TEST PAPER OF JEE(MAIN) EXAMINATION - 2019 (Held On Friday 11th JANUARY, 2019) TIME: 02:30 PM To 05:30 PM PHYSICS

1. A paramagnetic substance in the form of a cube with sides 1 cm has a magnetic dipole moment of $20 \times 10^{-6} \mathrm{~J} / \mathrm{T}$ when a magnetic intensity of $60 \times 10^{3} \mathrm{~A} / \mathrm{m}$ is applied. Its magnetic susceptibility is :-
(1) 2.3×10^{-2}
(2) 3.3×10^{-2}
(3) 3.3×10^{-4}
(4) 4.3×10^{-2}

Ans. (3)
Sol. $\chi=\frac{\mathrm{I}}{\mathrm{H}}$
$I=\frac{\text { Magnetic moment }}{\text { Volume }}$
$I=\frac{20 \times 10^{-6}}{10^{-6}}=20 \mathrm{~N} / \mathrm{m}^{2}$
$\chi=\frac{20}{60 \times 10^{+3}}=\frac{1}{3} \times 10^{-3}$
$=0.33 \times 10^{-3}=3.3 \times 10^{-4}$
2. A particle of mass m is moving in a straight line with momentum p . Starting at time $\mathrm{t}=0$, a force $\mathrm{F}=\mathrm{kt}$ acts in the same direction on the moving particle during time interval T so that its momentum changes from p to 3 p . Here k is a constant. The value of T is :-
(1) $2 \sqrt{\frac{\mathrm{p}}{\mathrm{k}}}$
(2) $\sqrt{\frac{2 p}{k}}$
(3) $\sqrt{\frac{2 \mathrm{k}}{\mathrm{p}}}$
(4) $2 \sqrt{\frac{k}{p}}$

Ans. (1)
Sol. $\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{F}=\mathrm{kt}$
$\int_{\mathrm{P}}^{3 \mathrm{P}} \mathrm{dP}=\int_{\mathrm{O}}^{\mathrm{T}} \mathrm{kt} \mathrm{dt}$
$2 \mathrm{p}=\frac{\mathrm{KT}^{2}}{2}$
$\mathrm{T}=2 \sqrt{\frac{\mathrm{P}}{\mathrm{K}}}$
3. Seven capacitors, each of capacitance $2 \mu \mathrm{~F}$, are to be connected in a configuration to obtain an effective capacitance of $\left(\frac{6}{13}\right) \mu \mathrm{F}$. Which of the combinations, shown in figures below, will achieve the desired value ?
(1)

(2)

(3)

(4)

Ans. (4)
Sol. $\mathrm{C}_{\mathrm{eq}}=\frac{6}{13} \mu \mathrm{~F}$
Therefore three capacitors most be in parallel to get 6 in
$\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{3 \mathrm{C}}+\frac{1}{\mathrm{C}}+\frac{1}{\mathrm{C}}+\frac{1}{\mathrm{C}}+\frac{1}{\mathrm{C}}$
$\mathrm{C}_{\mathrm{eq}}=\frac{3 \mathrm{C}}{13}=\frac{6}{13} \mu \mathrm{~F}$

JEE (Main) Examination-2019/Evening Session/11-01-2019

4. An electric field of $1000 \mathrm{~V} / \mathrm{m}$ is applied to an electric dipole at angle of 45°. The value of electric dipole moment is $10^{-29} \mathrm{C} . \mathrm{m}$. What is the potential energy of the electric dipole ?
(1) $-9 \times 10^{-20} \mathrm{~J}$
(2) $-7 \times 10^{-27} \mathrm{~J}$
(3) $-10 \times 10^{-29} \mathrm{~J}$
(4) $-20 \times 10^{-18} \mathrm{~J}$

Ans. (2)
Sol. $\quad U=-\vec{P} \cdot \vec{E}$

$$
\begin{aligned}
& =-\mathrm{PE} \cos \theta \\
& =-\left(10^{-29}\right)\left(10^{3}\right) \cos 45^{\circ} \\
& =-0.707 \times 10^{-26} \mathrm{~J} \\
& =-7 \times 10^{-27} \mathrm{~J}
\end{aligned}
$$

5. A simple pendulum of length 1 m is oscillating with an angular frequency $10 \mathrm{rad} / \mathrm{s}$. The support of the pendulum starts oscillating up and down with a small angular frequency of $1 \mathrm{rad} / \mathrm{s}$ and an amplitude of $10^{-2} \mathrm{~m}$. The relative change in the angular frequency of the pendulum is best given by :-
(1) $10^{-3} \mathrm{rad} / \mathrm{s}$
(2) $10^{-1} \mathrm{rad} / \mathrm{s}$
(3) $1 \mathrm{rad} / \mathrm{s}$
(4) $10^{-5} \mathrm{rad} / \mathrm{s}$

Ans. (1)
Sol. Angular frequency of pendulum

$$
\begin{aligned}
\omega & =\sqrt{\frac{\mathrm{g}_{\text {eff }}}{\ell}} \\
\therefore \quad \frac{\Delta \omega}{\omega} & =\frac{1}{2} \frac{\Delta \mathrm{~g}_{\text {eff }}}{\mathrm{g}_{\text {eff }}} \\
\Delta \omega & =\frac{1}{2} \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times \omega \\
{\left[\omega_{\mathrm{s}}\right.} & =\text { angular frequency of support }] \\
\Delta \omega & =\frac{1}{2} \times \frac{2 \mathrm{~A} \omega_{\mathrm{s}}^{2}}{100} \times 100 \\
\Delta \omega & =10^{-3} \mathrm{rad} / \mathrm{sec} .
\end{aligned}
$$

6. Two rods A and B of identical dimensions are at temperature $30^{\circ} \mathrm{C}$. If A is heated upto $180^{\circ} \mathrm{C}$ and B upto $\mathrm{T}^{\circ} \mathrm{C}$, then the new lengths are the same. If the ratio of the coefficients of linear expansion of A and B is $4: 3$, then the value of T is :-
(1) $270^{\circ} \mathrm{C}$
(2) $230^{\circ} \mathrm{C}$
(3) $250^{\circ} \mathrm{C}$
(4) $200^{\circ} \mathrm{C}$

Ans. (2)
Sol. $\Delta \ell_{1}=\Delta \ell_{2}$
$\ell \alpha_{1} \Delta \mathrm{~T}_{1}=\ell \alpha_{2} \Delta \mathrm{~T}_{2}$
$\frac{\alpha_{1}}{\alpha_{2}}=\frac{\Delta \mathrm{T}_{1}}{\Delta \mathrm{~T}_{2}}$

$$
\frac{4}{3}=\frac{\mathrm{T}-30}{180-30}
$$

$\mathrm{T}=230^{\circ} \mathrm{C}$

7. In a double-slit experiment, green light (5303 Å) falls on a double slit having a separation of $19.44 \mu \mathrm{~m}$ and a width of $4.05 \mu \mathrm{~m}$. The number of bright fringes between the first and the second diffraction minima is :-
(1) 09
(2) 10
(3) 04
(4) 05

Ans. (4)
Sol. For diffraction
location of $1^{\text {st }}$ minime
$y_{1}=\frac{\mathrm{D} \lambda}{\mathrm{a}}=0.2469 \mathrm{D} \lambda$
location of $2^{\text {nd }}$ minima

$$
\mathrm{y}_{2}=\frac{2 \mathrm{D} \lambda}{\mathrm{a}}=0.4938 \mathrm{D} \lambda
$$

Now for interference
Path difference at P .

$$
\frac{\mathrm{dy}}{\mathrm{D}}=4.8 \lambda
$$

path difference at Q

$$
\frac{d y}{D}=9.6 \lambda
$$

So orders of maxima in between $\mathrm{P} \& \mathrm{Q}$ is

$$
5,6,7,8,9
$$

So 5 bright fringes all present between $\mathrm{P} \& \mathrm{Q}$.
8. An amplitude modulated signal is plotted below :-

Which one of the following best describes the above signal ?
(1) $\left(9+\sin \left(2.5 \pi \times 10^{5} t\right)\right) \sin \left(2 \pi \times 10^{4} t\right) V$
(2) $\left(9+\sin \left(4 \pi \times 10^{4} t\right)\right) \sin \left(5 \pi \times 10^{5} t\right) V$
(3) $\left(1+9 \sin \left(2 \pi \times 10^{4} \mathrm{t}\right)\right) \sin \left(2.5 \pi \times 10^{5} \mathrm{t}\right) \mathrm{V}$
(4) $\left(9+\sin \left(2 \pi \times 10^{4} t\right)\right) \sin \left(2.5 \pi \times 10^{5} t\right) V$

Ans. (4)
Sol. Analysis of graph says
(1) Amplitude varies as $8-10 \mathrm{~V}$ or 9 ± 1
(2) Two time period as
$100 \mu \mathrm{~s}$ (signal wave) \& $8 \mu \mathrm{~s}$ (carrier wave)
Hence signal is $\left[9 \pm 1 \sin \left(\frac{2 \pi \mathrm{t}}{\mathrm{T}_{1}}\right)\right] \sin \left(\frac{2 \pi \mathrm{t}}{\mathrm{T}_{2}}\right)$
$=9 \pm 1 \sin \left(2 \pi \times 10^{4} \mathrm{t}\right) \sin 2.5 \pi \times 10^{5} \mathrm{t}$
9. In the circuit, the potential difference between A and B is :-

(1) 6 V
(2) 1 V
(3) 3 V
(4) 2 V

Ans. (4)
Sol. Potential difference across AB will be equal to battery equivalent across CD
$\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{CD}}=\frac{\frac{\mathrm{E}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{E}_{2}}{\mathrm{r}_{2}}+\frac{\mathrm{E}_{3}}{\mathrm{r}_{3}}}{\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}+\frac{1}{\mathrm{r}_{3}}}=\frac{\frac{1}{1}+\frac{2}{1}+\frac{3}{1}}{\frac{1}{1}+\frac{1}{1}+\frac{1}{1}}$
$=\frac{6}{3}=2 \mathrm{~V}$
10. A 27 mW laser beam has a cross-sectional area of $10 \mathrm{~mm}^{2}$. The magnitude of the maximum electric field in this electromagnetic wave is given by [Given permittivity of space $\epsilon_{0}=9 \times 10^{-12}$ SI units, Speed of light $\left.\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right]$:-
(1) $1 \mathrm{kV} / \mathrm{m}$
(2) $2 \mathrm{kV} / \mathrm{m}$
(3) $1.4 \mathrm{kV} / \mathrm{m}$
(4) $0.7 \mathrm{kV} / \mathrm{m}$

Ans. (3)
Sol. Intensity of EM wave is given by

$$
\begin{aligned}
\mathrm{I} & =\frac{\text { Power }}{\text { Area }}=\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2} \mathrm{C} \\
& =\frac{27 \times 10^{-3}}{10 \times 10^{-6}}=\frac{1}{2} \times 9 \times 10^{-12} \times \mathrm{E}^{2} \times 3 \times 10^{8} \\
\mathrm{E} & =\sqrt{2} \times 10^{3} \mathrm{kv} / \mathrm{m} \\
& =1.4 \mathrm{kv} / \mathrm{m}
\end{aligned}
$$

11. A pendulum is executing simple harmonic motion and its maximum kinetic energy is K_{1}. If the length of the pendulum is doubled and it performs simple harmonic motion with the same amplitude as in the first case, its maximum kinetic energy is K_{2}. Then :-
(1) $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{4}$
(2) $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{2}$
(3) $K_{2}=2 K_{1}$
(4) $\mathrm{K}_{2}=\mathrm{K}_{1}$

Ans. (3)
Sol. Maximum kinetic energy at lowest point B is given by

$$
\mathrm{K}=\mathrm{mg} l(1-\cos \theta)
$$

where $\theta=$ angular amp.

$\mathrm{K}_{1}=\mathrm{mg}_{\ell}(1-\cos \theta)$
$\mathrm{K}_{2}=\operatorname{mg}(2 \ell)(1-\cos \theta)$
$K_{2}=2 K_{1}$.
12. In a hydrogen like atom, when an electron jumps from the M - shell to the L - shell, the wavelength of emitted radiation is λ. If an electron jumps from N -shell to the L -shell, the wavelength of emitted radiation will be :-

JEE (Main) Examination-2019/Evening Session/11-01-2019

(1) $\frac{27}{20} \lambda$
(2) $\frac{16}{25} \lambda$
(3) $\frac{20}{27} \lambda$
(4) $\frac{25}{16} \lambda$

Ans. (3)
Sol. For M \rightarrow L steel

$$
\frac{1}{\lambda}=\mathrm{K}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{\mathrm{K} \times 5}{36}
$$

for $\mathrm{N} \rightarrow \mathrm{L}$
$\frac{1}{\lambda^{\prime}}=K\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)=\frac{K \times 3}{16}$
$\lambda^{\prime}=\frac{20}{27} \lambda$
13. If speed (V), acceleration (A) and force (F) are considered as fundamental units, the dimension of Young's modulus will be :-
(1) $\mathrm{V}^{-2} A^{2} F^{2}$
(2) $\mathrm{V}^{-4} \mathrm{~A}^{2} \mathrm{~F}$
(3) $V^{-4} A^{-2} F$
(4) $\mathrm{V}^{-2} \mathrm{~A}^{2} \mathrm{~F}^{-2}$

Ans. (2)
Sol. $\frac{\mathrm{F}}{\mathrm{A}}=\mathrm{y} \cdot \frac{\Delta \ell}{\ell}$
$[\mathrm{Y}]=\frac{\mathrm{F}}{\mathrm{A}}$
Now from dimension

$$
\begin{aligned}
\mathrm{F} & =\frac{\mathrm{ML}}{\mathrm{~T}^{2}} \\
\mathrm{~L} & =\frac{\mathrm{F}}{\mathrm{M}} \cdot T^{2} \\
\mathrm{~L}^{2} & =\frac{\mathrm{F}^{2}}{\mathrm{M}^{2}}\left(\frac{\mathrm{~V}}{\mathrm{~A}}\right)^{4} \because \mathrm{~T}=\frac{\mathrm{V}}{\mathrm{~A}} \\
\mathrm{~L}^{2} & =\frac{\mathrm{F}^{2}}{\mathrm{M}^{2} \mathrm{~A}^{2}} \frac{\mathrm{v}^{4}}{\mathrm{~A}^{2}} \quad \mathrm{~F}=\mathrm{MA} \\
\mathrm{~L}^{2} & =\frac{\mathrm{V}^{4}}{\mathrm{~A}^{2}} \\
{[\mathrm{Y}]=\frac{[\mathrm{F}]}{[\mathrm{A}]} } & =\mathrm{F}^{1} \mathrm{~V}^{-4} \mathrm{~A}^{2}
\end{aligned}
$$

Ans. (1)
Sol. $\mathrm{R}_{\mathrm{g}}=20 \Omega$
$\mathrm{N}_{\mathrm{L}}=\mathrm{N}_{\mathrm{R}}=\mathrm{N}=30$
$\mathrm{FOM}=\frac{\mathrm{I}}{\phi}=0.005 \mathrm{~A} / \mathrm{Div}$.
Current sentivity $=\mathrm{CS}=\left(\frac{1}{0.005}\right)=\frac{\phi}{\mathrm{I}}$

$$
\begin{aligned}
& \mathrm{Ig}_{\max }=0.005 \times 30 \\
&=15 \times 10^{-2}=0.15 \\
& 15=0.15[20+\mathrm{R}] \\
& 100=20+\mathrm{R} \\
& \mathrm{R}=80
\end{aligned}
$$

17. The circuit shown below contains two ideal diodes, each with a forward resistance of 50Ω. If the battery voltage is 6 V , the current through the 100Ω resistance (in Amperes) is :-

(1) 0.027
(2) 0.020
(3) 0.030
(4) 0.036

Ans. (2)
Sol. $I=\frac{6}{300}=0.002\left(\mathrm{D}_{2}\right.$ is in reverse bias $)$
18. When 100 g of a liquid A at $100^{\circ} \mathrm{C}$ is added to 50 g of a liquid B at temperature $75^{\circ} \mathrm{C}$, the temperature of the mixture becomes $90^{\circ} \mathrm{C}$. The temperature of the mixture, if 100 g of liquid A at $100^{\circ} \mathrm{C}$ is added to 50 g of liquid B at $50^{\circ} \mathrm{C}$, will be :-
(1) $80^{\circ} \mathrm{C}$
(2) $60^{\circ} \mathrm{C}$
(3) $70^{\circ} \mathrm{C}$
(4) $85^{\circ} \mathrm{C}$

Ans. (1)
Sol. $100 \times \mathrm{S}_{\mathrm{A}} \times[100-90]=50 \times \mathrm{S}_{\mathrm{B}} \times(90-75)$ $2 \mathrm{~S}_{\mathrm{A}}=1.5 \mathrm{~S}_{\mathrm{B}}$ $\mathrm{S}_{\mathrm{A}}=\frac{3}{4} \mathrm{~S}_{\mathrm{B}}$

Now, $100 \times \mathrm{S}_{\mathrm{A}} \times[100-\mathrm{T}]=50 \times \mathrm{S}_{\mathrm{B}}(\mathrm{T}-50)$
$2 \times\left(\frac{3}{4}\right)(100-T)=(T-50)$

$$
\begin{aligned}
& 300-3 \mathrm{~T}=2 \mathrm{~T}-100 \\
& 400=5 \mathrm{~T} \\
& \mathrm{~T}=80
\end{aligned}
$$

19. The mass and the diameter of a planet are three times the respective values for the Earth. The period of oscillation of a simple pendulum on the Earth is 2 s . The period of oscillation of the same pendulum on the planet would be :-
(1) $\frac{2}{\sqrt{3}} \mathrm{~s}$
(2) $2 \sqrt{3} \mathrm{~s}$
(3) $\frac{\sqrt{3}}{2} \mathrm{~s}$
(4) $\frac{3}{2} \mathrm{~S}$

Ans. (2)
Sol. $\because g=\frac{G M}{R^{2}}$

$$
\frac{g_{p}}{g_{e}}=\frac{M_{e}}{M_{e}}\left(\frac{R_{e}}{R_{p}}\right)^{2}=3\left(\frac{1}{3}\right)^{2}=\frac{1}{3}
$$

Also $\mathrm{T} \propto \frac{1}{\sqrt{\mathrm{~g}}}$
$\Rightarrow \frac{\mathrm{T}_{\mathrm{p}}}{\mathrm{T}_{\mathrm{e}}}=\sqrt{\frac{\mathrm{g}_{\mathrm{e}}}{\mathrm{g}_{\mathrm{p}}}}=\sqrt{3}$
$\Rightarrow \mathrm{T}_{\mathrm{p}}=2 \sqrt{3} \mathrm{~S}$
20. The region between $y=0$ and $y=d$ contains a magnetic field $\vec{B}=B \hat{z}$. A particle of mass m and charge q enters the region with a velocity $\vec{v}=v \hat{\dot{i}}$. If $d=\frac{m v}{2 q B}$, the acceleration of the charged particle at the point of its emergence at the other side is :-

JEE (Main)Examination-2019/Evening Session/11-01-2019

(1) $\frac{q \vee B}{m}\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)$
(2) $\frac{q \vee B}{m}\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{\sqrt{3}}{\sqrt{2}} \hat{\mathrm{j}}\right)$
(3) $\frac{q \vee B}{m}\left(\frac{-\hat{j}+\hat{i}}{\sqrt{2}}\right)$
(4) $\frac{q v B}{m}\left(\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}\right)$

Ans. (BONUS)

21. A thermometer graduated according to a linear scale reads a value x_{0} when in contact with boiling water, and $x_{0} / 3$ when in contact with ice.

What is the temperature of an object in $0^{\circ} \mathrm{C}$, if this thermometer in the contact with the object reads $\mathrm{x}_{0} / 2$?
(1) 35
(2) 25
(3) 60
(4) 40

Ans. (2)

Sol.

$$
\begin{aligned}
\Rightarrow & \mathrm{T}^{\mathrm{o}} \mathrm{C}=\frac{\mathrm{x}_{0}}{6} \&\left(\mathrm{x}_{0}-\frac{\mathrm{x}_{0}}{3}\right)=\left(100-0^{\circ} \mathrm{C}\right) \\
& \mathrm{x}_{0}=\frac{300}{2} \\
\Rightarrow & \mathrm{~T}^{\mathrm{o}} \mathrm{C}=\frac{150}{6}=25^{\circ} \mathrm{C}
\end{aligned}
$$

22. A string is wound around a hollow cylinder of mass 5 kg and radius 0.5 m . If the string is now pulled with a horizontal force of 40 N , and the cylinder is rolling without slipping on a horizontal surface (see figure), then the angular acceleration of the cylinder will be (Neglect the mass and thickness of the string) :-

(1) $12 \mathrm{rad} / \mathrm{s}^{2}$
(2) $16 \mathrm{rad} / \mathrm{s}^{2}$
(3) $10 \mathrm{rad} / \mathrm{s}^{2}$
(4) $20 \mathrm{rad} / \mathrm{s}^{2}$

Ans. (2)

Sol.

$40+\mathrm{f}=\mathrm{m}(\mathrm{R} \alpha) \ldots . .(\mathrm{i})$
$40 \times \mathrm{R}-\mathrm{f} \times \mathrm{R}=\mathrm{mR}^{2} \alpha$
$40-\mathrm{f}=\mathrm{mR} \alpha$
From (i) and (ii)
$\alpha=\frac{40}{\mathrm{mR}}=16$
23. In a process, temperature and volume of one mole of an ideal monoatomic gas are varied according to the relation $\mathrm{VT}=\mathrm{K}$, where K is a constant. In this process the temperature of the gas is incresed by $\Delta \mathrm{T}$. The amount of heat absorbed by gas is (R is gas constant) :
(1) $\frac{1}{2} R \Delta T$
(2) $\frac{3}{2} R \Delta T$
(3) $\frac{1}{2} K R \Delta T$
(4) $\frac{2 K}{3} \Delta T$

Ans. (1)
Sol. $\quad \mathrm{VT}=\mathrm{K}$
$\Rightarrow \mathrm{V}\left(\frac{\mathrm{PV}}{\mathrm{nR}}\right)=\mathrm{k} \Rightarrow \mathrm{PV}^{2}=\mathrm{K}$
$\because \quad \mathrm{C}=\frac{\mathrm{R}}{1-\mathrm{x}}+\mathrm{C}_{\mathrm{v}}$ (For polytropic process)

$$
\mathrm{C}=\frac{\mathrm{R}}{1-2}+\frac{3 \mathrm{R}}{2}=\frac{\mathrm{R}}{2}
$$

$\therefore \Delta \mathrm{Q}=\mathrm{nC} \Delta \mathrm{T}$

$$
=\frac{\mathrm{R}}{2} \times \Delta \mathrm{T}
$$

24. In a photoelectric experiment, the wavelength of the light incident on a metal is changed from 300 nm to 400 nm . The decrease in the stopping potential is close to : $\left(\frac{\mathrm{hc}}{\mathrm{e}}=1240 \mathrm{~nm}-\mathrm{V}\right)$
(1) 0.5 V
(2) 1.0 V
(3) 2.0 V
(4) 1.5 V

Ans. (2)
Sol. $\frac{\mathrm{hc}}{\lambda_{1}}=\phi+\mathrm{eV}_{1}$
$\frac{\mathrm{hc}}{\lambda_{2}}=\phi+\mathrm{eV}_{2}$
(i) - (ii)

$$
\mathrm{hc}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)=\mathrm{e}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)
$$

$$
\Rightarrow \quad \mathrm{V}_{1}-\mathrm{V}_{2}=\frac{\mathrm{hc}}{\mathrm{e}}\left(\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1}-\lambda_{2}}\right)
$$

$$
=(1240 \mathrm{~nm}-\mathrm{V}) \frac{100 \mathrm{~nm}}{300 \mathrm{~nm} \times 400 \mathrm{~nm}}
$$

$$
=1 \mathrm{~V}
$$

25. A metal ball of mass 0.1 kg is heated upto $500^{\circ} \mathrm{C}$ and dropped into a vessel of heat capacity $800 \mathrm{JK}^{-1}$ and containing 0.5 kg water. The initial temperature of water and vessel is $30^{\circ} \mathrm{C}$. What is the approximate percentage increment in the temperature of the water ? [Specific Heat Capacities of water and metal are, respectively, $4200 \quad \mathrm{Jkg}^{-1} \mathrm{~K}^{-1} \quad$ and $400 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$]
(1) 30%
(2) 20%
(3) 25%
(4) 15%

Ans. (2)

Sol. $0.1 \times 400 \times(500-T)=0.5 \times 4200 \times(T-30)$

$$
+800(\mathrm{~T}-30)
$$

$\Rightarrow 40(500-\mathrm{T})=(\mathrm{T}-30)(2100+800)$
$\Rightarrow 20000-40 \mathrm{~T}=2900 \mathrm{~T}-30 \times 2900$
$\Rightarrow 20000+30 \times 2900=\mathrm{T}(2940)$
$\mathrm{T}=30.4^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{T}}{\mathrm{T}} \times 100=\frac{6.4}{30} \times 100$

$$
\simeq 20 \%
$$

26. The magnitude of torque on a particle of mass 1 kg is 2.5 Nm about the origin. If the force acting on it is 1 N , and the distance of the particle from the origin is 5 m , the angle between the force and the position vector is (in radians) :-
(1) $\frac{\pi}{8}$
(2) $\frac{\pi}{6}$
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{3}$

Ans. (2)
Sol. $2.5=1 \times 5 \sin \theta$
$\sin \theta=0.5=\frac{1}{2}$
$\theta=\frac{\pi}{6}$
27. In the experimental set up of metre bridge shown in the figure, the null point is obtained at a distance of 40 cm from A. If a 10Ω resistor is connected in series with R_{1}, the null point shifts by 10 cm . The resistance that should be connected in parallel with $\left(\mathrm{R}_{1}+10\right) \Omega$ such that the null point shifts back to its initial position is

(1) 40Ω
(2) 60Ω
(3) 20Ω
(4) 30Ω

JEE (Main) Examination-2019/Evening Session/11-01-2019

Ans. (2)
Sol. $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{2}{3}$
$\frac{\mathrm{R}_{1}+10}{\mathrm{R}_{2}}=1 \Rightarrow \mathrm{R}_{1}+10=\mathrm{R}_{2}$
$\frac{2 \mathrm{R}_{2}}{3}+10=\mathrm{R}_{2}$
$10=\frac{\mathrm{R}_{2}}{3} \Rightarrow \mathrm{R}_{2}=30 \Omega$
$\& \mathrm{R}_{1}=20 \Omega$
$\frac{\frac{30 \times \mathrm{R}}{30+\mathrm{R}}}{30}=\frac{2}{3}$
$\mathrm{R}=60 \Omega$
28. A circular disc D_{1} of mass M and radius R has two identical discs D_{2} and D_{3} of the same mass M and radius R attached rigidly at its opposite ends (see figure). The moment of inertia of the system about the axis OO', passing through the centre of D_{1}, as shown in the figure, will be:-

(1) $3 \mathrm{MR}^{2}$
(2) $\frac{2}{3} \mathrm{MR}^{2}$
(3) $M R^{2}$
(4) $\frac{4}{5} \mathrm{MR}^{2}$

Ans. (1)
Sol. $\mathrm{I}=\frac{\mathrm{MR}^{2}}{2}+2\left(\frac{\mathrm{MR}^{2}}{4}+\mathrm{MR}^{2}\right)$

$$
\begin{aligned}
& =\frac{\mathrm{MR}^{2}}{2}+\frac{\mathrm{MR}^{2}}{2}+2 \mathrm{MR}^{2} \\
& =3 \mathrm{MR}^{2}
\end{aligned}
$$

29. A copper wire is wound on a wooden frame, whose shape is that of an equilateral triangle. If the linear dimension of each side of the frame is increased by a factor of 3 , keeping the number of turns of the coil per unit length of the frame the same, then the self inductance of the coil :
(1) Decreases by a factor of $9 \sqrt{3}$
(2) Increases by a factor of 3
(3) Decreases by a factor of 9
(4) Increases by a factor of 27

Ans. (2)
Sol. Total length L will remain constant

$$
\mathrm{L}=(3 \mathrm{a}) \mathrm{N} \quad(\mathrm{~N}=\text { total turns })
$$

and length of winding $=(\mathrm{d}) \mathrm{N}$
($\mathrm{d}=$ diameter of wire)

self inductance $=\mu_{0} \mathrm{n}^{2} \mathrm{~A} \ell$

$$
=\mu_{0} \mathrm{n}^{2}\left(\frac{\sqrt{3} \mathrm{a}^{2}}{4}\right) \mathrm{dN}
$$

$\propto \mathrm{a}^{2} \mathrm{~N} \propto \mathrm{a}$
So self inductance will become 3 times
30. A particle of mass m and charge q is in an electric and magnetic field given by
$\overrightarrow{\mathrm{E}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}} \quad ; \quad \overrightarrow{\mathrm{B}}=4 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$.
The charged particle is shifted from the origin to the point $\mathrm{P}(\mathrm{x}=1 ; \mathrm{y}=1)$ along a straight path. The magnitude of the total work done is :-
(1) $(0.35) q$
(2) $(0.15) q$
(3) $(2.5) q$
(4) 5 q

Ans. (4)
Sol. $\quad \vec{F}_{\text {net }}=q \vec{E}+q(\vec{v} \times \vec{B})$

$$
=(2 q \hat{i}+3 q \hat{j})+q(\vec{v} \times \vec{B})
$$

$$
\begin{aligned}
\mathrm{W} & =\overrightarrow{\mathrm{F}}_{\mathrm{net}} \cdot \overrightarrow{\mathrm{~S}} \\
& =2 \mathrm{q}+3 \mathrm{q} \\
& =5 \mathrm{q}
\end{aligned}
$$

