TEST PAPER OF JEE(MAIN) EXAMINATION - 2019

(Held On Wednesday 09th JANUARY, 2019) TIME: 2:30 PM To 05: 30 PM CHEMISTRY

1. lood reducing nature of $\mathrm{H}_{3} \mathrm{PO}_{2}$ ttributed to the presence of:
(1) One P-OH bond
(2) One P-H bond
(3) Two P-H bonds
(4) Two P-OH bonds

Ans. (3)
Sol. $\mathrm{H}_{3} \mathrm{PO}_{2}$ is good reducing agent due to presence of two $\mathrm{P}-\mathrm{H}$ bonds.

2. The complex thai has highest cry splitting energy (Δ), is :
(1) $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
(3) $\mathrm{K}_{2}\left[\mathrm{CoCl}_{4}\right]$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

Ans. (1)
Sol. As complex $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ have CN^{-}ligand which is strongfield ligand amongst the given ligands in other complexes.
3. The metal that forms nitride by reacting directly with N_{2} of air, is :
(1) K
(2) Cs
(3) Li
(4) Rb

Ans. (3)
Sol. Only Li react directly with N_{2} out of alkali metals
$6 \mathrm{Li}+\mathrm{N}_{2} \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$
4. In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic ?
(1) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$
(2) $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
(3) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{2-}$
(4) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}{ }^{+}$

Ans. (2)
Sol.

Process	Changein magnetic nature	Bond Order Change
$\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$	Dia \rightarrow para	$3 \rightarrow 2.5$
$\mathrm{NO} \rightarrow \mathrm{NO}^{+}$	Para \rightarrow Dia	$2.5 \rightarrow 3$
$\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-2}$	Para \rightarrow Dia	$2 \rightarrow 1$
$\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$	Para \rightarrow Para	$2 \rightarrow 2.5$

5. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Ans. (4)
Sol.

JEE (Main) Examination-2019/Evening Session/09-01-2019

6. The transition element that has lowest enthalpy of atomisation, is :
(1) Zn
(2) Cu
(3) V
(4) Fc

Ans. (2)
Sol. Since Zn is not a transition element so transition element having lowest atomisation energy out of $\mathrm{Cu}, \mathrm{V}, \mathrm{Fe}$ is Cu .
7. Which of the following combination of statements is true regarding the interpretation of the atomic orbitals ?
(a) An electron in an orbital of high angular momentum stays away from the nucleus than an electron in the orbital of lower angular momentum.
(b) For a given value of the principal quantum number, the size of the orbit is inversely proportional to the azimuthal quantum number.
(c) According to wave mechanics, the ground state angular momentum is h equal to $\frac{\mathrm{h}}{2 \pi}$.
(d) The plot of ψ Vs r for various azimuthal quantum numbers, shows peak shifting towards higher r value
(1) (b), (c) (2) (a), (d) (3) (a), (b) (4) (a), (c)

Ans. (4)
Sol. Refer Theory
8. The tests performed on compound X and their inferences are:

Test
(a) 2,4 - DNP test
(b) Iodoform test
(c) Azo-dye test

Inference

Coloured precipitate
Yellow precipitate
No dye formation

Compound ' X ' is:

(1)

(2)

(3)

(4)

Ans. (2)
Sol. $\rightarrow 2,4$ - DNP test is given by aldehyde on ketone
\rightarrow Iodoform test is given by compound having

9. The major product formed in the following reaction is:

(1)

(2)

(3)

(4)

Ans. (1)
Sol. Aldehyde reacts at a faster rate than keton during aldol and stericall less hindered anion will be a better nucleophile so sefl aldol at

10. For the reaction, $2 \mathrm{~A}+\mathrm{B} \rightarrow$ products, when the concentrations of A and B both wrere doubled, the rate of the reaction increased from 0.3 mol $\mathrm{L}^{-1} \mathrm{~s}^{-1}$ to $2.4 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. When the concentration of A alone is doubled, the rate increased from $0.3 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ to $0.6 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$

Which one of the following statements is correct ?
(1) Order of the reaction with respect to Bis2
(2) Order of the reaction with respect to Ais2
(3) Total order of the reaction is 4
(4) Order of the reaction with respect to B is 1

Ans. (1)

Sol. $\quad r=K[A]^{x}[B]^{y}$
$\Rightarrow 8=2^{3}=2^{x+y}$
$\Rightarrow \mathrm{x}+\mathrm{y}=3$...(1)
$\Rightarrow 2=2^{x}$
$\Rightarrow \mathrm{x}=1, \mathrm{y}=2$
Order w.r.t. $\mathrm{A}=1$
Order w.r.t. $\mathrm{B}=2$
11. The correct sequence of amino acids present in the tripeptide given below is :

(1) Leu - Ser - Thr
(2) Thr - Ser- Leu
(3) Thr - Ser - Val
(4) Val - Ser - Thr

Ans. (4)

Sol. Leusine

Serine

Thrconine

12. The correct statement regarding the given Ellingham diagram is:

JEE (Main) Examination-2019/Evening Session/09-01-2019

(1) At $800^{\circ} \mathrm{C}, \mathrm{Cu}$ can be used for the extraction of Zn from ZnO
(2) At 500 C , coke can be used for the extraction of Zn from ZnO
(3) Coke cannot be used for the extraction of Cu from $\mathrm{Ca}_{2} \mathrm{O}$.
(4) At $1400^{\circ} \mathrm{C}, \mathrm{Al}$ can be used for the extraction of Zn from ZnO

Ans. (4)
Sol. According to the given diagram Al can reduce ZnO .
$3 \mathrm{ZnO}+2 \mathrm{Al} \rightarrow 3 \mathrm{Zn}+\mathrm{Al}_{2} \mathrm{O}_{3}$
13. For the following reaction, the mass of water produced from 445 g of $\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}$ is :
$2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{OP}(1)$
(1) 495 g
(2) 490 g
(3) 890 g
(4) 445 g

Ans. (1)
Sol. moles of $\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})=\frac{445}{890}=0.5$ moles
$2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{O}(l)$
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{110}{4}=\frac{55}{2}$
$\mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}=\frac{55}{2} \times 18$

$$
=495 \mathrm{gm}
$$

14. The correct match between Item I and Item II is :

Item I

(A) Benzaldehyde
(B) Alumina
(C) Acetonitrile

Item II

(P) Mobile phase
(Q) Adsorbent
(R) Adsorbate
(1) (A) \rightarrow (Q); (B) \rightarrow (R);(C) \rightarrow (P)
(2) (A) \rightarrow (P); (B) \rightarrow (R); (C) \rightarrow (Q)
(3) (A) \rightarrow (Q); (B) \rightarrow (P); (C) $\rightarrow(\mathrm{R})$
(4) $(\mathrm{A}) \rightarrow(\mathrm{R}) ;(\mathrm{B}) \rightarrow(\mathrm{Q}) ;(\mathrm{C}) \rightarrow(\mathrm{P})$

Ans. (4)
Sol.
15. The increasing basicity order of the following compounds is :
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(B)

(C)

(D)

(1) (D) $<$ (C) $<$ (A) $<$ (B)
(2) $($ A $)<$ (B) $<$ (D) $<$ (C)
(3) (A) $<$ (B) $<$ (C) $<$ (D)
(4) $($ D $)<($ C $)<($ B $)<$ (A)

Ans. (1)
Sol.

16. For coagulation of arsenious sulphide sol, which one of the following salt solution will be most effective ?
(1) AlCl_{3}
(2) NaCl
(3) BaCl_{2}
(4) $\mathrm{Na}_{3} \mathrm{PO}_{4}$

Ans. (1)
Sol. Sulphide is -ve charged colloid so cation with maximum charge will be most effective for coagulation.
$\mathrm{Al}^{3+}>\mathrm{Ba}^{2+}>\mathrm{Na}^{+}$coagulating power.
17. At $100^{\circ} \mathrm{C}$, copper (Cu) has FCC unit cell structure with cell edge length of $\mathrm{x} \AA$. What is the approximate density of $\mathrm{Cu}\left(\mathrm{in} \mathrm{g} \mathrm{cm}^{-3}\right.$) at this temperature ?
[Atomic Mass of $\mathrm{Cu}=63.55 \mathrm{u}$]
(1) $\frac{105}{x^{3}}$
(2) $\frac{211}{x^{3}}$
(3) $\frac{205}{x^{3}}$
(4) $\frac{422}{x^{3}}$

Ans. (4)

Sol. FCC unit cell $\mathrm{Z}=4$
$\mathrm{d}=\frac{63.5 \times 4}{6 \times 10^{23} \times \mathrm{x}^{3} \times 10^{-24}} \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{d}=\frac{63.5 \times 4 \times 10}{6} \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{d}=\frac{423.33}{\mathrm{x}^{3}} \simeq\left(\frac{422}{\mathrm{x}^{3}}\right)$
18. The major product obtained in the following reaction is :

(1)

(2)

(3)

(4)

Ans. (3)

Sol.

19. Which of the following conditions in drinking water causes methemoglobinemia?
(1) $>50 \mathrm{ppm}$ of load
(2) $>100 \mathrm{ppm}$ of sulphate
(3) $>50 \mathrm{ppm}$ of chloride
(4) $>50 \mathrm{ppm}$ of nitrate

Ans. (4)
Sol. Concentration of nitrate $>50 \mathrm{ppm}$ in drinking water causes methemoglobinemia
20. Homoleptic octahedral complexes of a metal ion ' M^{3+} ' with three monodentate ligands and L_{1}, L_{2}, L_{3} absorb wavelengths in the region of green, blue and red respectively. The increasing order of the ligand strength is :
(1) $\mathrm{L}_{2}<\mathrm{L}_{1}<\mathrm{L}_{3}$
(2) $\mathrm{L}_{3}<\mathrm{L}_{2}<\mathrm{L}_{1}$
(3) $\mathrm{L}_{3}<\mathrm{L}_{1}<\mathrm{L}_{2}$
(4) $\mathrm{L}_{1}<\mathrm{L}_{2}<\mathrm{L}_{3}$

Ans. (3)
Sol. Order of $\lambda_{\text {abs }}-\mathrm{L}_{3}>\mathrm{L}_{1}>\mathrm{L}_{2}$
So Δ_{O} order will be $\mathrm{L}_{2}>\mathrm{L}_{1}>\mathrm{L}_{3}\left(\right.$ as $\Delta_{\mathrm{O}} \propto \frac{1}{\lambda_{\text {abs }}}$)
So order of ligand strength will be $\mathrm{L}_{2}>\mathrm{L}_{1}>\mathrm{L}_{3}$
21. The product formed in the reaction of cumene with O_{2} followed by treatment with dil. HCl are :
(1)
 and

(2)

(3)
 and

(4)
 and

Ans. (3)

JEE (Main) Examination-2019/Evening Session/09-01-2019

Sol. Cummene hydroperoxide reaction

22. The temporary hardness of water is due to :-
(1) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
(2) NaCl
(3) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(4) CaCl_{2}

Ans. (1)
Sol. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ is reponsible for temporary hardness of water
23. The entropy change associated with the conversion of 1 kg of ice at 273 K to water vapours at 383 K is :
(Specific heat of water liquid and water vapour are $4.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$ and $2.0 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$; heat of liquid fusion and vapourisation of water are $344 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and $2491 \mathrm{~kJ} \mathrm{~kg}^{-1}$, respectively). $(\log 273=2.436, \log 373=2.572, \log 383=2.583)$
(1) $7.90 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(2) $2.64 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(3) $8.49 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(4) $4.26 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

Ans. (4)
Sol.

$\Delta \mathrm{S}_{1}=\frac{\Delta \mathrm{H}_{\text {fusion }}}{273}=\frac{334}{273}=1.22$
$\Delta S_{2}=4.2 \ell \mathrm{~N}\left(\frac{363}{273}\right)=1.31$
$\Delta \mathrm{S}_{3}=\frac{\Delta \mathrm{H}_{\text {vap }}}{373}=\frac{2491}{373}=6.67$
$\Delta S_{4}=2.0 \ell n\left(\frac{383}{373}\right)=0.05$

$$
\Delta \mathrm{S}_{\text {total }}=9.26 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
$$

24. The pH of rain water, is approximately :
(1) 6.5
(2) 7.5
(3) 5.6
(4) 7.0

Ans. (3)
Sol. pH of rain water is approximate 5.6
25. If the standard electrode potential for a cell is 2 V at 300 K , the equilibrium constant (K) for the reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
at 300 K is approximately.
($\mathrm{R}=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~F}=96000 \mathrm{C} \mathrm{mol}^{-1}$)
(1) e^{160}
(2) e^{320}
(3) e^{-160}
(4) e^{-80}

Ans. (1)
Sol. $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \operatorname{lnk}=-\mathrm{nFE}_{\text {cell }}^{\circ}$
$\ln \mathrm{k}=\frac{\mathrm{n} \times \mathrm{F} \times \mathrm{E}^{\mathrm{o}}}{\mathrm{R} \times \mathrm{T}}=\frac{2 \times 96000 \times 2}{8 \times 300}$
$\operatorname{lnk}=160$
$k=e^{160}$
26. A solution containing 62 g ethylene glycol in 250 g water is cooled to $-10^{\circ} \mathrm{C}$. If K_{f} for water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, the amount of water (in g) separated as ice is :
(1) 32
(2) 48
(3) 16
(4) 64

Ans. (4)
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} . \mathrm{m}$
$10=1.86 \times \frac{62 / 62}{\mathrm{~W}_{\mathrm{kg}}}$
$\mathrm{W}=0.186 \mathrm{~kg}$
$\Delta \mathrm{W}=(250-186)=64 \mathrm{gm}$
27. When the first electron gain enthalpy $\left(\Delta_{\text {eg }} H\right)$ of oxygen is $-141 \mathrm{~kJ} / \mathrm{mol}$, its second electron gain enthalpy is :
(1) almost the same as that of the first
(2) negative, but less negative than the first
(3) a positive value
(4) a more negative value than the first

Ans. (3)
Sol. Second electron gain enthalpy is always positive for every element.
$\mathrm{O}_{(\mathrm{g})}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{O}_{(\mathrm{g})}^{-2} \quad ; \Delta \mathrm{H}=$ positive
28. The major product of the following reaction is :

$\xrightarrow[\text { (ii) } \mathrm{KOH} \text { (dil) }]{\text { (i) } \mathrm{Br}_{2} / \mathrm{h} \nu}$
(1)

(2)

(3)

(4)

Ans. (3)

Sol.

29. Which of the following compounds is not aromatic?
(1)

(2)

(3)

(4)

Ans. (3)

