TEST PAPER OF JEE(MAIN) EXAMINATION - 2019
 (Held On Saturday 12 ${ }^{\text {th }}$ JANUARY, 2019) TIME : 02: $\mathbf{3 0}$ PM To 05: 30 PM PHYSICS

1. A load of mass M kg is suspended from a steel wire of length 2 m and radius 1.0 mm in Searle's apparatus experiment. The increase in length produced in the wire is 4.0 mm . Now the load is fully immersed in a liquid of relative density 2 . The relative density of the material of load is 8 . The new value of increase in length of the steel wire is :
(1) 4.0 mm
(2) 3.0 mm
(3) 5.0 mm
(4) zero

Ans (2)

Sol.

$\frac{\mathrm{F}}{\mathrm{A}}=\mathrm{y} \cdot \frac{\Delta \ell}{\ell}$
$\Delta \ell \propto \mathrm{F}$
$\mathrm{T}=\mathrm{mg}$
$\mathrm{T}=\mathrm{mg}-\mathrm{f}_{\mathrm{B}}=\mathrm{mg}-\frac{\mathrm{m}}{\rho_{\mathrm{b}}} . \rho_{\ell} \cdot \mathrm{g}$
$=\left(1-\frac{\rho_{\ell}}{\rho_{\mathrm{b}}}\right) \mathrm{mg}$
$=\left(1-\frac{2}{8}\right) \mathrm{mg}$
$\mathrm{T}^{\prime}=\frac{3}{4} \mathrm{mg}$
From (i)

$$
\begin{aligned}
& \frac{\Delta \ell^{\prime}}{\Delta \ell}=\frac{\mathrm{T}^{\prime}}{\mathrm{T}}=\frac{3}{4} \\
& \Delta \ell^{\prime}=\frac{3}{4} \cdot \Delta \ell=3 \mathrm{~mm}
\end{aligned}
$$

2. Formation of real image using a biconvex lens is shown below :

If the whole set up is immersed in water without disturbing the object and the screen position, what will one observe on the screen ?
(1) Image disappears
(2) No change
(3) Erect real image
(4) Magnified image

Ans (1)
Sol. From $\frac{1}{\mathrm{f}}=\left(\mu_{\text {rel }}-1\right)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)$
Focal length of lens will change hence image disappears from the screen.
3. A vertical closed cylinder is separated into two parts by a frictionless piston of mass m and of negligible thickness. The piston is free to move along the length of the cylinder. The length of the cylinder above the piston is ℓ_{1}, and that below the piston is ℓ_{2}, such that $\ell_{1}>\ell_{2}$. Each part of the cylinder contains n moles of an ideal gas at equal temperature T . If the piston is stationary, its mass, m , will be given by :
(R is universal gas constant and g is the acceleration due to gravity)
(1) $\frac{\mathrm{nRT}}{\mathrm{g}}\left[\frac{1}{\ell_{2}}+\frac{1}{\ell_{1}}\right]$
(2) $\frac{\mathrm{nRT}}{\mathrm{g}}\left[\frac{\ell_{1}-\ell_{2}}{\ell_{1} \ell_{2}}\right]$
(3) $\frac{\mathrm{RT}}{\mathrm{g}}\left[\frac{2 \ell_{1}+\ell_{2}}{\ell_{1} \ell_{2}}\right]$
(4) $\frac{\mathrm{RT}}{\mathrm{ng}}\left[\frac{\ell_{1}-3 \ell_{2}}{\ell_{1} \ell_{2}}\right]$

Ans (2)

JEE (Main) Examination-2019/Evening Session/12-01-2019

4. A simple harmonic motion is represented by: $y=5(\sin 3 \pi t+\sqrt{3} \cos 3 \pi t) c m$
The amplitude and time period of the motion are:
(1) $5 \mathrm{~cm}, \frac{3}{2} \mathrm{~s}$
(2) $5 \mathrm{~cm}, \frac{2}{3} \mathrm{~s}$
(3) $10 \mathrm{~cm}, \frac{3}{2} \mathrm{~s}$
(4) $10 \mathrm{~cm}, \frac{2}{3} \mathrm{~s}$

Ans. (4)

Sol.

$$
y=5[\sin (3 \pi t)+\sqrt{3} \cos (3 \pi t)]
$$

$$
=10 \sin \left(3 \pi t+\frac{\pi}{3}\right)
$$

Amplitude $=10 \mathrm{~cm}$
$\mathrm{T}=\frac{2 \pi}{\mathrm{w}}=\frac{2 \pi}{3 \pi}=\frac{2}{3} \mathrm{sec}$
5. In the given circuit diagram, the currents, $\mathrm{I}_{1}=-0.3 \mathrm{~A}, \mathrm{I}_{4}=0.8 \mathrm{~A}$ and $\mathrm{I}_{5}=0.4 \mathrm{~A}$, are flowing as shown. The currents I_{2}, I_{3} and I_{6}, respectively, are :

(1) $1.1 \mathrm{~A}, 0.4 \mathrm{~A}, 0.4 \mathrm{~A}$
(2) $-0.4 \mathrm{~A}, 0.4 \mathrm{~A}, 1.1 \mathrm{~A}$
(3) $0.4 \mathrm{~A}, 1.1 \mathrm{~A}, 0.4 \mathrm{~A}$
(4) $1.1 \mathrm{~A},-0.4 \mathrm{~A}, 0.4 \mathrm{~A}$

Ans. (1)

Sol.

6. A particle of mass 20 g is released with an initial velocity $5 \mathrm{~m} / \mathrm{s}$ along the curve from the point A , as shown in the figure. The point A is at height h from point B. The particle slides along the frictionless surface. When the particle reaches point B , its angular momentum about O will be :
(Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) $8 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(2) $6 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(3) $3 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(4) $2 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$

Ans. (2)

Sol. Work Energy Theorem from A to B
$\mathrm{mgh}=\frac{1}{\mathrm{~g}} \mathrm{~m} v_{\mathrm{B}}^{2}-\frac{1}{\mathrm{~g}} \mathrm{~m} v_{\mathrm{A}}^{2}$
$2 \mathrm{gh}=v_{\mathrm{B}}^{2}-v_{\mathrm{A}}^{2}$
$2 \times 10 \times 10=v_{B}^{2}-5^{2}$
$v_{B}=15 \mathrm{~m} / \mathrm{s}$
Angular momentum about 0

$$
\begin{aligned}
& \mathrm{L}_{0}=\mathrm{mvr} \\
& =20 \times 10^{-3} \times 20 \\
& \mathrm{~L}_{0}=6 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

7.

In the above circuit, $C=\frac{\sqrt{3}}{2} \mu \mathrm{~F}, \mathrm{R}_{2}=20 \Omega$,
$\mathrm{L}=\frac{\sqrt{3}}{10} \mathrm{H}$ and $\mathrm{R}_{1}=10 \Omega$. Current in L-R R_{1} path is I_{1} and in $C-R_{2}$ path it is I_{2}. The voltage of A.C source is given by
$\mathrm{V}=200 \sqrt{2} \sin (100 \mathrm{t})$ volts. The phase difference between I_{1} and I_{2} is :
(1) 30°
(2) 0°
(3) 90°
(4) 60°

Ans. (Bonus)

Sol.

$\mathrm{x}_{\mathrm{e}}=\frac{1}{\omega_{\mathrm{c}}}=\frac{4}{10^{-6} \times \sqrt{3} \times 100}=\frac{2 \times 10^{4}}{\sqrt{3}}$
$\tan \theta / 2 \frac{\mathrm{x}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}=\frac{10^{3}}{\sqrt{3}}$
θ_{1} is close to 90
For L-R circuit
$\mathrm{x}_{\mathrm{L}}=\mathrm{w}_{\mathrm{L}}=100 \times \frac{\sqrt{3}}{10}=\sqrt{3}$

$\tan \theta_{2}=\frac{\mathrm{X}_{\mathrm{e}}}{\mathrm{R}}$
$\tan \theta_{2}=\sqrt{3}$
$\theta_{2}=60$
So phase difference comes out $90+60=150$.
Therefore Ans. is Bonus
If R_{2} is $20 \mathrm{~K} \Omega$
then phase difference comes out to be $60+30$ $=90^{\circ}$
8. A paramagnetic material has 10^{28} atoms $/ \mathrm{m}^{3}$. Its magnetic susceptibility at temperature 350 K is 2.8 $\times 10^{-4}$. Its susceptibility at 300 K is :
(1) 3.672×10^{-4}
(2) 3.726×10^{-4}
(3) 3.267×10^{-4}
(4) 2.672×10^{-4}

Ans (3)
Sol. $\mathrm{x} \propto \frac{1}{\mathrm{~T}_{\mathrm{C}}}$
curie law for paramagnetic substane
$\frac{\mathrm{x}_{1}}{\mathrm{x}_{2}}=\frac{\mathrm{T}_{\mathrm{C}_{2}}}{\mathrm{~T}_{\mathrm{C}_{1}}}$
$\frac{2.8 \times 10^{-4}}{\mathrm{x}_{2}}=\frac{300}{350}$
$\mathrm{x}_{2}=\frac{2.8 \times 350 \times 10^{-4}}{300}$

$$
=3.266 \times 10^{-4}
$$

JEE (Main) Examination-2019/Evening Session/12-01-2019

9. A 10 m long horizontal wire extends from North East to South West. It is falling with a speed of $5.0 \mathrm{~ms}^{-1}$, at right angles to the horizontal component of the earth's magnetic field, of $0.3 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. The value of the induced emf in wire is :
(1) $2.5 \times 10^{-3} \mathrm{~V}$
(2) $1.1 \times 10^{-3} \mathrm{~V}$
(3) $0.3 \times 10^{-3} \mathrm{~V}$
(4) $1.5 \times 10^{-3} \mathrm{~V}$

Ans (4)
Sol. Induied emf $=\mathrm{Bv} \ell$

$$
\begin{aligned}
& =0.3 \times 10^{-4} \times 5 \times 10 \\
& =1.5 \times 10^{-3} \mathrm{~V}
\end{aligned}
$$

In the figure, given that V_{BB} supply can vary from 0 to $5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \beta_{\mathrm{dc}}=200, \mathrm{R}_{\mathrm{B}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=1$ $\mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{BE}}=1.0 \mathrm{~V}$, The minimum base current and the input voltage at which the transistor will go to saturation, will be, respectively :
(1) $20 \mu \mathrm{~A}$ and 3.5 V
(2) $25 \mu \mathrm{~A}$ and 3.5 V
(3) $25 \mu \mathrm{~A}$ and 2.5 V
(4) $20 \mu \mathrm{~A}$ and 2.8 V

Ans (2)
Sol. At saturation, $\mathrm{V}_{\mathrm{CE}}=0$
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$
$\Rightarrow \mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{C}}}=5 \times 10^{-3} \mathrm{~A}$
Given

$$
\begin{aligned}
& \beta_{\mathrm{dc}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}} \\
& \mathrm{I}_{\mathrm{B}}=\frac{5 \times 10^{-3}}{200} \\
& \mathrm{I}_{\mathrm{B}}=25 \mu \mathrm{~A}
\end{aligned}
$$

At input side

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{BB}}=\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}} \\
& \quad=(25 \mathrm{~mA})(100 \mathrm{k} \Omega)+1 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{BB}}=3.5 \mathrm{~V}
\end{aligned}
$$

11. In the circuit shown, find C if the effective capacitance of the whole circuit is to be $0.5 \mu \mathrm{~F}$. All values in the circuit are in $\mu \mathrm{F}$.

(1) $\frac{7}{10} \mu \mathrm{~F}$
(2) $\frac{7}{11} \mu \mathrm{~F}$
(3) $\frac{6}{5} \mu \mathrm{~F}$
(4) $4 \mu \mathrm{~F}$

Ans (2)

Sol.

From equs.

$$
\begin{aligned}
& \frac{\frac{7 \mathrm{C}}{3}}{\frac{7}{3}+\mathrm{C}}=\frac{1}{2} \\
\Rightarrow & 14 \mathrm{C}=7+3 \mathrm{C} \\
\Rightarrow & \mathrm{C}=\frac{7}{11}
\end{aligned}
$$

12. Two satellites, A and B, have masses m and $2 m$ respectively. A is in a circular orbit of radius R, and B is in a circular orbit of radius $2 R$ around the earth.
The ratio of their kinetic energies, $\mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\mathrm{B}}$, is:
(1) 2
(2) $\sqrt{\frac{1}{2}}$
(3) 1
(4) $\frac{1}{2}$

Ans (3)
Sol. Orbital velocityV $=\sqrt{\frac{\mathrm{GMe}}{\mathrm{r}}}$
$\mathrm{T}_{\mathrm{A}}=\frac{1}{2} \mathrm{~m}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}^{2}$
$\mathrm{T}_{\mathrm{B}}=\frac{1}{2} \mathrm{~m}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}^{2}$
$\Rightarrow \frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\frac{\mathrm{m} \times \frac{\mathrm{Gm}}{\mathrm{R}}}{2 \mathrm{~m} \times \frac{\mathrm{Gm}}{2 \mathrm{R}}}$
$\Rightarrow \frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=1$
13. The moment of inertia of a solid sphere, about an axis parallel to its diameter and at a distance of x from it, is $I(x)^{\prime}$. Which one of the graphs represents the variation of $\mathrm{I}(\mathrm{x})$ with x correctlv?
(1)

(2)

(3)

(4)

Ans. (2)
Sol. $\mathrm{I}=\frac{2}{5} \mathrm{mR}^{2}+\mathrm{mx}^{2}$
14. When a certain photosensistive surface is illuminated with monochromatic light of frequency v, the stopping potential for the photo current is $\mathrm{V}_{0} / 2$. When the surface is illuminated by monochromatic light of frequency $v / 2$, the stopping potential is $-\mathrm{V}_{0}$. The threshold frequency for photoelectric emission is:
(1) $\frac{3 v}{2}$
(2) 2 v
(3) $\frac{4}{3} v$
(4) $\frac{5 v}{3}$

Ans. (BONUS)

15. A galvanometer, whose resistance is 50 ohm , has 25 divisions in it. When a current of $4 \times 10^{-4} \mathrm{~A}$ passes through it, its needle (pointer) deflects by one division. To use this galvanometer as a voltmeter of range 2.5 V , it should be connected to a resistance of:
(1) 6250 ohm
(2) 250 ohm
(3) 200 ohm
(4) 6200 ohm

Ans. (3)
Sol. $\mathrm{I}_{\mathrm{g}}=4 \times 10^{-4} \times 25=10^{-2} \mathrm{~A}$

$$
2.5=(50+\mathrm{R}) 10^{-2} \quad \therefore \mathrm{R}=200 \Omega
$$

16. A long cylindrical vessel is half filled with a liquid. When the vessel is rotated about its own vertical axis, the liquid rises up near the wall. If the radius of vessel is 5 cm and its rotational speed is 2 rotations per second, then the difference in the heights between the centre and the sides, in cm , will be:
(1) 1.2
(2) 0.1
(3) 2.0
(4) 0.4

Ans. (3)

Sol.

17. Two particles A, B are moving on two concentric circles of radii R_{1} and R_{2} with equal angular speed ω. At $t=0$, their positions and direction of motion are shown in the figure :

The relative velocity $\vec{v}_{A}-\vec{v}_{B}$ at $t=\frac{\pi}{2 \omega}$ is given by :
(1) $-\omega\left(R_{1}+R_{2}\right) \hat{\mathrm{i}}$
(2) $\omega\left(R_{1}+R_{2}\right) \hat{i}$
(3) $\omega\left(R_{1}-R_{2}\right) \hat{i}$
(4) $\omega\left(R_{2}-R_{1}\right) \hat{i}$

Ans. (4)

Sol. $\theta=\omega \mathrm{t}=\omega \frac{\pi}{2 \omega}=\frac{\pi}{2}$

$$
\overrightarrow{\mathrm{V}}_{\mathrm{A}}-\overrightarrow{\mathrm{V}}_{\mathrm{S}}=\omega \mathrm{R}_{1}(-\hat{\mathrm{i}})-\omega \mathrm{R}_{2}(-\mathrm{i})
$$

18. A plano-convex lens (focal length f_{2}, refractive index μ_{2}, radius of curvature R) fits exactly into a plano-concave lens (focal length f_{1}, refractive index μ_{1}, radius of curvature R). Their plane surfaces are parallel to each other. Then, the focal length of the combination will be :
(1) $f_{1}-f_{2}$
(2) $f_{1}+f_{2}$
(3) $\frac{\mathrm{R}}{\mu_{2}-\mu_{1}}$
(4) $\frac{2 f_{1} f_{2}}{f_{1}+f_{2}}$

Ans. (3)

Sol.

$$
\frac{1}{\mathrm{~F}}=\frac{1}{\mathrm{f}_{1}}+\frac{1}{\mathrm{f}_{2}}=\frac{1-\mu_{1}}{\mathrm{R}}+\frac{\mu_{2}-1}{\mathrm{R}}
$$

19. Let $\ell, \mathrm{r}, \mathrm{c}$ and v represent inductance, resistance, capacitance and voltage, respectively. The dimension of $\frac{\ell}{\text { rcv }}$ in SI units will be:
(1) [LTA]
(2) $\left[\mathrm{LA}^{-2}\right]$
(3) $\left[\mathrm{A}^{-1}\right]$
(4) $\left[\mathrm{LT}^{2}\right]$

Ans. (3)
Sol. $\left[\frac{\ell}{\mathrm{r}}\right]=\mathrm{T}$
$[\mathrm{CV}]=\mathrm{AT}$
So, $\left[\frac{\ell}{\mathrm{rCV}}\right]=\frac{\mathrm{T}}{\mathrm{AT}}=\mathrm{A}^{-1}$
20. In a radioactive decay chain, the initial nucleus is ${ }_{90}^{232} \mathrm{Th}$. At the end there are 6α-particles and 4 β-particles which are emitted. If the end nucleus, If ${ }_{Z}^{A} X, A$ and Z are given by:
(1) $\mathrm{A}=208 ; \mathrm{Z}=80$
(2) $\mathrm{A}=202 ; \mathrm{Z}=80$
(3) $\mathrm{A}=200 ; \mathrm{Z}=81$
(4) $A=208 ; Z=82$

Ans. (4)
Sol. ${ }_{90}^{232} \mathrm{Th} \longrightarrow{ }_{78}^{208} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
${ }_{78}^{208} \mathrm{Y} \longrightarrow{ }_{82}^{208} \mathrm{X}+4 \beta$ praticle
21. The mean intensity of radiation on the surface of the Sun is about $10^{8} \mathrm{~W} / \mathrm{m}^{2}$. The rms value of the corresponding magnetic field is closest to :
(1) $10^{2} \mathrm{~T}$
(2) $10^{-4} \mathrm{~T}$
(3) 1 T
(4) $10^{-2} \mathrm{~T}$

Ans. (2)
Sol. $I=\varepsilon_{0} C \quad E_{\text {rms }}^{2}$
$\& \mathrm{E}_{\mathrm{rms}}=\mathrm{cB} \mathrm{B}_{\mathrm{rms}}$
$\mathrm{I}=\varepsilon_{0} \mathrm{C}^{3} \mathrm{~B}_{\mathrm{rms}}^{2}$
$\mathrm{B}_{\mathrm{rms}}=\sqrt{\frac{\mathrm{I}}{\epsilon_{0} \mathrm{C}^{3}}}$
$\mathrm{B}_{\mathrm{rms}} \approx 10^{-4}$
22. A resonance tube is old and has jagged end. It is still used in the laboratory to determine velocity of sound in air. A tuning fork of frequency 512 Hz produces first resonance when the tube is filled with water to a mark 11 cm below a reference mark, near the open end of the tube. The experiment is repeated with another fork of frequency 256 Hz which produces first resonance when water reaches a mark 27 cm below the reference mark. The velocity of sound in air, obtained in the experiment, is close to:
(1) $328 \mathrm{~ms}^{-1}$
(2) $322 \mathrm{~ms}^{-1}$
(3) $341 \mathrm{~ms}^{-1}$
(4) $335 \mathrm{~ms}^{-1}$

Ans. (1)
23. An ideal gas is enclosed in a cylinder at pressure of 2 atm and temperature, 300 K . The mean time between two successive collisions is $6 \times 10^{-8} \mathrm{~s}$. If the pressure is doubled and temperature is increased to 500 K , the mean time between two successive collisions will be close to:
(1) $4 \times 10^{-8} \mathrm{~S}$
(2) $3 \times 10^{-6} \mathrm{~S}$
(3) $2 \times 10^{-7} \mathrm{~s}$
(4) $0.5 \times 10^{-8} \mathrm{~S}$

Ans. (1)
Sol. $\mathrm{t} \propto \frac{\text { Volume }}{\text { velocity }}$
volume $\propto \frac{T}{P}$
$\therefore t \propto \frac{\sqrt{T}}{P}$
$\frac{\mathrm{t}_{1}}{6 \times 10^{-8}}=\frac{\sqrt{500}}{2 \mathrm{P}} \times \frac{\mathrm{P}}{\sqrt{300}}$
$\mathrm{t}_{1}=3.8 \times 10^{-8}$ $\approx 4 \times 10^{-8}$
24. The charge on a capacitor plate in a circuit, as a function of time, is shown in the figure:
What is the value of current at $t=4 \mathrm{~s}$?

(1) $3 \mu \mathrm{~A}$
(2) $2 \mu \mathrm{~A}$
(3) zero
(4) $1.5 \mu \mathrm{~A}$

Ans. (3)
25. A block kept on a rough inclined plane, as shown in the figure, remaias at rest upto a maximum force 2 N down the inclined plane. The maximum external force up the inclined plane that does not move the block is 10 N . The coefficient of static friction betwreen the block and the plane is :
[Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]

(1) $\frac{2}{3}$
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{\sqrt{3}}{4}$
(4) $\frac{1}{2}$

Ans. (2)

Ans. (4)
Sol. $2+\mathrm{mg} \sin 30=\mu \mathrm{mg} \cos 30^{\circ}$
$10=m g \sin 30+\mu \mathrm{mg} \cos 30^{\circ}$

$$
=2 \mu \mathrm{mg} \cos 30-2
$$

$6=\mu \mathrm{mg} \cos 30$
$4=m g \sin 30$
$\frac{3}{2}=\mu \times \sqrt{3}$
$\mu=\frac{\sqrt{3}}{2}$
26. An alpha-particle of mass m suffers 1-dimensional elastic coolision with a nucleus at rest of unknown mass. It is scattered directly backwards losing, 64% of its initial kinetic energy. The mass of the nucleus is :-
(1) 4 m
(2) 3.5 m
(3) 2 m
(4) 1.5 m

Ans. (1)

Sol.

$m v_{0}=m v_{2}-m v_{1}$
$\frac{1}{2} \mathrm{mV}_{1}^{2}=0.36 \times \frac{1}{2} \mathrm{mV}_{0}^{2}$

$$
\mathrm{v}_{1}=0.6 \mathrm{v}_{0}
$$

$\frac{1}{2} \mathrm{MV}_{2}^{2}=0.64 \times \frac{1}{2} \mathrm{mV}_{0}^{2}$
$\mathrm{V}_{2}=\sqrt{\frac{\mathrm{m}}{\mathrm{M}}} \times 0.8 \mathrm{~V}_{0}$
$\mathrm{mV}_{0}=\sqrt{\mathrm{mM}} \times 0.8 \mathrm{~V}_{0}-\mathrm{m} \times 0.6 \mathrm{~V}_{0}$
$\Rightarrow 1.6 \mathrm{~m}=0.8 \sqrt{\mathrm{mM}}$

$$
4 \mathrm{~m}^{2}=\mathrm{mM}
$$

27. A soap bubble, blown by a mechanical pump at the mough of a tube, increases in volume, with time, at a constant rate. The graph that correctly depicts the time dependence of pressure inside the bubble is given by :-
(1)

(2)

(3)

(4)

JEE (Main) Examination-2019/Evening Session/12-01-2019

28. To double the coverging range of a TV transmittion tower, its height should be multiplied by :-
(1) $\frac{1}{\sqrt{2}}$
(2) 4
(3) $\sqrt{2}$
(4) 2

Ans. (2)
29. A parallel plate capacitor with plates of area $1 \mathrm{~m}^{2}$ each, area t a separation of 0.1 m . If the electric field between the plates is $100 \mathrm{~N} / \mathrm{C}$, the magnitude of charge each plate is :-
(Take $\varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N}-\mathrm{m}^{2}}$)
(1) $7.85 \times 10^{-10} \mathrm{C}$
(2) $6.85 \times 10^{-10} \mathrm{C}$
(3) $9.85 \times 10^{-10} \mathrm{C}$
(4) $8.85 \times 10^{-10} \mathrm{C}$

Ans. (4)
Sol. $\mathrm{E}=\frac{\sigma}{\epsilon_{0}}=\frac{\mathrm{Q}}{\mathrm{A} \epsilon_{0}}$
$\mathrm{Q}=\mathrm{AE} \epsilon_{0}$
$\mathrm{Q}=(1)(100)\left(8.85 \times 10^{-12}\right)$
$\mathrm{Q}=8.85 \times 10^{-10} \mathrm{C}$
30. In a Frank-Hertz experiment, an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV . The minimum wavelength of photons emitted by mercury atoms is close to :-
(1) 2020 nm Y: \backslash node05\JEE-Main 2019-(On line) \12-01-2019\Evening\PDF
(2) 220 nm
(3) 250 nm
(4) 1700 nm

Ans. (3)
Sol. $\lambda=\frac{1240}{5.6-0.7} \mathrm{~nm}$

