

TEST PAPER OF JEE(MAIN) EXAMINATION – 2019 (Held On Thursday 10th JANUARY, 2019) TIME : 9 : 30 AM To 12 : 30 PM CHEMISTRY

1. Two pi and half sigma bonds are present in: Sol. Adipic acid CO₂H–(CH₂)₄–CO₂H -(1) $N_{2^{+}}$ (2) N_2 (3) O_{2^+} $(4) O_2$ 7 membered cyclic anhydride (Very unstable) Ans. (1) 4. Which premitive unit cell has unequal edge Sol. from 90°? $N_2^{\oplus} \Rightarrow BO = 2.5 \Rightarrow \left[\pi - Bond = 2 \& \sigma - Bond = \frac{1}{2}\right]$ (1) Tetragonal (3) Monoclinic $N_2 \Rightarrow B.O. = 3.0 \Rightarrow [\pi\text{-Bond} = 2 \& \sigma\text{-Bond} = 1]$ $O_2^{\oplus} = B.O. \Rightarrow 2.5 \Rightarrow [\pi\text{-Bond} = 1.5 \& \sigma\text{-Bond} = 1]$ **Ans.** (4) $O_2 \Rightarrow B.O. \Rightarrow 2 \Rightarrow [\pi\text{-Bond} \Rightarrow 1 \& \sigma\text{-Bond} = 1]$ **Sol.** In Triclinic unit cell The chemical nature of hydrogen preoxide is :-2. (1) Oxidising and reducing agent in acidic 5. medium, but not in basic medium. (1) $[(Ph_3P)_3RhCl]$ (2) Oxidising and reducing agent in both acidic (2) $[Et_3P)_3IrCl]$ and basic medium (3) $[Et_3P)_3RhCl]$ (3) Reducing agent in basic medium, but not in acidic medium (4) $[Ph_3P)_3IrCl]$ (4) Oxidising agent in acidic medium, but not Ans. (1) in basic medium. Sol. 6. Ans. (2) **Sol.** H_2O_2 act as oxidising agent and reducing agent respectively, are : in acidic medium as well as basic medium. (1) 2 and 0H₂O₂ Act as oxidant :- $H_2O_2 + 2H^{\oplus} + 2e^{\Theta} \rightarrow 2H_2O$ (In acidic medium) (3) 3 and 1 $H_2O + 2e^{\Theta} \rightarrow 2OH^{\Theta}$ (In basic medium) Ans. (3) H₂O₂ Act as reductant :-Sol. $H_2O_2 \rightarrow 2H^+ + O_2 + 2e^{\Theta}$ (In acidic medium) $H_2O_2 + 2OH^{\Theta} \rightarrow 2H_2O + O_2 + 2e^{\Theta}$ (In basic medium) 3. Which dicarboxylic acid in presence of a dehydrating agent is least reactive to give an 7. anhydride : Br Ph COOH (1)COOH (1)COOH COOH Ans. (4) Ans. (3)

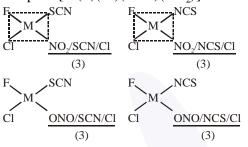
lenghs ($a \neq b \neq c$) and all axial angles different (2) Hexagonal (4) Triclinic $a \neq b \neq c \& \alpha \neq \beta \neq \gamma \neq 90^{\circ}$ Wilkinson catalyst is : $(Et = C_2H_5)$ Wilkinsion catalyst is [(ph₃P)₃RhCl] The total number of isotopes of hydrogen and number of radioactive isotopes among them, (2) 3 and 2 (4) 2 and 1 Total number of isotopes of hydrogen is 3 $\Rightarrow {}^{1}_{1}H, {}^{2}_{1}H \text{ or } {}^{2}_{1}D, {}^{3}_{1}H \text{ or } {}^{3}_{1}T$ and only ${}_{1}^{3}$ H or ${}_{1}^{3}$ T is an Radioactive element. The major product of the following reaction is KOH alc (excess)

(2)

dehydrating

Ε

<mark>∛Saral</mark>


JEE (Main) Examination-2019/Morning Session/10-01-2019

- Sol. Example of E_2 elimination and conjugated diene is formed with phenyl ring in conjugation which makes it very stable.
- 8. The total number of isomers for a square planar complex [M(F)(Cl)(SCN)(NO₂)] is :

(1) 12 (2) 8 (3) 16 (4) 4

Ans. (1)

Sol. The total number of isomers for a square planar complex $[M(F)(Cl)(SCN)(NO_2)]$ is 12.

9. Hall-Heroult's process is given by "

(1) $\operatorname{Cr}_2\operatorname{O}_3 + 2\operatorname{Al} \to \operatorname{Al}_2\operatorname{O}_3 + 2\operatorname{Cr}$

- (2) $\operatorname{Cu}^{2+}(\operatorname{aq.}) + \operatorname{H}_2(g) \rightarrow \operatorname{Cu}(s) + 2\operatorname{H}^+(\operatorname{aq})$
- (3) $ZnO + C \xrightarrow{Coke, 1673K} Zn + CO$
- (4) $2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$

Ans. (4)

- **Sol.** In Hall-Heroult's process is given by $2Al_2O_3 + 3C \longrightarrow 4Al + 3CO_2$ $2Al_2O_3(\ell) \rightleftharpoons 4Al^{3+}(\ell) + 6O^{2\Theta}(\ell)$ At cathode :- $4Al_{(\ell)}^{3+} + 12e^{\Theta} \rightarrow 4Al(\ell)$ At Anode : $6O_{(\ell)}^{2\Theta} \rightarrow 3O_2(g) + 12e^{\Theta}$ $3C + 3O_2 \rightarrow 3CO_2$ ([†]) 10. The value of K_p/K_C for the following reactions at 300K are, respectively : (At 300K, $RT = 24.62 \text{ dm}^3 \text{atm mol}^{-1}$) $N_2(g) + O_2(g) \longrightarrow 2NO(g)$ $N_2O_4(g) \implies 2NO_2(g)$ $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ (1) 1, 24.62 dm³atm mol⁻¹, 606.0 dm6atm2mol-2 (2) 1, $4.1 \times 10^{-2} \text{ dm}^{-3} \text{atm}^{-1} \text{ mol}^{-1}$, 606.0 dm6 atm2 mol-2
 - (3) 606.0 dm⁶atm²mol⁻², 1.65 \times 10⁻³ dm³atm⁻² mol⁻¹

$$1.65 \times 10^{-3} \text{ dm}^{-6} \text{atm}^{-2} \text{ mol}^{2}$$

Ans. (4)

- Sol. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ $\frac{k_p}{k_c} = (RT)^{\Delta n_g} = (RT)^0 = 1$ $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $\frac{k_p}{k_c} = (RT)^1 = 24.62$ $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $\frac{k_p}{k_c} = (RT)^{-2} = \frac{1}{(RT)^2} = 1.65 \times 10^{-3}$
- **11.** If dichloromethane (DCM) and water (H_2O) are used for differential extraction, which one of the following statements is correct ?
 - (1) DCM and H_2O would stay as lower and upper layer respectively in the S.F.
 - (2) DCM and H_2O will be miscible clearly
 - (3) DCM and H₂O would stay as upper and lower layer respectively in the separating funnel (S.F.)
 - (4) DCM and H₂O will make trubid/colloidal mixture

Ans. (1)

- 12. The type of hybridisation and number of lone pair(s) of electrons of Xe in XeOF₄, respectively, are :
 - (1) $sp^{3}d$ and 1
 - (2) $sp^{3}d$ and 2

(3) $sp^{3}d^{2}$ and 1

(4) $sp^{3}d^{2}$ and 2

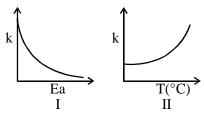
Ans. (3)

Sol.
$$F_{F} \stackrel{O}{\longrightarrow} F_{F} sp^{3}d^{2} \Rightarrow [5\sigma\text{-bond } +1 \text{ l.p.}]$$

13. The metal used for making X-ray tube window is :

(1) Mg (2) Na (3) Ca (4) Be

Ans. (4)

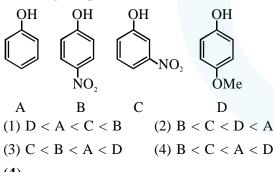

Sol. "Be" Metal is used in x-ray window is due to transparent to x-rays.

Ε

JEE (Main) Examination-2019/Morning Session/10-01-2019

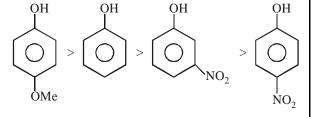
14. Consider the given plots for a reaction obeying Arrhenius equation $(0^{\circ}C < T < 300^{\circ}C)$: (k and E_a are rate constant and activation energy, respectively)

Choose the correct option :


- (1) Both I and II are wrong
- (2) I is wrong but II is right
- (3) Both I and II are correct
- (4) I is right but II is wrong

Ans. (4)

- **Sol.** On increasing E_a, K decreases
- **15.** Water filled in two glasses A and B have BOD values of 10 and 20, respectively. The correct statement regarding them, is :
 - (1) A is more polluted than B
 - (2) A is suitable for drinking, whereas B is not
 - (3) B is more polluted than A
 - (4) Both A and B are suitable for drinking
- Ans. (3)
- **Sol.** Two glasses "A" and "B" have BOD values 10 and "20", respectively.


Hence glasses "B" is more polluted than glasses "A".

16. The increasing order of the pKa values of the following compounds is :

Ans. (4)

Sol. Acidic strength is inversely proportional to pka.

17. Liquids A and B form an ideal solution in the entire composition range. At 350 K, the vapor pressures of pure A and pure B are 7×10^3 Pa and 12×10^3 Pa, respectively. The composition of the vapor in equilibrium with a solution containing 40 mole percent of A at this temperature is :

(1)
$$x_A = 0.37$$
; $x_B = 0.63$
(2) $x_A = 0.28$; $x_B = 0.72$

(3)
$$x_A = 0.76; x_B = 0.24$$

(4)
$$x_A = 0.4; x_B = 0.6$$

Ans. (2)

Sol.
$$y_A = \frac{P_A}{P_{Total}} = \frac{P_A^o x_A}{P_A^o x_A \times p_B^o x_B}$$

$$= \frac{7 \times 10^3 \times 0.4}{7 \times 10^3 \times 0.4 + 12 \times 10^3 \times 0.6}$$

$$=\frac{2.8}{10}=0.28$$

 $y_{\rm B} = 0.72$

18. Consider the following reduction processes :

$$Zn^{2+} + 2e^{-} \rightarrow Zn(s); E^{\circ} = -0.76 V$$

$$Ca^{2+} + 2e^{-} \rightarrow Ca(s); E^{\circ} = -2.87 V$$

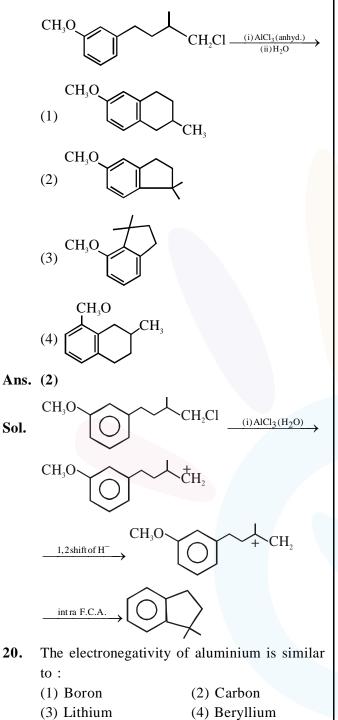
$$Mg^{2+} + 2e^{-} \rightarrow Mg(s); E^{\circ} = -2.36 V$$

$$Ni^{2+} + 2e^{-} \rightarrow Ni(s); E^{\circ} = -0.25 V$$

The reducing power of the metals increases in the order :

(1)
$$Ca < Zn < Mg < Ni$$

(2) $Ni < Zn < Mg < Ca$
(3) $Zn < Mg < Ni < Ca$
(4) $Ca < Mg < Zn < Ni$


Ans. (2)

Sol. Higher the oxidation potential better will be reducing power.

<mark>∛Saral</mark>


JEE (Main) Examination-2019/Morning Session/10-01-2019

19. The major product of the following reaction is:

- Ans. (4)
- **Sol.** E.N. of Al = $(1.5) \ge$ Be (1.5)

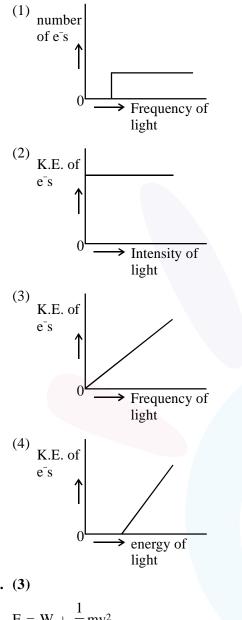
21. The decreasing order of ease of alkaline hydrolysis for the following esters is :

Ans. (2)

Sol. More is the electrophilic character of carbonyl group of ester faster is the alkaline hydrolysis.

22. A process has $\Delta H = 200 \text{ Jmol}^{-1}$ and

 $\Delta S = 40 \text{ JK}^{-1}\text{mol}^{-1}$. Out of the values given below, choose the minimum temperature above which the process will be spontaneous :

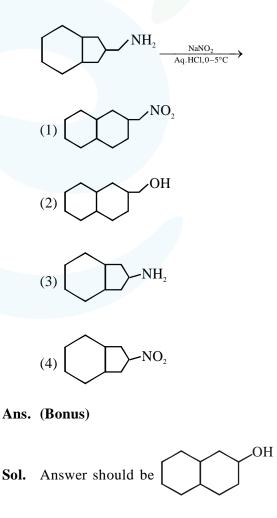

Ε

(1) 5 K (2) 4 K (3) 20 K (4) 12 K Ans. (1) Sol. $\Delta G = \Delta H - T\Delta S$ $T = \frac{\Delta H}{\Delta S} = \frac{200}{40} = 5K$

JEE (Main) Examination-2019/Morning Session/10-01-2019

23. Which of the graphs shown below does not represent the relationship between incident light and the electron ejected form metal surface ?

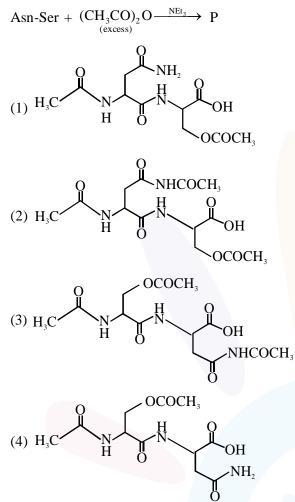
- **Sol.** $E = W + \frac{1}{2}mv^2$ K.E. = $h\nu - 4\nu_0$ K.E. = $hv + (-hv_0)$ $y = mx + \underline{C}$
- Which of the following is not and example of 24. heterogeneous catalytic reaction ?
 - (1) Ostwald's process
 - (2) Haber's process
 - (3) Combustion of coal
 - (4) Hydrogenation of vegetable oils

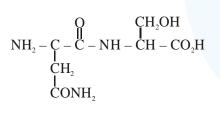

Ans. (3)

E

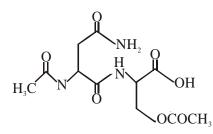
- Sol. Then is no catalyst is required for combustion of coal.
- 25. The effect of lanthanoid contraction in the lanthanoid series of elements by and large means :
 - (1) decrease in both atomic and ionic radii
 - (2) increase in atomic radii and decrease in ionic radii
 - (3) increase in both atomic and ionic radii
 - (4) decrease in atomic radii and increase in ionic radii

Ans. (1)


- **Sol.** Due to Lanthanoid contraction both atomic radii and ionic radii decreases gradually in the lanthanoid series.
- 26. The major product formed in the reaction given below will be :


JEE (Main) Examination-2019/Morning Session/10-01-2019

27. The correct structure of product 'P' in the following reaction is :


Ans. (1)

Sol. Asn-Ser is dipeptide having following structure

Asn – Ser +
$$(CH_3CO)_2 O \xrightarrow{NEt_3} P$$

excess

P is

28. Which hydrogen in compound (E) is easily replaceable during bromination reaction in presence of light :

$$CH_{\delta} - CH_{2} - CH = CH_{2}$$

(1) β – hydrogen

- (2) γ hydrogen
- (3) δ hydrogen
- (4) α hydrogen

Ans. (2)

29. The major product 'X' formed in the following reaction is :

$$(1) \xrightarrow{OH} CH_2-C-OCH_3 \xrightarrow{NaBH_4} X$$

$$(1) \xrightarrow{OH} CH_2CH_2OH$$

$$(2) \xrightarrow{O} CH_2-C-H$$

$$(3) \xrightarrow{OH} CH_2CH_2OH$$

$$(4) \xrightarrow{OH} CH_2-C-OCH_3$$

Ε

Ans. (4)

6

- 30. A mixture of 100 m mol of Ca(OH)₂ and 2g of sodium sulphate was dissolved in water and the volume was made up to 100 mL. The mass of calcium sulphate formed and the concentration of OH⁻ in resulting solution, respectively, are : (Molar mass of Ca(OH)₂, Na₂SO₄ and CaSO₄ are 74, 143 and 136 g mol⁻¹, respectively; K_{sp} of Ca(OH)₂ is 5.5 × 10⁻⁶)
 - (1) 1.9 g, 0.14 mol L^{-1}
 - (2) 13.6 g, 0.14 mol L^{-1}
 - (3) 1.9 g, 0.28 mol L⁻¹
 - (4) 13.6 g, 0.28 mol L⁻¹

Ans. (3)

 $w_{CaSO_4} = 14 \times 10^{-3} \times 136 = 1.9 gm$

$$[OH^{-}] = \frac{28}{100} = 0.28M$$