FINAL JEE-MAIN EXAMINATION - APRIL,2019
(Held On Wednesday 10 ${ }^{\text {th }}$ APRIL, 2019) TIME:9:30 AM To 12:30 PM

MATHEMATIOS

1. If for some $x \in R$, the frequency distribution of the marks obtained by 20 students in a test is :

Marks	2	3	5	7
Frequencey	$(x+1)^{2}$	$2 x-5$	$x^{2}-3 x$	x

then the mean of the marks is :
(1) 2.8
(2) 3.2
(3) 3.0
(4) 2.5

Official Ans. by NTA (1)
Sol. $\quad \sum f_{i}=20=2 x^{2}+2 x-4$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-24=0$
$\mathrm{x}=3,-4$ (rejected)
$\overline{\mathrm{x}}=\frac{\sum \mathrm{x}_{\mathrm{i}} f_{\mathrm{i}}}{\sum f_{\mathrm{i}}}=2.8$
2. If $\Delta_{1}=\left|\begin{array}{ccc}\mathrm{x} & \sin \theta & \cos \theta \\ -\sin \theta & -\mathrm{x} & 1 \\ \cos \theta & 1 & \mathrm{x}\end{array}\right|$ and
$\Delta_{2}=\left|\begin{array}{ccc}\mathrm{x} & \sin 2 \theta & \cos 2 \theta \\ -\sin 2 \theta & -\mathrm{x} & 1 \\ \cos 2 \theta & 1 & \mathrm{x}\end{array}\right|, \mathrm{x} \neq 0$; then for
all $\theta \in\left(0, \frac{\pi}{2}\right)$:
(1) $\Delta_{1}-\Delta_{2}=\mathrm{x}(\cos 2 \theta-\cos 4 \theta)$
(2) $\Delta_{1}+\Delta_{2}=-2 \mathrm{x}^{3}$
(3) $\Delta_{1}-\Delta_{2}=-2 x^{3}$
(4) $\Delta_{1}+\Delta_{2}=-2\left(x^{3}+x-1\right)$

Official Ans. by NTA (2)
Sol. $\Delta_{1}=f(\theta)=\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|=-x^{3}$
and $\Delta_{2}=f(2 \theta)=\left|\begin{array}{ccc}x & \sin 2 \theta & \cos 2 \theta \\ -\sin 2 \theta & -x & 1 \\ \cos 2 \theta & 1 & x\end{array}\right|=-x^{3}$
So $\Delta_{1}+\Delta_{2}=-2 \mathrm{x}^{3}$

TEST PAPER WITH ANSWER \& SOLUIION

3. If $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}=\lim _{x \rightarrow k} \frac{x^{3}-k^{3}}{x^{2}-k^{2}}$, then k is :
(1) $\frac{3}{8}$
(2) $\frac{3}{2}$
(3) $\frac{4}{3}$
(4) $\frac{8}{3}$

Official Ans. by NTA (4)
Sol. $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}=\lim _{x \rightarrow k} \frac{x^{3}-k^{3}}{x^{2}-k^{2}}$
$\Rightarrow \lim _{\mathrm{x} \rightarrow 1}(\mathrm{x}+1)\left(\mathrm{x}^{2}+1\right)=\frac{\mathrm{k}^{2}+\mathrm{k}^{2}+\mathrm{k}^{2}}{2 \mathrm{k}}$
$\Rightarrow \mathrm{k}=8 / 3$
4. If the system of linear equations
$x+y+z=5$
$x+2 y+2 z=6$
$x+3 y+\lambda z=\mu,(\lambda, \mu \in R)$, has infinitely many solutions, then the value of $\lambda+\mu$ is :
(1) 12
(2) 10
(3) 9
(4) 7

Official Ans. by NTA (2)
Sol. $x+3 y+\lambda z-\mu=p(x+y+z-5)+$ $q(x+2 y+2 z-6)$
on comparing the coefficient;
$p+q=1$ and $p+2 q=3$
$\Rightarrow(\mathrm{p}, \mathrm{q})=(-1,2)$
Hence $x+3 y+\lambda z-\mu=x+3 y+3 z-7$
$\Rightarrow \lambda=3, \mu=7$
5. If the circles $x^{2}+y^{2}+5 K x+2 y+K=0$ and $2\left(x^{2}+y^{2}\right)+2 K x+3 y-1=0,(K \in R)$, intersect at the points P and Q, then the line $4 x+5 y-K=0$ passes through P and Q for :
(1) exactly two values of K
(2) exactly one value of K
(3) no value of K .
(4) infinitely many values of K

Official Ans. by NTA (3)
Sol. Equation of common chord
$4 \mathrm{kx}+\frac{1}{2} \mathrm{y}+\mathrm{k}+\frac{1}{2}=0$
and given line is $4 \mathrm{x}+5 \mathrm{y}-\mathrm{k}=0$

On comparing (1) \& (2), we get
$\mathrm{k}=\frac{1}{10}=\frac{\mathrm{k}+\frac{1}{2}}{-\mathrm{k}}$
\Rightarrow No real value of k exist
6. Le $f(x)=x^{2}, x \in R$. For any $\mathrm{A} \subseteq \mathrm{R}$, define $g(A)=\{x \in R, f(x) \in A\}$. If $S=[0,4]$, then which one of the following statements is not true ?
(1) $f(\mathrm{~g}(\mathrm{~S})) \neq f(\mathbf{S})$
(2) $f(\mathrm{~g}(\mathrm{~S}))=\mathrm{S}$
(3) $g(f(S))=g(S)$
(4) $g(f(S)) \neq S$

Official Ans. by NTA (3)
Sol. $g(S)=[-2,2]$
So, $f(g(S))=[0,4]=S$
And $f(S)=[0,16] \Rightarrow f(g(S) \neq f(S)$
Also, $g(f(S))=[-4,4] \neq g(S)$
So, $g(f(S) \neq S$
7. Let $f(\mathrm{x})=\mathrm{e}^{\mathrm{x}}-\mathrm{x}$ and $\mathrm{g}(\mathrm{x}) \mathrm{x}^{2}-\mathrm{x}, \quad \forall \mathrm{x} \in \mathrm{R}$.

Then the set of all $x \in R$, where the function $h(x)=(f \circ g)(x)$ is increasing, is :
(1) $\left[-1, \frac{-1}{2}\right] \cup\left[\frac{1}{2}, \infty\right)$
(2) $\left[0, \frac{1}{2}\right] \cup[1, \infty)$
(3) $\left[\frac{-1}{2}, 0\right] \cup[1, \infty)$
(4) $[0, \infty)$

Official Ans. by NTA (2)
Sol. $h(x)=f(g(x))$
$\Rightarrow h^{\prime}(x)=f^{\prime}(g(x)) . g^{\prime}(x)$ and $f^{\prime}(x)=e^{x}-1$
$\Rightarrow h^{\prime}(\mathrm{x})=\left(\mathrm{e}^{\mathrm{g}(\mathrm{x})}-1\right) \mathrm{g}^{\prime}(\mathrm{x})$
$\Rightarrow \mathrm{h}^{\prime}(\mathrm{x})=\left(\mathrm{e}^{\mathrm{x}^{2}-\mathrm{x}}-1\right)(2 \mathrm{x}-1) \geq 0$
Case-I $\mathrm{e}^{\mathrm{x}^{2}-\mathrm{x}} \geq 1$ and $2 \mathrm{x}-1 \geq 0$
$\Rightarrow \mathrm{x} \in[1, \infty)$ \qquad
Case-II $\mathrm{e}^{\mathrm{x}^{2}-\mathrm{x}} \leq 1$ and $2 \mathrm{x}-1 \leq 0$
$\Rightarrow \mathrm{x} \in\left[0, \frac{1}{2}\right] \ldots .(2$
Hence, $x \in\left[0, \frac{1}{2}\right] \cup[1, \infty)$
8. Which one of the following Boolean expressions is a tautology?
(1) $(P \vee q) \wedge(\sim p \vee \sim q)$
(2) $(P \wedge q) \vee(p \wedge \sim q)$
(3) $(\mathrm{P} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \sim \mathrm{q})$
(4) $(\mathrm{P} \vee \mathrm{q}) \vee(\mathrm{p} \vee \sim \mathrm{q})$

Official Ans. by NTA (4)
Sol. (1) $(p \vee q) \wedge(\sim p \vee \sim q) \equiv(p \vee q) \wedge \sim(p \wedge q) \rightarrow$ Not tautology (Take both p and q as T)
(2) $(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge \sim \mathrm{q}) \equiv \mathrm{p} \wedge(\mathrm{q} \vee \sim \mathrm{q}) \equiv \mathrm{p} \wedge \mathrm{t} \equiv \mathrm{p}$
(3) $(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \sim \mathrm{q}) \equiv \mathrm{p} \vee(\mathrm{q} \wedge \sim \mathrm{q}) \equiv \mathrm{p} \vee \mathrm{c} \equiv \mathrm{p}$
(4) $(\mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \vee \sim \mathrm{q}) \equiv \mathrm{p} \vee(\mathrm{q} \vee \sim \mathrm{q}) \equiv \mathrm{p} \vee \mathrm{t} \equiv \mathrm{t}$
9. All the pairs (x, y) that satisfy the inequality $2 \sqrt{\sin ^{2} x-2 \sin x+5} \cdot \frac{1}{4^{\sin ^{2} y}} \leq 1$ also satisfy the eauation.
(1) $\sin x=|\sin y|$
(2) $\sin x=2 \sin y$
(3) $2|\sin x|=3 \sin y$
(4) $2 \sin x=\sin y$

Official Ans. by NTA (1)
Sol. $2^{\sqrt{\sin ^{2} x-2 \sin x+5}} \cdot 4^{-\sin ^{2} y} \leq 1$
$\Rightarrow 2^{\sqrt{(\sin x-1)^{2}+4}} \leq 2^{2 \sin ^{2} y}$
$\Rightarrow \sqrt{(\sin x-1)^{2}+4} \leq 2 \sin ^{2} y$
$\Rightarrow \sin \mathrm{x}=1$ and $|\sin \mathrm{y}|=1$
10. The number of 6 digit numbers that can be formed using the digits $0,1,2,5,7$ and 9 which are divisible by 11 and no digit is repeated, is :
(1) 36
(2) 60
(3) 48
(4) 72

Official Ans. by NTA (2)
Sol. Sum of given digits $0,1,2,5,7,9$ is 24 .
Let the six digit number be abcdef and to be divisible by 11
so $|(a+c+e)-(b+d+f)|$ is multiple of 11 .
Hence only possibility is $\mathrm{a}+\mathrm{c}+\mathrm{e}=12=\mathrm{b}+\mathrm{d}+\mathrm{f}$
Case-I $\{\mathrm{a}, \mathrm{c}, \mathrm{e}\}=\{9,2,1\} \&\{\mathrm{~b}, \mathrm{~d}, \mathrm{f}\}=$ $\{7,5,0\}$
So, Number of numbers $=3!\times 3!=36$
Case-II $\{\mathrm{a}, \mathrm{c}, \mathrm{e}\}=\{7,5,0\}$ and $\{\mathrm{b}, \mathrm{d}, \mathrm{f}\}=\{9,2,1\}$
So, Number of numbers $2 \times 2!\times 3!=24$
Total $=60$
11. Assume that each born child is equally likely to be a boy or a girl. If two families have two children each, then the conditional probability that all children are girls given that at least two are girls is :
(1) $\frac{1}{11}$
(2) $\frac{1}{17}$
(3) $\frac{1}{10}$
(4) $\frac{1}{12}$

Official Ans. by NTA (1)
Sol. $\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{G})=1 / 2$
Required Proballity $=$ all 4 girls
(all 4girls) + (exactly 3 girls +1 boy $)+$ (exactly 2 girls +2 boys $)$
$=\frac{\left(\frac{1}{2}\right)^{4}}{\left(\frac{1}{2}\right)^{4}+{ }^{4} \mathrm{C}_{3}\left(\frac{1}{2}\right)^{4}+{ }^{4} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{4}}=\frac{1}{11}$
12. The sum
$\frac{3 \times 1^{3}}{1^{2}}+\frac{5 \times\left(1^{3}+2^{3}\right)}{1^{2}+2^{2}}+\frac{7 \times\left(1^{3}+2^{3}+3^{3}\right)}{1^{2}+2^{2}+3^{2}}+$
(1) 660
(2) 620
(3) 680
(4) 600

Official Ans. by NTA (1)
Sol. $\mathrm{T}_{\mathrm{n}}=\frac{(3+(\mathrm{n}-1) \times 2)\left(1^{3}+2^{3}+\ldots+\mathrm{n}^{3}\right)}{\left(1^{2}+2^{2}+\ldots+\mathrm{n}^{2}\right)}$
$=\frac{3}{2} \mathrm{n}(\mathrm{n}+1)=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)-(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)}{2}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{2}$
$\Rightarrow S_{10}=660$
13. If a directrix of a hyperbola centred at the origin and passing through the point $(4,-2 \sqrt{3})$ is $5 x=4 \sqrt{5}$ and its eccentricity is e, then :
(1) $4 \mathrm{e}^{4}-24 \mathrm{e}^{2}+35=0$
(2) $4 \mathrm{e}^{4}+8 \mathrm{e}^{2}-35=0$
(3) $4 \mathrm{e}^{4}-12 \mathrm{e}^{2}-27=0$
(4) $4 \mathrm{e}^{4}-24 \mathrm{e}^{2}+27=0$

Official Ans. by NTA (1)

Sol. Hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\frac{\mathrm{a}}{\mathrm{e}}=\frac{4}{\sqrt{5}}$ and $\frac{16}{\mathrm{a}^{2}}-\frac{12}{\mathrm{~b}^{2}}=1$
$\mathrm{a}^{2}=\frac{16}{5} \mathrm{e}^{2} \ldots .(1)$ and $\frac{16}{\mathrm{a}^{2}}-\frac{12}{\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)}=1$.
From (1) \& (2)

$$
\begin{aligned}
& 16\left(\frac{5}{16 \mathrm{e}^{2}}\right)-\frac{12}{\left(\mathrm{e}^{2}-1\right)}\left(\frac{5}{16 \mathrm{e}^{2}}\right)=1 \\
& \Rightarrow 4 \mathrm{e}^{4}-24 \mathrm{e}^{2}+35=0
\end{aligned}
$$

14. If $f(x)= \begin{cases}\frac{\sin (\mathrm{p}+1)+\sin \mathrm{x}}{\mathrm{x}} & , \quad \mathrm{x}<0 \\ \frac{\mathrm{q}}{\mathrm{x}^{3 / 2}} & , \quad \mathrm{x}=0 \\ \frac{\sqrt{\mathrm{x}+\mathrm{x}^{2}}-\sqrt{\mathrm{x}}}{\mathrm{x}^{3 / 2}} & , \mathrm{x}>0\end{cases}$
is continuous at $x=0$, then the ordered pair (p, q) is equal to :
(1) $\left(\frac{5}{2}, \frac{1}{2}\right)$
(2) $\left(-\frac{3}{2},-\frac{1}{2}\right)$
(3) $\left(-\frac{1}{2}, \frac{3}{2}\right)$
(4) $\left(-\frac{3}{2}, \frac{1}{2}\right)$

Official Ans. by NTA (4)

Sol. RHL $=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+x^{2}}-\sqrt{x}}{x^{\frac{3}{2}}}=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{1+x}-1}{x}=\frac{1}{2}$
$\mathrm{LHL}=\lim _{\mathrm{x} \rightarrow 0} \frac{\sin (\mathrm{p}+1) \mathrm{x}+\sin \mathrm{x}}{\mathrm{x}}=(\mathrm{p}+1)+1=\mathrm{p}+2$
for continuity $\mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(0)$
$\Rightarrow(\mathrm{p}, \mathrm{q})=\left(\frac{-3}{2}, \frac{1}{2}\right)$
15. If $y=y(x)$ is the solution of the differential equation $\frac{d y}{d x}=(\tan x-y) \sec ^{2} x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, such that $\mathrm{y}(0)=0$, then $\mathrm{y}\left(-\frac{\pi}{4}\right)$ is equal to :
(1) $2+\frac{1}{\mathrm{e}}$
(2) $\frac{1}{2}-\mathrm{e}$
(3) $e-2$
(4) $\frac{1}{2}-\mathrm{e}$

Official Ans. by NTA (3)
Sol. $\frac{d y}{d x}=(\tan x-y) \sec ^{2} x$
Now, put $\tan \mathrm{x}=\mathrm{t} \Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}=\sec ^{2} \mathrm{x}$
So $\frac{d y}{d t}+y=t$
On solving, we get yet $=e^{t}(t-1)+c$
$\Rightarrow \mathrm{y}=(\tan \mathrm{x}-1)+\mathrm{ce}^{-\tan \mathrm{x}}$
$\Rightarrow \mathrm{y}(0)=0 \Rightarrow \mathrm{c}=1$
$\Rightarrow \mathrm{y}=\tan \mathrm{x}-1+\mathrm{e}^{-\tan \mathrm{x}}$
So $y\left(-\frac{\pi}{4}\right)=e-2$
16. If the line $x-2 y=12$ is tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\left(3, \frac{-9}{2}\right)$, then the length of the latus recturm of the ellipse is :
(1) 9
(2) $8 \sqrt{3}$
(3) $12 \sqrt{2}$
(4) 5

Official Ans. by NTA (1)
Sol. Tangent at $\left(3,-\frac{9}{2}\right)$
$\frac{3 x}{a^{2}}-\frac{9 y}{2 b^{2}}=1$
Comparing this with $x-2 y=12$
$\frac{3}{a^{2}}=\frac{9}{4 b^{2}}=\frac{1}{12}$
we get $a=6$ and $b=3 \sqrt{3}$
$\mathrm{L}(\mathrm{LR})=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=9$
17. The value of $\int_{0}^{2 \pi}[\sin 2 x(1+\cos 3 x)] d x$, where $[t]$ denotes the greatest integer function, is :
(1) -2π
(2) π
(3) $-\pi$
(4) 2π

Official Ans. by NTA (3)
Sol. $I=\int_{0}^{2 \pi}[\sin 2 x(1+\cos 3 x)] d x$
$I=\int_{0}^{\pi}([\sin 2 x+\sin 2 x \cos 3 x]+[-\sin 2 x-\sin 2 x \cos 3 x]) d x$
$=\int_{0}^{\pi}-\mathrm{dx}=-\pi$
18. The region represented by $|x-y| \leq 2$ and $|x+y| \leq 2$ is bounded by a :
(1) square of side length $2 \sqrt{2}$ units
rhombus of side length 2 units
(3) square of area 16 sq , units
(4) rhombus of area $8 \sqrt{2}$ sq. units

Official Ans. by NTA (1)
Sol. $|x-y| \leq 2$ and $|x+y| \leq 2$

Square whose side is $2 \sqrt{2}$
19. The line $x=y$ touches a circle at the point $(1,1)$. If the circle also passes through the point $(1,-3)$, then its radius is :
(1) $3 \sqrt{2}$
(2) 3
(3) $2 \sqrt{2}$
(4) 2

Official Ans. by NTA (1)
ALLEN Ans. (3)

Sol.

Equation of circle can be written as $(x-1)^{2}+(y-1)^{2}+\lambda(x-y)=0$
It passes through $(1,-3)$
$16+\lambda(4)=0 \Rightarrow \lambda=-4$
So $(\mathrm{x}-1)^{2}+(\mathrm{y}-1)^{2}-4(\mathrm{x}-\mathrm{y})=0$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}+2 \mathrm{y}+2=0$
$\Rightarrow \mathrm{r}=2 \sqrt{2}$
(correct key is 3)
20. Let $\mathrm{A}(3,0,-1), \mathrm{B}(2,10,6)$ and $\mathrm{C}(1,2,1)$ be the vertices of a triangle and M be the midpoint of AC . If G divides BM in the ratio, $2: 1$, then $\cos (\angle \mathrm{GOA})$ (O being the origin) is equal to :
(1) $\frac{1}{\sqrt{30}}$
(2) $\frac{1}{6 \sqrt{10}}$
(3) $\frac{1}{\sqrt{15}}$
(4) $\frac{1}{2 \sqrt{15}}$

Official Ans. by NTA (3)
Sol. G is the centroid of $\Delta \mathrm{ABC}$
$\mathrm{G} \equiv(2,4,2)$
$\overrightarrow{\mathrm{OG}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{OA}}=3 \hat{\mathrm{i}}-\hat{\mathrm{k}}$
$\cos (\angle \mathrm{GOA})=\frac{\overrightarrow{\mathrm{OG}} \cdot \overrightarrow{\mathrm{OA}}}{|\overrightarrow{\mathrm{OG}}||\overrightarrow{\mathrm{OA}}|}=\frac{1}{\sqrt{15}}$
21. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be differentiable at $\mathrm{c} \in \mathrm{R}$ and $f(\mathrm{c})=0$. If $\mathrm{g}(\mathrm{x})=|f(\mathrm{x})|$, then at $\mathrm{x}=\mathrm{c}, \mathrm{g}$ is :
(1) differentiable if $f^{\prime}(c)=0$
(2) not differentiable
(3) differentiable if $f^{\prime}(\mathrm{c}) \neq 0$
(4) not differentiable if $f^{\prime}(\mathrm{c})=0$

Official Ans. by NTA (1)
Sol. $g^{\prime}(c)=\lim _{h \rightarrow 0} \frac{|f(c+h)|-|f(c)|}{h}$
$=\lim _{h \rightarrow 0} \frac{|f(c+h)|}{h}=\lim _{h \rightarrow 0} \frac{|f(c+h)-f(c)|}{h}$
$=\lim _{h \rightarrow 0}\left|\frac{f(c+h)-f(c)}{h}\right| \frac{|h|}{h}$
$=\lim _{\mathrm{h} \rightarrow 0}\left|\mathrm{f}^{\prime}(\mathrm{c})\right| \frac{|\mathrm{h}|}{\mathrm{h}}=0$, if $\mathrm{f}^{\prime}(\mathrm{c})=0$
i.e., $g(x)$ is differentiable at $x=c$, if $\mathrm{f}^{\prime}(\mathrm{c})=0$
22. If α and β are the roots of the quadratic equation,
$\mathrm{x}^{2}+\mathrm{x} \sin \theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right)$, then $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ is equal to :
(1) $\frac{2^{6}}{(\sin \theta+8)^{12}}$
(2) $\frac{2^{12}}{(\sin \theta-8)^{6}}$
(3) $\frac{2^{12}}{(\sin \theta-4)^{12}}$
(4) $\frac{2^{12}}{(\sin \theta+8)^{12}}$

Official Ans. by NTA (4)

Sol.

$$
\begin{aligned}
& \frac{\alpha^{12}+\beta^{12}}{\left(\frac{1}{\alpha^{12}}+\frac{1}{\beta^{12}}\right)(\alpha-\beta)^{24}}=\frac{(\alpha \beta)^{12}}{(\alpha-\beta)^{24}} \\
& =\frac{(\alpha \beta)^{12}}{\left[(\alpha+\beta)^{2}-4 \alpha \beta\right]^{12}}=\left[\frac{\alpha \beta}{(\alpha+\beta)^{2}-4 \alpha \beta}\right]^{12} \\
& =\left(\frac{-2 \sin \theta}{\sin ^{2} \theta+8 \sin \theta}\right)^{12}=\frac{2^{12}}{(\sin \theta+8)^{12}}
\end{aligned}
$$

23. If the length of the perpendicular from the point $(\beta, 0, \beta)(\beta \neq 0)$ to the line, $\frac{x}{1}=\frac{y-1}{0}=\frac{z+1}{-1}$ is $\sqrt{\frac{3}{2}}$, then β is equal to :
(1) -1
(2) 2
(3) -2
(4) 1

Official Ans. by NTA (1)
Sol. One of the point on line is $\mathrm{P}(0,1,-1)$ and given point is $\mathrm{Q}(\beta, 0, \beta)$.

So, $\overrightarrow{\mathrm{PQ}}=\beta \hat{\mathrm{i}}-\hat{\mathrm{j}}+(\beta+1) \hat{\mathrm{k}}$
Hence, $\beta^{2}+1+(\beta+1)^{2}-\frac{(\beta-\beta-1)^{2}}{2}=\frac{3}{2}$
$\Rightarrow 2 \beta^{2}+2 \beta=0$
$\Rightarrow \beta=0,-1$
$\Rightarrow \beta=-1($ as $\beta \neq 0)$
24. If $\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}-2 \mathrm{x}+10\right)^{2}}$
$=\mathrm{A}\left(\tan ^{-1}\left(\frac{\mathrm{x}-1}{3}\right)+\frac{f(\mathrm{x})}{\mathrm{x}^{2}-2 \mathrm{x}+10}\right)+\mathrm{C}$
where C is a constant of integration, then :
(1) $\mathrm{A}=\frac{1}{27}$ and $f(\mathrm{x})=9(\mathrm{x}-1)$
(2) $\mathrm{A}=\frac{1}{81}$ and $f(\mathrm{x})=3(\mathrm{x}-1)$
(3) $\mathrm{A}=\frac{1}{54}$ and $f(\mathrm{x})=9(\mathrm{x}-1)^{2}$
(4) $\mathrm{A}=\frac{1}{54}$ and $f(\mathrm{x})=3(\mathrm{x}-1)$

Official Ans. by NTA (4)

Sol. $\int \frac{\mathrm{dx}}{\left((\mathrm{x}-1)^{2}+9\right)^{2}}=\frac{1}{27} \int \cos ^{2} \theta \mathrm{~d} \theta$ (Put $\mathrm{x}-1=$
$3 \tan \theta)$
$=\frac{1}{54} \int(1+\cos 2 \theta) \mathrm{d} \theta=\frac{1}{54}\left(\theta+\frac{\sin 2 \theta}{2}\right)+\mathrm{C}$
$=\frac{1}{54}\left(\tan ^{-1}\left(\frac{\mathrm{x}-1}{3}\right)+\frac{3(\mathrm{x}-1)}{\mathrm{x}^{2}-2 \mathrm{x}+10}\right)+\mathrm{C}$
25. ABC is a triangular park with $\mathrm{AB}=\mathrm{AC}=100$ metres. A vertical tower is situated at the mid-point of BC. If the angles of elevation of the top of the tower at A and B are $\cot ^{-1}(3 \sqrt{2})$ and $\operatorname{cosec}^{-1}(2 \sqrt{2})$ respectively, then the height of the tower (in metres) is :
(1) $10 \sqrt{5}$
(2) $\frac{100}{3 \sqrt{3}}$
(3) 20
(4) 25

Official Ans. by NTA (3)

Sol. $\cot \alpha=3 \sqrt{2}$
$\& \operatorname{cosec} \beta=2 \sqrt{2}$

So, $\frac{x}{h}=3 \sqrt{2}$
And $\frac{h}{\sqrt{10^{4}-\mathrm{x}^{2}}}=\frac{1}{\sqrt{7}}$
So, from (i) \& (ii)
$\Rightarrow \frac{\mathrm{h}}{\sqrt{10^{4}-18 \mathrm{~h}^{2}}}=\frac{1}{\sqrt{7}}$
$\Rightarrow 25 \mathrm{~h}^{2}=100 \times 100$
$\Rightarrow \mathrm{h}=20$.
26. If a_{1}, a_{2}, a_{3}, \qquad a_{n} are in A.P. and
$a_{1}+a_{4}+a_{7}+$ \qquad $+a_{16}=114$, then
$a_{1}+a_{6}+a_{11}+a_{16}$ is equal to :
(1) 38
(2) 98
(3) 76
(4) 64

Official Ans. by NTA (3)
Sol. $a_{1}+a_{4}+a_{7}+a_{10}+a_{13}+a_{16}=114$
$\Rightarrow \frac{6}{2}\left(\mathrm{a}_{1}+\mathrm{a}_{16}\right)=114$
$\Rightarrow \mathrm{a}_{1}+\mathrm{a}_{16}=38$
So, $a_{1}+a_{6}+a_{11}+a_{16}=\frac{4}{2}\left(a_{1}+a_{16}\right)$
$=2 \times 38=76$
27. $\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{1 / 3}}{n^{4 / 3}}+\frac{(n+2)^{1 / 3}}{n^{4 / 3}}+\ldots \ldots+\frac{(2 n)^{1 / 3}}{n^{4 / 3}}\right)$
equal to :
(1) $\frac{4}{3}(2)^{4 / 3}$
(2) $\frac{3}{4}(2)^{4 / 3}-\frac{4}{3}$
(3) $\frac{3}{4}(2)^{4 / 3}-\frac{3}{4}$
(4) $\frac{4}{3}(2)^{3 / 4}$

Official Ans. by NTA (3)

Sol. $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n}\left(\frac{n+r}{n}\right)^{1 / 3}$
$=\int_{0}^{1}(1+x)^{1 / 3} \mathrm{dx}=\frac{3}{4}\left(2^{4 / 3}-1\right)$
28. If $\mathrm{Q}(0,-1,-3)$ is the image of the point P in the plane $3 \mathrm{x}-\mathrm{y}+4 \mathrm{z}=2$ and R is the point $(3,-1,-2)$, then the area (in sq. units) of $\triangle P Q R$ is :
(1) $\frac{\sqrt{65}}{2}$
(2) $\frac{\sqrt{91}}{4}$
(3) $2 \sqrt{13}$
(4) $\frac{\sqrt{91}}{2}$

Official Ans. by NTA (4)
Sol. R lies on the plane.

$\mathrm{DQ}=\frac{|1-12-2|}{\sqrt{9+1+16}}=\frac{13}{\sqrt{26}}=\sqrt{\frac{13}{2}}$
$\Rightarrow P Q=\sqrt{26}$
Now, $R Q=\sqrt{9+1}=\sqrt{10}$
$\Rightarrow \mathrm{RD}=\sqrt{10-\frac{13}{2}}=\sqrt{\frac{7}{2}}$
Hence, $\operatorname{ar}(\triangle \mathrm{PQR})=\frac{1}{2} \times \sqrt{26} \times \sqrt{\frac{7}{2}}=\frac{\sqrt{91}}{2}$.
29. If the coefficients of x^{2} and x^{3} are both zero, in the expansion of the expression $\left(1+a x+b x^{2}\right)(1-3 x)^{15}$ in powers of x, then the ordered pair (a, b) is equal to :
(1) $(28,315)$
(2) $(-54,315)$
(3) $(-21,714)$
(4) $(24,861)$

Official Ans. by NTA (1)
Sol. Coefiicient of $\mathrm{x}^{2}={ }^{15} \mathrm{C}_{2} \times 9-3 \mathrm{a}\left({ }^{15} \mathrm{C}_{1}\right)+\mathrm{b}=0$
$\Rightarrow-45 \mathrm{a}+\mathrm{b}+{ }^{15} \mathrm{C}_{2} \times 9=0$
Also, $-27 \times{ }^{15} \mathrm{C}_{3}+9 \mathrm{a} \times{ }^{15} \mathrm{C}_{2}-3 \mathrm{~b} \times{ }^{15} \mathrm{C}_{1}=0$
$\Rightarrow 9 \times{ }^{15} \mathrm{C}_{2} \mathrm{a}-45 \mathrm{~b}-27 \times{ }^{15} \mathrm{C}_{3}=0$
$\Rightarrow 21 \mathrm{a}-\mathrm{b}-273=0$
(i) + (ii)
$-24 a+672=0$
$\Rightarrow \mathrm{a}=28$
So, $b=315$
30. If $\mathrm{a}>0$ and $\mathrm{z}=\frac{(1+\mathrm{i})^{2}}{\mathrm{a}-\mathrm{i}}$, has magnitude $\sqrt{\frac{2}{5}}$, then $\overline{\mathrm{Z}}$ is equal to :
(1) $-\frac{3}{5}-\frac{1}{5} \mathrm{i}$
(2) $-\frac{1}{5}+\frac{3}{5} \mathrm{i}$
(3) $-\frac{1}{5}-\frac{3}{5} \mathrm{i}$
(4) $\frac{1}{5}-\frac{3}{5} \mathrm{i}$

Official Ans. by NTA (3)
Sol. Given a > 0
$z=\frac{(1+i)^{2}}{a-i}=\frac{2 i(a+i)}{a^{2}+1}$
Also $|\mathrm{z}|=\sqrt{\frac{2}{5}} \Rightarrow \frac{2}{\sqrt{\mathrm{a}^{2}+1}}=\sqrt{\frac{2}{5}} \Rightarrow \mathrm{a}=3$
So $\bar{z}=\frac{-2 i(3-i)}{10}=\frac{-1-3 i}{5}$

