\right)-y^{\prime}\left(\frac{-\pi}{4}\right)=\pi-\sqrt{2}$
(3) $y\left(\frac{\pi}{4}\right)-y\left(-\frac{\pi}{4}\right)=\sqrt{2}$
(4) $y\left(\frac{\pi}{4}\right)+y\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}+2$

Official Ans. by NTA (2)

Sol. $\frac{d y}{d x}+y(\tan x)=2 x+x^{2} \tan x$
I.F $=e^{\int \tan x d x}=e^{\ln \cdot \sec x}=\sec x$
$\therefore y . \sec x=\int\left(2 x+x^{2} \tan x\right) \sec x . d x$
$=\int 2 x \sec x d x+\int x^{2}(\sec x \cdot \tan x) d x$
$y \sec x=x^{2} \sec x+\lambda$
$\Rightarrow y=x^{2}+\lambda \cos x$
$y(0)=0+\lambda=1 \quad \Rightarrow \lambda=1$
$y=x^{2}+\cos x$
$y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{16}+\frac{1}{\sqrt{2}}$
$\mathrm{y}\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{16}+\frac{1}{\sqrt{2}}$
$y^{\prime}(x)=2 x-\sin x$
$y^{\prime}\left(\frac{\pi}{4}\right)=\frac{\pi}{2}-\frac{1}{\sqrt{2}}$
$y^{\prime}\left(\frac{-\pi}{4}\right)=\frac{-\pi}{2}+\frac{1}{\sqrt{2}}$
$y^{\prime}\left(\frac{\pi}{4}\right)-y^{\prime}\left(\frac{-\pi}{4}\right)=\pi-\sqrt{2}$
21. Let $a_{1}, a_{2}, a_{3}, \ldots .$. be an A. P. with $a_{6}=2$. Then the common difference of this A. P., which maximises the produce $a_{1} a_{4} a_{5}$, is :
(1) $\frac{6}{5}$
(2) $\frac{8}{5}$
(3) $\frac{2}{3}$
(4) $\frac{3}{2}$

Official Ans. by NTA (2)
Sol. Let a is first term and d is common difference then, $a+5 d=2$ (given) ...(1)
$f(d)=(2-5 d)(2-2 d)(2-d)$
$\mathrm{f}^{\prime}(\mathrm{d})=0 \Rightarrow \mathrm{~d}=\frac{2}{3}, \frac{8}{5}$
f " $(\mathrm{d})<0$ at $\mathrm{d}=8 / 5$
$\Rightarrow \mathrm{d}=\frac{8}{5}$
22. The angles A, B and C of a triangle $A B C$ are in A.P. and $\mathrm{a}: \mathrm{b}=1: \sqrt{3}$. If $\mathrm{c}=4 \mathrm{~cm}$, then the area (in sq. cm) of this triangle is :
(1) $4 \sqrt{3}$
(2) $\frac{2}{\sqrt{3}}$
(3) $2 \sqrt{3}$
(4) $\frac{4}{\sqrt{3}}$

Official Ans. by NTA (3)
Sol. $\angle \mathrm{B}=\frac{\pi}{3}$, by sine Rule
$\sin \mathrm{A}=\frac{1}{2}$
$\Rightarrow \mathrm{A}=30^{\circ}, \mathrm{a}=2, \mathrm{~b}=2 \sqrt{3}, \mathrm{c}=4$
$\Delta=\frac{1}{2} \times 2 \sqrt{3} \times 2=2 \sqrt{3}$ sq. cm
23. Minimum number of times a fair coin must be tossed so that the probability of getting at least one head is more than 99% is :
(1) 5
(2) 6
(3) 7
(4) 8

Official Ans. by NTA (3)
Sol. $1-\left(\frac{1}{2}\right)^{\mathrm{n}}>\frac{99}{100}$
$\Rightarrow\left(\frac{1}{2}\right)^{\mathrm{n}}<\frac{1}{100}$
$\Rightarrow \mathrm{n}=7$.
24. Suppose that 20 pillars of the same height have been erected along the boundary of a circular stadium. If the top of each pillar has been connected by beams with the top of all its non-adjacent pillars, then the total number beams is :
(1) 210
(2) 190
(3) 170
(4) 180

Official Ans. by NTA (3)
Sol. Total cases $=$ number of diagonals
$={ }^{20} \mathrm{C}_{2}-20=170$
25. The sum of the real roots of the equatuion

$$
\left|\begin{array}{ccc}
x & -6 & -1 \\
2 & -3 x & x-3 \\
-3 & 2 x & x+2
\end{array}\right|=0 \text {, is equal to : }
$$

(1) 6
(2) 1
(3) 0
(4) -4

Official Ans. by NTA (3)
Sol. By expansion, we get
$-5 \mathrm{x}^{3}+30 \mathrm{x}-30+5 \mathrm{x}=0$
$\Rightarrow-5 \mathrm{x}^{3}+35 \mathrm{x}-30=0$
$\Rightarrow x^{3}-7 x+6=0$, All roots are real
So, sum of roots $=0$
26. Let $f(x)=\log _{e}(\sin x),(0<x<\pi)$ and $g(x)=\sin ^{-1}\left(e^{-x}\right),(x \geq 0)$. If α is a positive real number such that $\mathrm{a}=(\mathrm{fog})^{\prime}(\alpha)$ and $\mathrm{b}=($ fog $)(\alpha)$, then :
(1) $\mathrm{a} \alpha^{2}-\mathrm{b} \alpha-\mathrm{a}=0$
(2) $a \alpha^{2}+b \alpha-a=-2 \alpha^{2}$
(3) $a \alpha^{2}+b \alpha+a=0$
(4) $\mathrm{a} \alpha^{2}-\mathrm{b} \alpha-\mathrm{a}=1$

Official Ans. by NTA (4)
Sol. $f \circ g(x)=(-x) \Rightarrow(f g(\alpha))=-\alpha=b$
$(\mathrm{fg}(\mathrm{x}))^{\prime}=-1 \Rightarrow(\mathrm{fg}(\alpha))^{\prime}=-1=\mathrm{a}$
27. If the tangent to the curve $y=\frac{x}{x^{2}-3}, x \in R$, $(x \neq \pm \sqrt{3})$, at a point $(\alpha, \beta) \neq(0,0)$ on it is parallel to the line $2 x+6 y-11=0$, then :
(1) $|6 \alpha+2 \beta|=19$
(2) $|2 \alpha+6 \beta|=11$
(3) $|6 \alpha+2 \beta|=9$
(4) $|2 \alpha+6 \beta|=19$

Official Ans. by NTA (1)
Sol. $\left.\quad \frac{\mathrm{dy}}{\mathrm{dx}}\right|_{(\alpha, \beta)}=\frac{-\alpha^{2}-3}{\left(\alpha^{2}-3\right)^{2}}$
Given that :
$\frac{-\alpha^{2}-3}{\left(\alpha^{2}-3\right)^{2}}=-\frac{1}{3}$
$\Rightarrow \alpha=0, \pm 3$
$(\alpha \neq 0)$
$\Rightarrow \beta= \pm \frac{1}{2}$.
$|6 \alpha+2 \beta|=19$
28. The number of real roots of the equation $5+\left|2^{\mathrm{x}}-1\right|=2^{\mathrm{x}}\left(2^{\mathrm{x}}-2\right)$ is :
(1) 2
(2) 3
(3) 4
(4) 1

Official Ans. by NTA (4)
Sol. Let $2^{\mathrm{x}}=\mathrm{t}$
$5+|t-1|=t^{2}-2 t$
$\Rightarrow|\mathrm{t}-1|=\left(\mathrm{t}^{2}-2 \mathrm{t}-5\right)$

$$
\mathrm{g}(\mathrm{t}) \quad \mathrm{f}(\mathrm{t})
$$

From the graph

So, number of real root is 1 .
29. If $\lim _{x \rightarrow 1} \frac{x^{2}-a x+b}{x-1}=5$, then $a+b$ is equal to :-
(1) -7
(2) -4
(3) 5
(4) 1

Official Ans. by NTA (1)
Sol. $\lim _{x \rightarrow 1} \frac{x^{2}-a x+b}{x-1}=5$
$1-\mathrm{a}+\mathrm{b}=0$
$2-a=5$
$\Rightarrow \mathrm{a}+\mathrm{b}=-7$.
30. The negation of the boolean expression $\sim \mathrm{s} \vee(\sim \mathrm{r} \wedge \mathrm{s})$ is equivalent to:
(1) r
(2) $\mathrm{s} \wedge \mathrm{r}$
(3) $s \vee r$
(4) $\sim s \wedge \sim r$

Official Ans. by NTA (2)
Sol. $\sim(\sim \mathrm{s} \vee(\sim \mathrm{r} \wedge \mathrm{s}))$
$\mathrm{s} \wedge(\mathrm{r} \vee \sim \mathrm{s})$
$(s \wedge r) \vee(s \wedge \sim s)$
$(\mathrm{s} \wedge \mathrm{r}) \vee(\mathrm{c})$
$(\mathrm{s} \wedge \mathrm{r})$

