TEST PAPER OF JEE(MAIN) EXAMINATION – 2019 (Held On Thrusday 10th JANUARY, 2019) TIME : 02 : 30 PM To 05 : 30 PM CHEMISTRY

1. An ideal gas undergoes isothermal compression from 5 m³ against a constant external pressure of 4 Nm⁻². Heat released in this process is used to increase the temperature of 1 mole of Al. If molar heat capacity of Al is 24 J mol⁻¹ K⁻¹, the temperature of Al increases by :

(1)
$$\frac{3}{2}$$
K (2) $\frac{2}{3}$ K (3) 1 K (4) 2 K

Ans. (2)

Sol. Work done on isothermal irreversible for ideal gas

 $= -P_{ext} (V_2 - V_1)$ = -4 N/m² (1m³ - 5m³) = 16 Nm Isothermal process for ideal gas $\Delta U = 0$ q = -w= -16 Nm = - 16 J Heat used to increase temperature of Al $q = n C_m \Delta T$

$$16 \text{ J} = 1 \times 24 \frac{\text{J}}{\text{mol.K}} \times \Delta T$$

$$\Delta T = \frac{2}{3}K$$

The 71st electron of an element X with an atomic number of 71 enters into the orbital : (1) 4f (2) 6p (3) 6s (4) 5d

Ans. (1)

- 3. The number of 2-centre-2-electron and 3centre-2-electron bonds in B_2H_6 , respectively, are :
 - (1) 2 and 4 (2) 2 and 1 (3) 2 and 2 (4) 4 and 2

Ans. (4)

4. The amount of sugar $(C_{12}H_{22}O_{11})$ required to prepare 2 L of its 0.1 M aqueous solution is : (1) 68.4 g (2) 17.1 g (3) 34.2 g (4)136.8 g Ans (1)

Ans. (1)

Sol. Molarity =
$$\frac{(n)_{solute}}{V_{solution} (in lit)}$$

wt $(C_{12}H_{22}O_{11}) = 68.4$ gram

2

5. Among the following reactions of hydrogen with halogens, the one that requires a catalyst is :

(1) $H_2 + I_2 \rightarrow 2HI$ (2) $H_2 + F_2 \rightarrow 2HF$ (3) $H_2 + Cl_2 \rightarrow 2HCI$ (4) $H_2 + Br_2 \rightarrow 2HBr$

Ans. (1)

- 6. Sodium metal on dissolution in liquid ammonia gives a deep blue solution due to the formation of:
 - (1) sodium ion-ammonia complex
 - (2) sodamide
 - (3) sodium-ammonia complex
 - (4) ammoniated electrons

Ans. (4)

7. What will be the major product in the following mononitation reaction ?

Е

<mark>∛Saral</mark>

JEE (Main) Examination-2019/Evening Session/10-01-2019

8. In the cell $Pt(s)|H_2(g, 1bar|HCl(aq)|Ag(s)|Pt(s)$ the cell potential is 0.92 when a 10⁻⁶ molal HCl solution is used. THe standard electrode potential of (AgCl/Ag,Cl-) electrode is : $\left\{ \text{given}, \frac{2.303\text{RT}}{\text{F}} = 0.06\text{Vat}298\text{K} \right\}$ (1) 0.20 V (2) 0.76 V (3) 0.40 V (4) 0.94 V Ans. (1) $Pt(s)|H_2(g, 1bar)|HCl(aq)|AgCl(s)|Ag(s)|Pt(s)|$ Sol. $10^{-6} \,\mathrm{m}$ $H_2 \longrightarrow 2H^+ + 2e \times 1$ Anode: **Cathode** : $e^- + AgCl(s) \longrightarrow Ag(s) + Cl^-(aq)$ $\times 2$ $H_2(g)l + AgCl(s) \longrightarrow 2H^+ +$ $2Ag(s) + 2Cl^{-}(ag)$

$$E_{cell} = E_{cell}^{0} - \frac{0.06}{2} \log_{10} \left((H^{+})^{2} \cdot (Cl^{-})^{2} \right)$$

$$.925 = \left(E^{0}_{H_{2}/H^{+}} + E^{0}_{AgCl/Ag, Cl^{-}} \right) - \frac{0.06}{2} \log_{10} \left((10^{-6})^{2} (10^{-6})^{2} \right)$$

$$.92 = 0 + E_{AgCl/Ag,Cl^{-}}^{0} - 0.03 \log_{10}(10^{-6})^{4}$$
$$E_{AgCl}^{0} / Ag, Cl^{-} = .92 + .03 \times -24 = 0.2 \text{ V}$$

9. The major product of the following recation is:

10. The pair that contains two P-H bonds in each of the oxoacids is :
(1) H₃PO₂ nad H₄P₂O₅
(2) H₄P₂O₅ and H₄P₂O₆
(3) H₃PO₃ and H₃PO₂
(4) H₄P₂O₅ nad H₃PO₃

11. The major product of the following reaction is:

Ans. (4)

12. The difference in the number of unpaired electrons of a metal ion in its high-spin and low-spin octahedral complexes is two. The metal ion is :

(3) Mn²⁺

(4) Ni^{2+}

E

(1)
$$Fe^{2+}$$
 (2) Co^{2+}

Ans. (2)

13. A compound of formula A_2B_3 has the hcp lattice. Which atom forms the hcp lattice and what fraction of tetrahedral voids is occupied by the other atoms :

2

JEE (Main) Examination-2019/Evening Session/10-01-2019

Sol. A_2B_3 has HCP lattice

If A form HCP, then $\frac{3}{4}^{\text{th}}$ of THV must occupied by B to form A_2B_3

If B form HCP, then $\frac{1}{3}^{\text{th}}$ of THV must occupied by A to form A_2B_3

14. The reaction that is NOT involved in the ozone layer depletion mechanism is the stratosphere is:

(1) HOCl(g)
$$\xrightarrow{h\upsilon} OH(g) + Cl(g)$$

- (2) $CF_2Cl_2(g) \xrightarrow{uv} Cl(g) + CF_2Cl(g)$
- (3) $CH_4 + 2O_3 \rightarrow 3CH_2 = O + 3H_2OP$
- (4) $\operatorname{ClO}(g) + \operatorname{O}(g) \rightarrow \operatorname{Cl}(g) + \operatorname{O}_2(g)$

Ans. (3)

- 15. The process with negative entropy change is :
 - (1) Dissolution of iodine in water
 - (2) Synthesis of ammonia from N_2 and H_2
 - (3) Dissolution of $CaSO_4(s)$ to CaO(s) and $SO_3(g)$
 - (4) Subimation of dry ice

Ans. (2)

Sol. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$; $\Delta n_g < 0$

16. The major product of the following reaction is:

Ans. (3)

- 17. A reaction of cobalt(III) chloride and ethylenediamine in a 1 : 2 mole ratio generates two isomeric products A (violet coloured) B (green coloured). A can show optial actively, B is optically inactive. What type of isomers does A and B represent ?
 - (1) Geometrical isomers
 - (2) Ionisation isomers]
 - (3) Coordination isomers
 - (4) Linkage isomers

Ans. (1)

<mark>∛Saral</mark>

JEE (Main) Examination-2019/Evening Session/10-01-2019

18. The major product obtained in the following reaction is :

Ans. (4)

- **19.** Which of the following tests cannot be used for identifying amino acids ?
 - (1) Biuret test (2) Xanthoproteic test
 - (3) Barfoed test (4) Ninhydrin test
- Ans. (3)
- **20.** What is the IUPAC name of the following compound ?

- (1) 3-Bromo-1, 2-dimethylbut-1-ene]
- (2) 4-Bromo-3-methylpent-2-ene
- (3) 2-Bromo-3-methylpent-3-ene
- (4) 3-Bromo-3-methyl-1, 2-dimethylprop-1-ene
- Ans. (2)
- **21.** Which is the most suitable reagent for the following transformation ?

$$\begin{array}{c} & & & & & \\ & H \\ & CH_3-CH=CH-CH_2-CH-CH_3 \longrightarrow \\ & & CH_3-CH=CH-CH_2CO_2H \\ (1) \text{ alkaline } KMnO_4 \quad (2) I_2/NaOH \\ (3) \text{ Tollen's reagent} \quad (4) CrO_2/CS_2 \\ \textbf{Ans. (2)} \end{array}$$

22. The correct match between item T and item 'II' is : Item 'II' Item 'I' (compound) (reagent) (A) Lysine (P) 1-naphthol (B) Furfural (Q) ninhydrin (C) Benzyl alcohol (R) $KMnO_4$ (D) Styrene (S) Ceric ammonium nitrate (1) (A) \rightarrow (Q), (B) \rightarrow (P), (C) \rightarrow (S), (D) \rightarrow (R) (2) (A) \rightarrow (Q), (B) \rightarrow (R), (C) \rightarrow (S), (D) \rightarrow (P) (3) (A) \rightarrow (Q), (B) \rightarrow (P), (C) \rightarrow (R), (D) \rightarrow (S) (4) (A) \rightarrow (R), (B) \rightarrow (P), (C) \rightarrow (Q), (D) \rightarrow (S) **Ans.** (1) 23. In the reaction of oxalate with permaganate in acidic medium, the number of electrons involved in producing one molecule of CO_2 is : (4) 5(1) 10(2) 2(3) 1 Ans. (3) $2 \dot{M} nO_4 + 5C_2 O_4^{2-} + 16H^+ \longrightarrow 2 \dot{M} n^{2+}$ Sol. $+10CO_{2} + 8H_{2}O$ 10 e^- trans for 10 molecules of CO₂ so per molecule of CO_2 transfer of e^- is '1' 24. 5.1g NH₄SH is introduced in 3.0 L evacuated flask at 327°C. 30% of the solid NH₄SH decomposed to NH₃ and H₂S as gases. The K_p of the reaction at 327° C is (R = 0.082 L atm $mol^{-1}K^{-1}$, Molar mass of S = 32 g mol^{/01}, molar mass of N = 14g mol⁻¹) (1) $1 \times 10^{-4} \text{ atm}^2$ (2) $4.9 \times 10^{-3} \text{ atm}^2$ (3) 0.242 atm² (4) 0.242×10^{-4} atm² Ans. (3) $NH_4SH(s) \Longrightarrow NH_3(g) + H_2S(g)$ $n = \frac{5.1}{51} = .1 \text{ mole } 0$ 0 Sol. $.1(-1-\alpha)$.1α .1α $\alpha = 30\% = .3$ so number of moles at equilibrium .1(1 - .3) $.1 \times .3$ $.1 \times .3$.07 =.03=.03 = Now use PV = nRT at equilibrium $P_{total} \times 3 \text{ lit} = (.03 + .03) \times .082 \times 600$ $P_{total} = .984 atm$ At equilibrium $P_{\rm NH_3 =} P_{\rm H_2S} = \frac{P_{\rm total}}{2} = .492$ So $k_p = P_{NH_3} \cdot P_{H_2S} = (.492) (.492)$ $k_p = .242 \text{ atm}^2$

Е

JEE (Main) Examination-2019/Evening Session/10-01-2019

- 25. The electrolytes usually used in the electroplating of gold and silver, respectively, are :
 - (1) $[Au(OH)_4]^-$ and $[Ag(OH)_2]^-$
 - (2) $[Au(CN)_2]^-$ and $[Ag CI_2]^-$
 - (3) $[Au(NH_3)_2]^+$ and $[Ag(CN)_2]^-$
 - (4) $[Au(CN)_2]^-$ and $[Ag(CN)_2]^-$

Ans. (4)

26. Elevation in the boiling point for 1 molal solution of glucose is 2 K. The depression in the freezing point of 2 molal solutions of glucose in the same solvent is 2 K. The relation between K_b and K_f is:

(1)
$$K_b = 0.5 K_f$$
 (2) $K_b = 2 K_f$
(3) $K_b = 1.5 K_f$ (4) $K_b = K_f$

(3)
$$K_b = 1.5 K_f$$
 (4) $K_b = K$

Ans. (2)

Sol. Ans.(2)

 $\frac{\Delta T_{b}}{\Delta T_{f}} = \frac{i.m \times k_{b}}{i \times m \times k_{f}}$

$$\frac{2}{2} = \frac{1 \times 1 \times k_{b}}{1 \times 2 \times k_{f}}$$

 $k_{\rm h} = 2k_{\rm f}$

27. An aromatic compound 'A' having molecular formula $C_7H_6O_2$ on treating with aqueous ammonia and heating forms compound 'B'. The compound 'B' on reaction with molecular bromine and potassium hydroxide provides compound 'C' having molecular formula C_6H_7N . The structure of 'A' is :

Ans. (3)

Ε

28. The ground state energy of hydrogen atom is -13.6 eV. The energy of second excited state He⁺ ion in eV is : (1) -6.04 (2) -27.2 (3) -54.4 (4) -3.4Ans. (1)

Sol.
$$(E)_{n^{\text{th}}} = (E_{GND})_{H} \cdot \frac{Z^2}{n^2}$$

$$E_{3^{rd}}(He^+) = (-13.6 \text{ eV}) \cdot \frac{2^2}{3^2} = -6.04 \text{ eV}$$

29. For an elementary chemical reaction,

A₂
$$\xrightarrow{k_1}$$
 2A, the expression for $\frac{d[A]}{dt}$ is :
(1) 2k₁[A₂]-k₋₁[A]² (2) k₁[A₂]-k₋₁[A]²
(3) 2k₁[A₂]-2k₋₁[A]² (4) k₁[A₂]+k₋₁[A]²
Ans. (3)
Sol. Ans.(3)

$$A_2 \xrightarrow{k_1} 2A$$
$$\frac{d[A]}{dt} = 2k_1[A_2] - 2k_{-1}[A]^2$$

30. Haemoglobin and gold sol are examples of : (1) negatively charged sols

- (2) positively charged sols]
- (3) negatively and positively charged sols, respectively
- (4) positively and negatively charged sols, respectively

Ans. (4)

Sol. Ans.(4)

Haemoglobin \longrightarrow positive sol - sol \longrightarrow negative sol Ag