FINAL JEE-MAIN EXAMINATION - APRIL,2019
(Held On Tuesday 09 ${ }^{\text {th }}$ APRIL, 2019) TIME: 9:30 AM To 12:30 PM

MATHEMATIOS

1. Let $\vec{\alpha}=3 \hat{i}+\hat{j}$ and $\vec{\beta}=2 \hat{i}-\hat{j}+3 \hat{k}$. If $\vec{\beta}=\vec{\beta}_{1}-\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$, then $\vec{\beta}_{1} \times \vec{\beta}_{2}$ is equal to
(1) $-3 \hat{i}+9 \hat{j}+5 \hat{k}$
(2) $3 \hat{i}-9 \hat{j}-5 \hat{k}$
(3) $\frac{1}{2}(-3 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$
(4) $\frac{1}{2}(3 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$

Official Ans. by NTA (3)
Sol. $\vec{\alpha}=3 \hat{i}+\hat{j}$
$\vec{\beta}=2 \hat{i}-\hat{j}+3 \hat{k}$
$\vec{\beta}=\vec{\beta}_{1}-\vec{\beta}_{2}$
$\vec{\beta}_{1}=\lambda(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}), \vec{\beta}_{2}=\lambda(3 \hat{\mathrm{i}}+\hat{\mathrm{j}})-2 \hat{\mathrm{i}}+\mathrm{j}-3 \hat{\mathrm{k}}$
$\vec{\beta}_{2} \cdot \vec{\alpha}=0$
$(3 \lambda-2) \cdot 3+(\lambda+1)=0$
$9 \lambda-6+\lambda+1=0$
$\lambda=\frac{1}{2}$
$\Rightarrow \vec{\beta}_{1}=\frac{3}{2} \hat{i}+\frac{1}{2} \hat{j}$
$\Rightarrow \vec{\beta}_{2}=-\frac{1}{2} \hat{\mathrm{i}}+\frac{3}{2} \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
Now $\vec{\beta}_{1} \times \vec{\beta}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ \frac{3}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & -3\end{array}\right|$
$=\hat{\mathrm{i}}\left(-\frac{3}{2}-0\right)-\hat{\mathrm{j}}\left(-\frac{9}{2}-0\right)+\hat{\mathrm{k}}\left(\frac{9}{4}+\frac{1}{4}\right)$
$=-\frac{3}{2} \hat{\mathrm{i}}+\frac{9}{2} \hat{\mathrm{j}}+\frac{5}{2} \hat{\mathrm{k}}$
$=\frac{1}{2}(-3 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$

TEST PAPER WITH ANSWER \& SOLUTION

Aliter :

$\vec{\beta}=\vec{\beta}_{1}-\vec{\beta}_{2} \Rightarrow \vec{\beta} \cdot \hat{\alpha}=\vec{\beta}_{1} \cdot \hat{\alpha}=\left|\vec{\beta}_{1}\right|$
$\Rightarrow \vec{\beta}_{1}=(\vec{\beta} \cdot \hat{\alpha}) \hat{\alpha}$
$\Rightarrow \vec{\beta}_{2}=(\vec{\beta} \cdot \hat{\alpha}) \hat{\alpha}-\vec{\beta}$
$\Rightarrow \vec{\beta}_{1} \times \vec{\beta}_{2}=-(\vec{\beta} \cdot \hat{\alpha}) \hat{\alpha} \times \vec{\beta}$
$=\frac{-5}{10}(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}) \times(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
$=\frac{1}{2}(-3 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$
2. For any two statements p and q , the negation of the expression $p \vee(\sim p \wedge q)$ is
(1) $p \wedge q$
(2) $\mathrm{p} \leftrightarrow \mathrm{q}$
(3) $\sim p \vee \sim q$
(4) $\sim p \wedge \sim q$

Official Ans. by NTA (4)
Sol. $\sim(p \vee(\sim p \wedge q))$
$=\sim p \wedge \sim(\sim p \wedge q)$
$=\sim p \wedge(p \vee \sim q)$
$=(\sim \mathrm{p} \wedge \mathrm{p}) \vee(\sim \mathrm{p} \wedge \sim \mathrm{q})$
$=c \vee(\sim p \wedge \sim q)$
$=(\sim p \wedge \sim q)$
3. The value of $\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin x+\cos x} d x$ is
(1) $\frac{\pi-2}{4}$
(2) $\frac{\pi-2}{8}$
(3) $\frac{\pi-1}{4}$
(4) $\frac{\pi-1}{2}$

Official Ans. by NTA (3)
Sol. $I=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin x+\cos x} d x$
$\Rightarrow \mathrm{I}=\int_{0}^{\pi / 4} \frac{\sin ^{3} x+\cos ^{3} x}{\sin x+\cos x} d x$
$=\int_{0}^{\pi / 4}(1-\sin x \cos x) d x$

Saral

$=\left(x-\frac{\sin ^{2} \mathrm{x}}{2}\right)_{0}^{\pi / 4}$
$=\frac{\pi}{4}-\frac{1}{4}$
$=\frac{\pi-1}{4}$
4. If $f(\mathrm{x})$ is a non-zero polynomial of degree four, having local extreme points at $x=-1,0,1$; then the set $\mathrm{S}=\{\mathrm{x} \in \mathrm{R}: f(\mathrm{x})=f(0)\}$
Contains exactly :
(1) four irrational numbers.
(2) two irrational and one rational number.
(3) four rational numbers.
(4) two irrational and two rational numbes.

Official Ans. by NTA (2)
Sol. $f^{\prime}(\mathrm{x})=\lambda(\mathrm{x}+1)(\mathrm{x}-0)(\mathrm{x}-1)=\lambda\left(\mathrm{x}^{3}-\mathrm{x}\right)$
$\Rightarrow f(x)=\lambda\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)+\mu$
Now $f(\mathrm{x})=f(0)$
$\Rightarrow \lambda\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)+\mu=\mu$
$\Rightarrow \mathrm{x}=0,0, \pm \sqrt{2}$
Two irrational and one rational number
5. If the standard deviation of the numbers $-1,0,1, \mathrm{k}$ is $\sqrt{5}$ where $\mathrm{k}>0$, then k is equal to
(1) $2 \sqrt{\frac{10}{3}}$
(2) $2 \sqrt{6}$
(3) $4 \sqrt{\frac{5}{3}}$
(4) $\sqrt{6}$

Official Ans. by NTA (2)
Sol. S.D $=\sqrt{\frac{\Sigma(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}$
$\overline{\mathrm{x}}=\frac{\sum \mathrm{x}}{4}=\frac{-1+0+1+\mathrm{k}}{4}=\frac{\mathrm{k}}{4}$
Now $\sqrt{5}=\sqrt{\frac{\left(-1-\frac{k}{4}\right)^{2}+\left(0-\frac{k}{4}\right)^{2}+\left(1-\frac{k}{4}\right)^{2}+\left(k-\frac{k}{4}\right)^{2}}{4}}$
$\Rightarrow 5 \times 4=2\left(1+\frac{\mathrm{k}}{16}\right)^{2}+\frac{5 \mathrm{k}^{2}}{8}$
$\Rightarrow 18=\frac{3 \mathrm{k}^{2}}{4}$
$\Rightarrow \mathrm{k}^{2}=24$
$\Rightarrow \mathrm{k}=2 \sqrt{6}$
6. All the points in the set $\mathrm{S}=\left\{\frac{\alpha+\mathrm{i}}{\alpha-\mathrm{i}}: \alpha \in \mathrm{R}\right\}(\mathrm{i}=\sqrt{-1})$ lie on a
(1) circle whose radius is 1 .
(2) straight line whose slope is 1 .
(3) straight line whose slope is -1
(4) circle whose radius is $\sqrt{2}$.

Official Ans. by NTA (1)
Sol. Let $\frac{\alpha+i}{\alpha-i}=z$
$\Rightarrow \frac{|\alpha+i|}{|\alpha-i|}=|z|$
$\Rightarrow 1=|\mathrm{z}|$
\Rightarrow circle of radius 1
7. Let S be the set of all values of x for which the tangent to the curve $\mathrm{y}=f(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}-2 \mathrm{x}$ at (x, y) is parallel to the line segment joining the points $(1, f(1))$ and $(-1, f(-1))$, then S is equal to :
(1) $\left\{-\frac{1}{3},-1\right\}$
(2) $\left\{\frac{1}{3},-1\right\}$
(3) $\left\{-\frac{1}{3}, 1\right\}$
(4) $\left\{\frac{1}{3}, 1\right\}$

Official Ans. by NTA (3)
Sol. $f(1)=1-1-2=-2$
$f(-1)=-1-1+2=0$
$\mathrm{m}=\frac{f(1)-f(-1)}{1+1}=\frac{-2-0}{2}=-1$
$\frac{d y}{d x}=3 x^{2}-2 x-2$
$3 \mathrm{x}^{2}-2 \mathrm{x}-2=-1$
$\Rightarrow 3 \mathrm{x}^{2}-2 \mathrm{x}-1=0$
$\Rightarrow(\mathrm{x}-1)(3 \mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=1,-\frac{1}{3}$
8. Let $f(\mathrm{x})=15-|\mathrm{x}-10| ; \mathrm{x} \in \mathrm{R}$. Then the set of all values of x, at which the function, $\mathrm{g}(\mathrm{x})=f(f(\mathrm{x}))$ is not differentiable, is :
(1) $\{5,10,15,20\}$
(2) $\{10,15\}$
(3) $\{5,10,15\}$
(4) $\{10\}$

Official Ans. by NTA (3)
Sol. $f(\mathrm{x})=15-|\mathrm{x}-10|, \mathrm{x} \in \mathrm{R}$
$f(f(\mathrm{x}))=15-|f(\mathrm{x})-10|$
$=15-|15-|\mathrm{x}-10|-10|$
$=15-|5-|x-10||$

$x=5,10,15$ are points of non differentiability

Aliter :

At $\mathrm{x}=10 f(\mathrm{x})$ is non differentiable
also, when $15-|x-10|=10$
$\Rightarrow \mathrm{x}=5,15$
\therefore non differentiability points are $\{5,10,15\}$
9. Let $p, q \in R$. If $2-\sqrt{3}$ is a root of the quadratic equation, $x^{2}+p x+q=0$, then :
(1) $q^{2}+4 p+14=0$
(2) $p^{2}-4 q-12=0$
(3) $q^{2}-4 p-16=0$
(4) $p^{2}-4 q+12=0$

Official Ans. by NTA (2)
ALLEN Ans. (2) or (Bonus)
Sol. In given question $p, q \in R$. If we take other root as any real number α,
then quadratic equation will be
$x^{2}-(\alpha+2-\sqrt{3}) x+\alpha \cdot(2-\sqrt{3})=0$
Now, we can have none or any of the options can be correct depending upon ' α '
Instead of $p, q \in R$ it should be $p, q \in Q$ then other root will be $2+\sqrt{3}$
$\Rightarrow \mathrm{p}=-(2+\sqrt{3}-2-\sqrt{3})=-4$
and $\mathrm{q}=(2+\sqrt{3})(2-\sqrt{3})=1$
$\Rightarrow \mathrm{p}^{2}-4 \mathrm{q}-12=(-4)^{2}-4-12$

$$
=16-16=0
$$

Option (2) is correct
10. Slope of a line passing through $P(2,3)$ and intersecting the line, $x+y=7$ at a distance of 4 units from P, is
(1) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$
(2) $\frac{1-\sqrt{5}}{1+\sqrt{5}}$
(3) $\frac{1-\sqrt{7}}{1+\sqrt{7}}$
(4) $\frac{\sqrt{7}-1}{\sqrt{7}+1}$

Official Ans. by NTA (3)
Sol. $\mathrm{x}=2+\mathrm{rcos} \theta$
$\mathrm{y}=3+\mathrm{r} \sin \theta$
$\Rightarrow 2+\mathrm{r} \cos \theta+3+\mathrm{r} \sin \theta=7$
$\Rightarrow \mathrm{r}(\cos \theta+\sin \theta)=2$
$\Rightarrow \sin \theta+\cos \theta=\frac{2}{r}=\frac{2}{ \pm 4}= \pm \frac{1}{2}$
$\Rightarrow 1+\sin 2 \theta=\frac{1}{4}$
$\Rightarrow \sin 2 \theta=-\frac{3}{4}$
$\Rightarrow \frac{2 \mathrm{~m}}{1+\mathrm{m}^{2}}=-\frac{3}{4}$
$\Rightarrow 3 \mathrm{~m}^{2}+8 \mathrm{~m}+3=0$
$\Rightarrow m=\frac{-4 \pm \sqrt{7}}{1-7}$
$\frac{1-\sqrt{7}}{1+\sqrt{7}}=\frac{(1-\sqrt{7})^{2}}{1-7}=\frac{8-2 \sqrt{7}}{-6}=\frac{-4+\sqrt{7}}{3}$
11. A committee of 11 members is to be formed from 8 males and 5 females. If m is the number of ways the committee is formed with at least 6 males and n is the number of ways the committee is formed with at least 3 females, then :
(1) $\mathrm{m}=\mathrm{n}=78$
(2) $n=m-8$
(3) $m+n=68$
(4) $\mathrm{m}=\mathrm{n}=68$

Official Ans. by NTA (1)
Sol. Since there are 8 males and 5 females. Out of these 13 , if we select 11 persons, then there will be at least 6 males and atleast 3 females in the selection.
$\mathrm{m}=\mathrm{n}=\binom{13}{11}=\binom{13}{2}=\frac{13 \times 12}{2}=78$

Saral

12. If the fourth term in the binomial expansion of $\left(\frac{2}{x}+x^{\log _{8} x}\right)^{6}(x>0)$ is 20×8^{7}, then a value of x is :
(1) 8
(2) 8^{2}
(3) 8^{-2}
(4) 8^{3}

Official Ans. by NTA (2)
Sol. $\quad T_{4}=T_{3+1}=\binom{6}{3}\left(\frac{2}{x}\right)^{3} \cdot\left(x^{\log _{8} x}\right)^{3}$
$20 \times 8^{7}=\frac{160}{\mathrm{x}^{3}} \cdot \mathrm{x}^{3 \log _{8} \mathrm{x}}$
$8^{6}=x^{\log _{2} x}-3$
$2^{18}=x^{\log _{2} x-3}$
$\Rightarrow 18=\left(\log _{2} \mathrm{x}-3\right)\left(\log _{2} \mathrm{x}\right)$
Let $\log _{2} \mathrm{x}=\mathrm{t}$
$\Rightarrow \mathrm{t}^{2}-3 \mathrm{t}-18=0$
$\Rightarrow(\mathrm{t}-6)(\mathrm{t}+3)=0$
$\Rightarrow \mathrm{t}=6,-3$
$\log _{2} x=6 \Rightarrow x=2^{6}=8^{2}$
$\log _{2} x=-3 \Rightarrow x=2^{-3}=8^{-1}$
13. The solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2} \quad(x \neq 0)$ with $y(1)=1$, is
(1) $y=\frac{x^{3}}{5}+\frac{1}{5 x^{2}}$
(2) $y=\frac{4}{5} x^{3}+\frac{1}{5 x^{2}}$
(3) $y=\frac{3}{4} x^{2}+\frac{1}{4 x^{2}}$
(4) $y=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}$

Official Ans. by NTA (4)

Sol. $\quad \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{y}=\mathrm{x}^{2}: \mathrm{y}(1)=1$
$\frac{d y}{d x}+\left(\frac{2}{x}\right) y=x \quad$ (LDE in $\left.y\right)$
IF $=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2}$
$y \cdot\left(x^{2}\right)=\int x \cdot x^{2} d x=\frac{x^{4}}{4}+C$
$y(1)=1$
$1=\frac{1}{4}+\mathrm{C} \Rightarrow \mathrm{C}=1-\frac{1}{4}=\frac{3}{4}$
$y x^{2}=\frac{x^{4}}{4}+\frac{3}{4}$
$y=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}$
14. A plane passing through the points $(0,-1,0)$ and $(0,0,1)$ and making an angle $\frac{\pi}{4}$ with the plane $\mathrm{y}-\mathrm{z}+5=0$, also passes through the point
(1) $(-\sqrt{2}, 1,-4)$
(2) $(\sqrt{2}, 1,4)$
(3) $(\sqrt{2},-1,4)$
(4) $(-\sqrt{2},-1,-4)$

Official Ans. by NTA (2)
Sol. Let $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=1$ be the equation of the plane
$\Rightarrow 0-\mathrm{b}+0=1$
$\Rightarrow \mathrm{b}=-1$
$0+0+\mathrm{c}=1$
$\Rightarrow \mathrm{c}=1$
$\cos \theta=\left|\frac{\vec{a} \cdot \vec{b}}{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}|}\right|$
$\frac{1}{\sqrt{2}}=\frac{|0-1-1|}{\sqrt{\left(\mathrm{a}^{2}+1+1\right)} \sqrt{0+1+1}}$
$\Rightarrow \mathrm{a}^{2}+2=4$
$\Rightarrow \mathrm{a}= \pm \sqrt{2}$
$\Rightarrow \pm \sqrt{2} x-y+z=1$
Now for - sign
$-\sqrt{2} \cdot \sqrt{2}-1+4=1$
option (2)
15. The integral $\int \sec ^{2 / 3} x \operatorname{cosec}^{4 / 3} x d x$ is equal to (Hence C is a constant of integration)
(1) $3 \tan ^{-1 / 3} x+C$
(2) $-\frac{3}{4} \tan ^{-4 / 3} x+C$
(3) $-3 \cot ^{-1 / 3} x+C$
(4) $-3 \tan ^{-1 / 3} x+C$

Official Ans. by NTA (4)

Final JEE-Main Exam April,2019/09-04-2019/Morning Session

Sol. $I=\int \frac{d x}{(\sin x)^{4 / 3} \cdot(\cos x)^{2 / 3}}$
$I=\int \frac{d x}{\left(\frac{\sin x}{\cos x}\right)^{4 / 3} \cdot \cos ^{2} x}$
$\Rightarrow \mathrm{I}=\int \frac{\sec ^{2} \mathrm{x}}{(\tan \mathrm{x})^{4 / 3}} \mathrm{dx}$
put $\tan \mathrm{x}=\mathrm{t} \Rightarrow \sec ^{2} \mathrm{xdx}=\mathrm{dt}$
$\therefore \mathrm{I}=\int \frac{\mathrm{dt}}{\mathrm{t}^{4 / 3}} \Rightarrow \mathrm{I}=\frac{-3}{\mathrm{t}^{1 / 3}}+\mathrm{c}$
$\Rightarrow \mathrm{I}=\frac{-3}{(\tan \mathrm{x})^{1 / 3}}+\mathrm{c}$
16. Let the sum of the first n terms of a nonconstant A.P., $a_{1}, \quad a_{2}, \quad a_{3}, \ldots .$. be $50 \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}-7)}{2} \mathrm{~A}$, wherre A is a constant. If d is the common difference of this A.P., then the ordered pair $\left(\mathrm{d}, \mathrm{a}_{50}\right)$ is equal to
(1) $(\mathrm{A}, 50+46 \mathrm{~A})$
(2) $(\mathrm{A}, 50+45 \mathrm{~A})$
(3) $(50,50+46 \mathrm{~A})$
(4) $(50,50+45 \mathrm{~A})$

Official Ans. by NTA (1)
Sol. $\quad \mathrm{S}_{\mathrm{n}}=50 \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}-7)}{2} \mathrm{~A}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}$
$=50 \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}-7)}{2} \mathrm{~A}-50(\mathrm{n}-1)-\frac{(\mathrm{n}-1)(\mathrm{n}-8)}{2} \mathrm{~A}$
$=50+\frac{\mathrm{A}}{2}\left[\mathrm{n}^{2}-7 \mathrm{n}-\mathrm{n}^{2}+9 \mathrm{n}-8\right]$
$=50+\mathrm{A}(\mathrm{n}-4)$
$\mathrm{d}=\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}-1}$
$=50+A(n-4)-50-A(n-5)$
$=\mathrm{A}$
$\mathrm{T}_{50}=50+46 \mathrm{~A}$
$\left(\mathrm{d}, \mathrm{A}_{50}\right)=(\mathrm{A}, 50+46 \mathrm{~A})$
17. The area (in sq. units) of the region $A=\left\{(x, y): x^{2} \leq y \leq x+2\right\}$ is
(1) $\frac{10}{3}$
(2) $\frac{9}{2}$
(3) $\frac{31}{6}$
(4) $\frac{13}{6}$

Official Ans. by NTA (2)
Sol. $x^{2} \leq y \leq x+2$
$x^{2}=y ; y=x+2$
$\mathrm{x}^{2}=\mathrm{x}+2$
$\mathrm{x}^{2}-\mathrm{x}-2=0$
$(x-2)(x-1)=0$
$\mathrm{x}=2,-1$

Area $=\int_{-1}^{2}(x+2)-x^{2} d x=\frac{9}{2}$
18. If the line, $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$ meets the plane, $x+2 y+3 z=15$ at a point P, then the distance of P from the origin is
(1) $\frac{9}{2}$
(2) $2 \sqrt{5}$
(3) $\frac{\sqrt{5}}{2}$
(4) $\frac{7}{2}$

Official Ans. by NTA (1)
Sol. Any point on the given line can be $(1+2 \lambda,-1+3 \lambda, 2+4 \lambda) ; \lambda \in \mathrm{R}$ Put in plane
$1+2 \lambda+(-2+6 \lambda)+(6+12 \lambda)=15$
$20 \lambda+5=15$
$20 \lambda=10$
$\lambda=\frac{1}{2}$
\therefore Point $\left(2, \frac{1}{2}, 4\right)$
Distance from origin
$=\sqrt{4+\frac{1}{4}+16}=\frac{\sqrt{16+1+64}}{2}=\frac{\sqrt{81}}{2}$
$=\frac{9}{2}$
19. Let $\sum_{\mathrm{k}=1}^{10} f(\mathrm{a}+\mathrm{k})=16\left(2^{10}-1\right)$, where the function f satisfies $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})$ for all natural numbers x, y and $f(1)=2$. then the natural number ' a ' is
(1) 4
(2) 3
(3) 16
(4) 2

Official Ans. by NTA (2)
Sol. From the given functional equation :
$f(x)=2^{x} \quad \forall x \in N$
$2^{a+1}+2^{a+2}+\ldots .+2^{a+10}=16\left(2^{10}-1\right)$
$2^{\mathrm{a}}\left(2+2^{2}+\ldots+2^{10}\right)=16\left(2^{10}-1\right)$

Saral

$2^{\mathrm{a}} \cdot \frac{2 \cdot\left(2^{10}-1\right)}{1}=16\left(2^{10}-1\right)$
$2^{a+1}=16=2^{4}$
$\mathrm{a}=3$
20. Let α and β be the roots of the equation $x^{2}+x+1=0$. Then for $y \neq 0$ in R, $\left|\begin{array}{ccc}y+1 & \alpha & \beta \\ \alpha & y+\beta & 1 \\ \beta & 1 & y+\alpha\end{array}\right|$ is equal to
(1) y^{3}
(2) $y^{3}-1$
(3) $y\left(y^{2}-1\right)$
(4) $y\left(y^{2}-3\right)$

Official Ans. by NTA (1)
Sol. Roots of the equation $x^{2}+x+1=0$ are $\alpha=$ ω and $\beta=\omega^{2}$
where ω, ω^{2} are complex cube roots of unity
$\therefore \Delta=\left|\begin{array}{ccc}y+1 & \omega & \omega^{2} \\ \omega & y+\omega^{2} & 1 \\ \omega^{2} & 1 & y+\omega\end{array}\right|$
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\Rightarrow \Delta=y\left|\begin{array}{ccc}1 & 1 & 1 \\ \omega & y+\omega^{2} & 1 \\ \omega^{2} & 1 & y+\omega\end{array}\right|$
Expanding along R_{1}, we get
$\Delta=y \cdot y^{2} \Rightarrow D=y^{3}$
21. If the tangent to the curve, $y=x^{3}+a x-b$ at the point $(1,-5)$ is perpendicular to the line, $-x+y+4=0$, then which one of the following points lies on the curve ?
(1) $(-2,2)$
(2) $(2,-2)$
(3) $(2,-1)$
(4) $(-2,1)$

Official Ans. by NTA (2)
Sol. $y=x^{3}+a x-b$
$(1,-5)$ lies on the curve
$\Rightarrow-5=1+\mathrm{a}-\mathrm{b} \Rightarrow \mathrm{a}-\mathrm{b}=-6$
Also, $y^{\prime}=3 \mathrm{x}^{2}+\mathrm{a}$
$y^{\prime}(1,-5)=3+\mathrm{a} \quad$ (slope of tangent)
\because this tangent is \perp to $-\mathrm{x}+\mathrm{y}+4=0$
$\Rightarrow(3+a)(1)=-1$
$\Rightarrow \mathrm{a}=-4$
By (i) and (ii) : $\mathrm{a}=-4, \mathrm{~b}=2$
$\therefore \mathrm{y}=\mathrm{x}^{3}-4 \mathrm{x}-2$.
$(2,-2)$ lies on this curve.
22. Four persons can hit a target correctly with probabilities $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{8}$ respectively. if all hit at the target independently, then the probability that the target would be hit, is
(1) $\frac{25}{192}$
(2) $\frac{1}{192}$
(3) $\frac{25}{32}$
(4) $\frac{7}{32}$

Official Ans. by NTA (3)
Sol. Let persons be A,B,C,D
$P($ Hit $)=1-P($ none of them hits $)$
$=1-\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}} \cap \overline{\mathrm{C}} \cap \overline{\mathrm{D}})$
$=1-\mathrm{P}(\overline{\mathrm{A}}) \cdot \mathrm{P}(\overline{\mathrm{B}}) \cdot \mathrm{P}(\overline{\mathrm{C}}) \cdot \mathrm{P}(\overline{\mathrm{D}})$
$=1-\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{7}{8}$
$=\frac{25}{32}$
23. If the line $y=m x+7 \sqrt{3}$ is normal to the hyperbola $\frac{x^{2}}{24}-\frac{y^{2}}{18}=1$, then a value of m is
(1) $\frac{\sqrt{5}}{2}$
(2) $\frac{3}{\sqrt{5}}$
(3) $\frac{2}{\sqrt{5}}$
(4) $\frac{\sqrt{15}}{2}$

Official Ans. by NTA (3)
Sol. $\frac{x^{2}}{24}-\frac{y^{2}}{18}=1 \Rightarrow a=\sqrt{24} ; b=\sqrt{18}$
Parametric normal :
$\sqrt{24} \cos \theta \cdot x+\sqrt{18} \cdot y \cot \theta=42$
At $\mathrm{x}=0: \mathrm{y}=\frac{42}{\sqrt{18}} \tan \theta=7 \sqrt{3}$ (from given equation)
$\Rightarrow \tan \theta=\sqrt{\frac{3}{2}} \Rightarrow \sin \theta= \pm \sqrt{\frac{3}{5}}$
slope of parametric normal $=\frac{-\sqrt{24} \cos \theta}{\sqrt{18} \cot \theta}=m$
$\Rightarrow \mathrm{m}=-\sqrt{\frac{4}{3}} \sin \theta=-\frac{2}{\sqrt{5}}$ or $\frac{2}{\sqrt{5}}$

Final JEE-Main Exam April,2019/09-04-2019/Morning Session
24. Let $S=\left\{\theta \in[-2 \pi, 2 \pi]: 2 \cos ^{2} \theta+3 \sin \theta=0\right\}$. Then the sum of the elements of S is
(1) $\frac{13 \pi}{6}$
(2) π
(3) 2π
(4) $\frac{5 \pi}{3}$

Official Ans. by NTA (3)
Sol. $2\left(1-\sin ^{2} \theta\right)+3 \sin \theta=0$
$\Rightarrow 2 \sin ^{2} \theta-3 \sin \theta-2=0$
$\Rightarrow(2 \sin \theta+1)(\sin \theta-2)=0$
$\Rightarrow \sin \theta=-\frac{1}{2} ; \sin \theta=2($ reject $)$
roots : $\pi+\frac{\pi}{6}, 2 \pi-\frac{\pi}{6},-\frac{\pi}{6},-\pi+\frac{\pi}{6}$
\Rightarrow sum of values $=2 \pi$
25. The value of $\cos ^{2} 10^{\circ}-\cos 10^{\circ} \cos 50^{\circ}+\cos ^{2} 50^{\circ}$ is
(1) $\frac{3}{2}\left(1+\cos 20^{\circ}\right)$
(2) $\frac{3}{4}$
(3) $\frac{3}{4}+\cos 20^{\circ}$
(4) $\frac{3}{2}$

Official Ans. by NTA (2)
Sol. $\frac{1}{2}\left(2 \cos ^{2} 10^{\circ}-2 \cos 10^{\circ} \cos 50^{\circ}+2 \cos ^{2} 50^{\circ}\right)$
$\Rightarrow \frac{1}{2}\left(1+\cos 20^{\circ}-\left(\cos 60^{\circ}+\cos 40^{\circ}\right)+1+\cos 100^{\circ}\right)$
$\Rightarrow \frac{1}{2}\left(\frac{3}{2}+\cos 20^{\circ}+2 \sin 70^{\circ} \sin \left(-30^{\circ}\right)\right)$
$\Rightarrow \frac{1}{2}\left(\frac{3}{2}+\cos 20^{\circ}-\sin 70^{\circ}\right)$
$\Rightarrow \frac{3}{4}$ Ans. (2)
26. If a tangent to the circle $x^{2}+y^{2}=1$ intersects the coordinate axes at distinct points P and Q , then the locus of the mid-point of PQ is
(1) $x^{2}+y^{2}-2 x y=0$
(2) $x^{2}+y^{2}-16 x^{2} y^{2}=0$
(3) $x^{2}+y^{2}-4 x^{2} y^{2}=0$
(4) $x^{2}+y^{2}-2 x^{2} y^{2}=0$

Official Ans. by NTA (3)

Sol.

Let the mid point be $S(h, k)$
$\therefore \mathrm{P}(2 \mathrm{~h}, 0)$ and $\mathrm{Q}(0,2 \mathrm{k})$
equation of PQ : $\frac{x}{2 h}+\frac{y}{2 k}=1$
$\because \mathrm{PQ}$ is tangent to circle at R (say)
$\therefore \mathrm{OR}=1 \Rightarrow\left|\frac{-1}{\sqrt{\left(\frac{1}{2 \mathrm{~h}}\right)^{2}+\left(\frac{1}{2 \mathrm{k}}\right)^{2}}}\right|=1$
$\Rightarrow \frac{1}{4 \mathrm{~h}^{2}}+\frac{1}{4 \mathrm{k}^{2}}=1$
$\Rightarrow x^{2}+y^{2}-4 x^{2} y^{2}=0$

Aliter :

tangent to circle
$\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=1$
$\mathrm{P}:(\sec \theta, 0)$
Q : $(0, \operatorname{cosec} \theta)$
$2 \mathrm{~h}=\sec \theta \Rightarrow \cos \theta=\frac{1}{2 \mathrm{~h}} \& \sin \theta=\frac{1}{2 \mathrm{k}}$
$\frac{1}{(2 x)^{2}}+\frac{1}{(2 y)^{2}}=1$
27. If the function f defined on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ by
$f(x)=\left\{\begin{array}{cl}\frac{\sqrt{2} \cos x-1}{\cot x-1}, & x \neq \frac{\pi}{4} \text { is continuous, } \\ k, & x=\frac{\pi}{4}\end{array}\right.$
then k is equal to
(1) $\frac{1}{2}$
(2) 1
(3) $\frac{1}{\sqrt{2}}$
(4) 2

Official Ans. by NTA (1)

Saral

Sol. \therefore function should be continuous at $\mathrm{x}=\frac{\pi}{4}$

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow \frac{\pi}{4}} f(\mathrm{x})=f\left(\frac{\pi}{4}\right) \\
& \Rightarrow \lim _{\mathrm{x} \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos \mathrm{x}-1}{\cot \mathrm{x}-1}=\mathrm{k} \\
& \Rightarrow \lim _{\mathrm{x} \rightarrow \frac{\pi}{4}} \frac{-\sqrt{2} \sin \mathrm{x}}{-\operatorname{cosec}^{2} \mathrm{x}}=\mathrm{k} \quad \text { (Using L'Hô pital rule) } \\
& \lim _{x \rightarrow \frac{\pi}{4}} \sqrt{2} \sin ^{3} \mathrm{x}=\mathrm{k} \\
& \Rightarrow \mathrm{k}=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)^{3}=\frac{1}{2}
\end{aligned}
$$

28. If $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 78 \\ 0 & 1\end{array}\right]$, then the inverse of $\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$ is
(1) $\left[\begin{array}{cc}1 & -13 \\ 0 & 1\end{array}\right]$
(2) $\left[\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right]$
(3) $\left[\begin{array}{cc}1 & -12 \\ 0 & 1\end{array}\right]$
(4) $\left[\begin{array}{cc}1 & 0 \\ 13 & 1\end{array}\right]$

Official Ans. by NTA (1)
Sol. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \ldots . .\left[\begin{array}{cc}1 & \mathrm{n}-1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 78 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{cc}
1 & 1+2+3+\ldots . .+\mathrm{n}-1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 78 \\
0 & 1
\end{array}\right] \\
& \Rightarrow \frac{\mathrm{n}(\mathrm{n}-2)}{2}=78 \Rightarrow \mathrm{n}=13,-12(\text { reject })
\end{aligned}
$$

\therefore We have to find inverse of $\left[\begin{array}{cc}1 & 13 \\ 0 & 1\end{array}\right]$
$\therefore\left[\begin{array}{cc}1 & -13 \\ 0 & 1\end{array}\right]$
29. If one end of a focal chord of the parabola, $y^{2}=16 x$ is at $(1,4)$, then the length of this focal chord is
(1) 25
(2) 24
(3) 20
(4) 22

Official Ans. by NTA (1)
Sol.

$y^{2}=4 a x=16 x \Rightarrow a=4$
$\mathrm{A}(1,4) \Rightarrow 2.4 . \mathrm{t}_{1}=4 \Rightarrow \mathrm{t}_{1}=\frac{1}{2}$
\therefore length of focal chord $=a\left(t+\frac{1}{t}\right)^{2}$
$=4\left(\frac{1}{2}+2\right)^{2}=4 \cdot \frac{25}{4}=25$
30. If the function $f: \mathrm{R}-\{1,-1\} \rightarrow \mathrm{A}$ defined by $f(\mathrm{x})=\frac{\mathrm{x}^{2}}{1-\mathrm{x}^{2}}$, is surjective, then A is equal to
(1) $\mathrm{R}-[-1,0)$
(2) $\mathrm{R}-(-1,0)$
(3) $R-\{-1\}$
(4) $[0, \infty)$

Official Ans. by NTA (1)
Sol. $y=\frac{x^{2}}{1-x^{2}}$
Range of $\mathrm{y}: \mathrm{R}-[-1,0)$
for surjective funciton, A must be same as above range.

