TEST PAPER OF J EE(MAIN) EXAMINATION - 2019
(Held On Friday 11 ${ }^{\text {th }}$ J ANUARY, 2019) TIME : 9:30 AM To 12:30 PM

MATHEMATICS

1. Let $A=\left(\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right)$. It $A A^{T}=I_{3}$, then $|p|$ is :
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{\sqrt{5}}$
(3) $\frac{1}{\sqrt{6}}$
(4) $\frac{1}{\sqrt{3}}$

Ans. (1)
Sol. A is orthogonal matrix

$$
\Rightarrow 0^{2}+\mathrm{p}^{2}+\mathrm{p}^{2}=1 \Rightarrow|\mathrm{p}|=\frac{1}{\sqrt{2}}
$$

2. The area (in sq. units) of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$:-
(1) $\frac{5}{4}$
(2) $\frac{9}{8}$
(3) $\frac{3}{4}$
(4) $\frac{7}{8}$

Ans. (2)

Sol.

$x=4 y-2 \& x^{2}=4 y$
$\Rightarrow \mathrm{x}^{2}=\mathrm{x}+2 \Rightarrow \mathrm{x}^{2}-\mathrm{x}-2=0$
$\mathrm{x}=2$, -1
So, $\int_{-1}^{2}\left(\frac{x+2}{4}-\frac{x^{2}}{4}\right) d x=\frac{9}{8}$
3. The outcome of each of 30 items was observed; 10 items gave an outcome $\frac{1}{2}$ - deach, 10 items gave outcome $\frac{1}{2}$ each and the remaining 10 items gave outcome $\frac{1}{2}+\mathrm{d}$ each. If the variance of this outcome data is $\frac{4}{3}$ then $|d|$ equals :-
(1) 2
(2) $\frac{\sqrt{5}}{2}$
(3) $\frac{2}{3}$
(4) $\sqrt{2}$

Ans. (4)
Sol. Variance is independent of origin. So we shift the given data by $\frac{1}{2}$.
so, $\frac{10 \mathrm{~d}^{2}+10 \times 0^{2}+10 \mathrm{~d}^{2}}{30}-(0)^{2}=\frac{4}{3}$
$\Rightarrow \mathrm{d}^{2}=2 \Rightarrow|\mathrm{~d}|=\sqrt{2}$
4. The sum of an infinite geometric series with positive terms is 3 and the sum of the cubes of its terms is $\frac{27}{19}$. Then the common ratio of this series is:
(1) $\frac{4}{9}$
(2) $\frac{2}{9}$
(3) $\frac{2}{3}$
(4) $\frac{1}{3}$

Ans. (3)
Sol. $\frac{\mathrm{a}}{1-\mathrm{r}}=3$
$\frac{\mathrm{a}^{3}}{1-\mathrm{r}^{3}}=\frac{27}{19} \Rightarrow \frac{27(1-\mathrm{r})^{3}}{1-\mathrm{r}^{3}}=\frac{27}{19}$
$\Rightarrow 6 r^{2}-13 r+6=0$
$\Rightarrow \mathrm{r}=\frac{2}{3}$ as $|\mathrm{r}|<1$

Saral

5. Let $\vec{a}=\hat{i}+2 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\lambda \hat{j}+4 \hat{k}$ and $\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\left(\lambda^{2}-1\right) \hat{\mathrm{k}}$ be coplanar vectors. Then the non-zero vector $\vec{a} \times \vec{c}$ is :
(1) $-14 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}$
(2) $-10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}$
(3) $-10 \hat{i}+5 \hat{j}$
(4) $-14 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}$

Ans. (3)
Sol. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$
$\Rightarrow\left|\begin{array}{ccc}1 & 2 & 4 \\ 1 & \lambda & 4 \\ 2 & 4 & \lambda^{2}-1\end{array}\right|=0$
$\Rightarrow \lambda^{3}-2 \lambda^{2}-9 \lambda+18=0$
$\Rightarrow \lambda^{2}(\lambda-2)-9(\lambda-2)=0$
$\Rightarrow(\lambda-3)(\lambda+3)(\lambda-2)=0$
$\Rightarrow \lambda=2,3,-3$
So, $\lambda=2$ (as $\overrightarrow{\mathrm{a}}$ is parallel to $\overrightarrow{\mathrm{c}}$ for $\lambda= \pm 3$)

Hence $\vec{a} \times \vec{c}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 4 \\ 2 & 4 & 3\end{array}\right|$
$=-10 \hat{i}+5 \hat{j}$
6. Let $\left(-2-\frac{1}{3} \mathrm{i}\right)^{3}=\frac{\mathrm{x}+\mathrm{iy}}{27}(\mathrm{i}=\sqrt{-1})$, where x and y are real numbers, then $\mathrm{y}-\mathrm{x}$ equals :
(1) -85
(2) 85
(3) -91
(4) 91

Ans. (4)
Sol. $\left(-2-\frac{\mathrm{i}}{3}\right)^{3}=-\frac{(6+\mathrm{i})^{3}}{27}$

$$
=\frac{-198-107 \mathrm{i}}{27}=\frac{x+i y}{27}
$$

Hence, $\mathrm{y}-\mathrm{x}=198-107=91$
7. Let $f(x)=\left\{\begin{array}{l}-1,-2 \leq x<0 \\ x^{2}-1,0 \leq x \leq 2\end{array}\right.$ and $\mathrm{g}(\mathrm{x})=|\mathrm{f}(\mathrm{x})|+\mathrm{f}(|\mathrm{x}|)$. Then, in the interval $(-2,2), \mathrm{g}$ is :-
(1) differentiable at all points
(2) not differentiable at two points
(3) not continuous
(4) not differentiable at one point

Ans. (4)
Sol. $\quad|f(\mathrm{x})|=\left\{\begin{array}{ccc}1, & -2 \leq \mathrm{x}<0 \\ 1-\mathrm{x}^{2}, & 0 \leq \mathrm{x}<1 \\ \mathrm{x}^{2}-1, & 1 \leq \mathrm{x} \leq 2\end{array}\right.$
and $f(|x|)=x^{2}-1, x \in[-2,2]$
Hence $g(x)=\left\{\begin{array}{ccc}x^{2} & , & x \in[-2,0) \\ 0 & , & x \in[0,1) \\ 2\left(x^{2}-1\right) & , & x \in[1,2]\end{array}\right.$
It is not differentiable at $\mathrm{x}=1$
8. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{1+\mathrm{x}^{2}}$, $x \in R$. Then the range of f is :
(1) $(-1,1)-\{0\}$
(2) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(3) $\mathrm{R}-\left[-\frac{1}{2}, \frac{1}{2}\right]$
(4) $\mathrm{R}-[-1,1]$

Ans. (2)
Sol. $f(0)=0 \& f(\mathrm{x})$ is odd.
Further, if $\mathrm{x}>0$ then
$f(x)=\frac{1}{x+\frac{1}{x}} \in\left(0, \frac{1}{2}\right]$

Hence, $f(x) \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
9. The sum of the real values of x for which the middle term in the binomial expansion of $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ equals 5670 is :
(1) 6
(2) 8
(3) 0
(4) 4

Ans. (3)

Sol. $\mathrm{T}_{5}={ }^{8} \mathrm{C}_{4} \frac{\mathrm{x}^{12}}{81} \times \frac{81}{\mathrm{x}^{4}}=5670$
$\Rightarrow 70 x^{8}=5670$
$\Rightarrow \mathrm{x}= \pm \sqrt{3}$
10. The value of r for which
${ }^{20} \mathrm{C}_{\mathrm{r}}{ }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{\mathrm{r}-1}{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{\mathrm{r}-2}{ }^{20} \mathrm{C}_{2}+\ldots .{ }^{20} \mathrm{C}_{0}{ }^{20} \mathrm{C}_{\mathrm{r}}$ is maximum, is
(1) 20
(2) 15
(3) 11
(4) 10

Ans. (1)
Sol. Given sum $=$ coefficient of x^{r} in the expansion of $(1+x)^{20}(1+x)^{20}$,
which is equal to ${ }^{40} \mathrm{C}_{\mathrm{r}}$
It is maximum when $r=20$
11. Let $a_{1}, a_{2}, \ldots ., a_{10}$ be a G.P. If $\frac{a_{3}}{a_{1}}=25$, then
$\frac{a_{9}}{a_{5}}$ equals :
(1) $2\left(5^{2}\right)$
(2) $4\left(5^{2}\right)$
(3) 5^{4}
(4) 5^{3}

Ans. (3)
Sol. $a_{1}, a_{2}, \ldots ., a_{10}$ are in G.P.,
Let the common ratio be r
$\frac{\mathrm{a}_{3}}{\mathrm{a}_{1}}=25 \Rightarrow \frac{\mathrm{a}_{1} \mathrm{r}^{2}}{\mathrm{a}_{1}}=25 \Rightarrow \mathrm{r}^{2}=25$
$\frac{a_{9}}{a_{5}}=\frac{a_{1} r^{8}}{a_{1} r^{4}}=r^{4}=5^{4}$
12. If $\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=A(x)\left(\sqrt{1-x^{2}}\right)^{m}+C$, for a suitable chosen integer m and a function $A(x)$, where C is a constant of integration then $(\mathrm{A}(\mathrm{x}))^{\mathrm{m}}$ equals :
(1) $\frac{-1}{3 x^{3}}$
(2) $\frac{-1}{27 \mathrm{x}^{9}}$
(3) $\frac{1}{9 x^{4}}$
(4) $\frac{1}{27 \mathrm{x}^{6}}$

Ans. (2)
Sol. $\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=A(x)\left(\sqrt{1-x^{2}}\right)^{m}+C$
$\int \frac{|x| \sqrt{\frac{1}{x^{2}}-1}}{x^{4}} d x$,
Put $\frac{1}{\mathrm{x}^{2}}-1=\mathrm{t} \Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{-2}{\mathrm{x}^{3}}$
Case-1 $x \geq 0$
$-\frac{1}{2} \int \sqrt{\mathrm{t}} \mathrm{dt} \Rightarrow-\frac{\mathrm{t}^{3 / 2}}{3}+\mathrm{C}$
$\Rightarrow-\frac{1}{3}\left(\frac{1}{x^{2}}-1\right)^{3 / 2}$
$\Rightarrow \frac{\left(\sqrt{1-x^{2}}\right)^{3}}{-3 x^{2}}+\mathrm{C}$
$A(x)=-\frac{1}{3 x^{3}}$ and $m=3$
$(\mathrm{A}(\mathrm{x}))^{\mathrm{m}}=\left(-\frac{1}{3 \mathrm{x}^{3}}\right)^{3}=-\frac{1}{27 \mathrm{x}^{9}}$
Case-II $\mathrm{x} \leq 0$
We get $\frac{\left(\sqrt{1-x^{2}}\right)^{3}}{-3 x^{3}}+C$
$A(x)=\frac{1}{-3 x^{3}}, \quad m=3$
$(A(x))^{m}=\frac{-1}{27 x^{9}}$

JEE (M ain)Examination-2019/ Morning

13. In a triangle, the sum of lengths of two sides is x and the product of the lengths of the same two sides is y . If $\mathrm{x}^{2}-\mathrm{c}^{2}=\mathrm{y}$, where c is the length of the third side of the triangle, then the circumradius of the triangle is:
(1) $\frac{\mathrm{y}}{\sqrt{3}}$
(2) $\frac{\mathrm{c}}{\sqrt{3}}$
(3) $\frac{\mathrm{c}}{3}$
(4) $\frac{3}{2} y$

Ans. (2)
Sol. Given $\mathrm{a}+\mathrm{b}=\mathrm{x}$ and $\mathrm{ab}=\mathrm{y}$
If $x^{2}-c^{2}=y \Rightarrow(a+b)^{2}-c^{2}=a b$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}=-\mathrm{ab}$
$\Rightarrow \frac{a^{2}+b^{2}-c^{2}}{2 a b}=-\frac{1}{2}$
$\Rightarrow \cos \mathrm{C}=-\frac{1}{2}$
$\Rightarrow \angle \mathrm{C}=\frac{2 \pi}{3}$
$\mathrm{R}=\frac{\mathrm{c}}{2 \sin \mathrm{C}}=\frac{\mathrm{c}}{\sqrt{3}}$
14. The value of the integral $\int_{-2}^{2} \frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}} d x$
(where $[\mathrm{x}]$ denotes the greatest integer less than ${ }^{20} \mathrm{Cr}$ or equal to x) is :
(1) 4
(2) $4-\sin 4$
(3) $\sin 4$
(4) 0

Ans. (4)
Sol. $I=\int_{-2}^{2} \frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}} d x$
$I=\int_{0}^{2}\left(\frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}}+\frac{\sin ^{2}(-x)}{\left[-\frac{x}{\pi}\right]+\frac{1}{2}}\right) d x$
$\left(\left[\frac{x}{\pi}\right]+\left[-\frac{x}{\pi}\right]=-1\right.$ as $\left.\quad x \neq n \pi\right)$
$I=\int_{0}^{2}\left(\frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}}+\frac{\sin ^{2} x}{-1-\left[\frac{x}{\pi}\right]+\frac{1}{2}}\right) d x=0$
15. If the system of linear equations
$2 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=\mathrm{a}$
$3 \mathrm{x}-\mathrm{y}+5 \mathrm{z}=\mathrm{b}$
$x-3 y+2 z=c$
where a, b, c are non-zero real numbers, has more then one solution, then :
(1) $\mathrm{b}-\mathrm{c}-\mathrm{a}=0$
(2) $a+b+c=0$
(3) $b+c-a=0$
(4) $\mathrm{b}-\mathrm{c}+\mathrm{a}=0$

Ans. (1)
Sol. $\mathrm{P}_{1}: 2 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=\mathrm{a}$
$P_{2}: 3 x-y+5 z=b$
$P_{3}: x-3 y+2 z=c$
We find
$\mathrm{P}_{1}+\mathrm{P}_{3}=\mathrm{P}_{2} \Rightarrow \mathrm{a}+\mathrm{c}=\mathrm{b}$
16. A square is inscribed inthe circle
$x^{2}+y^{2}-6 x+8 y-103=0$ with its sides parallel to the corrdinate axes. Then the distance of the vertex of this square which is nearest to the origin is :-
(1) 13
(2) $\sqrt{137}$
(3) 6
(4) $\sqrt{41}$

Ans. (4)

Sol. $\quad \mathrm{R}=\sqrt{9+16+103}=8 \sqrt{2}$
$\mathrm{OA}=13$
$\mathrm{OB}=\sqrt{265}$
$\mathrm{OC}=\sqrt{137}$
$\mathrm{OD}=\sqrt{41}$

17. Let $f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$ for $k=1,2$,

3 , Then for all $x \in R$, the value of $f_{4}(x)-f_{6}(x)$ is equal to :-
(1) $\frac{5}{12}$
(2) $\frac{-1}{12}$
(3) $\frac{1}{4}$
(4) $\frac{1}{12}$

Ans. (4)
Sol. $f_{4}(\mathrm{x})-f_{6}(\mathrm{x})$
$=\frac{1}{4}\left(\sin ^{4} x+\cos ^{4} x\right)-\frac{1}{6}\left(\sin ^{6} x+\cos ^{6} x\right)$
$=\frac{1}{4}\left(1-\frac{1}{2} \sin ^{2} 2 x\right)-\frac{1}{6}\left(1-\frac{3}{4} \sin ^{2} 2 x\right)=\frac{1}{12}$
18. Let $[x]$ denote the greatest integer less than or equal to x. Then :-
$\lim _{x \rightarrow 0} \frac{\tan \left(\pi \sin ^{2} x\right)+(|x|-\sin (x[x]))^{2}}{x^{2}}$
(1) equals π
(2) equals 0
(3) equals $\pi+1$
(4) does not exist

Ans. (4)

Sol. R.H.L. $=\lim _{x \rightarrow 0^{+}} \frac{\tan \left(\pi \sin ^{2} x\right)+(|x|-\sin (x[x]))^{2}}{x^{2}}$ $\left(\right.$ as $\left.\mathrm{x} \rightarrow 0^{+} \Rightarrow[\mathrm{x}]=0\right)$
$=\lim _{x \rightarrow 0^{+}} \frac{\tan \left(\pi \sin ^{2} x\right)+x^{2}}{x^{2}}$
$=\lim _{x \rightarrow 0^{+}} \frac{\tan \left(\pi \sin ^{2} x\right)}{\left(\pi \sin ^{2} x\right)}+1=\pi+1$
L.H.L. $=\lim _{x \rightarrow 0^{-}} \frac{\tan \left(\pi \sin ^{2} x\right)+(-x+\sin x)^{2}}{x^{2}}$
$\left(\right.$ as $\left.\mathrm{x} \rightarrow 0^{-} \Rightarrow[\mathrm{x}]=-1\right)$
$\lim _{x \rightarrow 0+} \frac{\tan \left(\pi \sin ^{2} x\right)}{\pi \sin ^{2} x} \cdot \frac{\pi \sin ^{2} x}{x^{2}}+\left(-1+\frac{\sin x}{x}\right)^{2} \Rightarrow \pi$
R.H.L. \neq L.H.L.
19. The direction ratios of normal to the plane through the points $(0,-1,0)$ and $(0,0,1)$ and making an anlge $\frac{\pi}{4}$ with the plane $y-z+5=0$ are:
(1) $2 \sqrt{3}, 1,-1$
(2) $2, \sqrt{2},-\sqrt{2}$
(3) $2,-1,1$
(4) $\sqrt{2}, 1,-1$

Ans. (2, 4)
Sol. Let the equation of plane be
$a(x-0)+b(y+1)+c(z-0)=0$
It passes through $(0,0,1)$ then
$b+c=0$

Now $\cos \frac{\pi}{4}=\frac{a(0)+b(1)+c(-1)}{\sqrt{2} \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}$
$\Rightarrow \mathrm{a}^{2}=-2 \mathrm{bc}$ and $\mathrm{b}=-\mathrm{c}$
we get $\mathrm{a}^{2}=2 \mathrm{c}^{2}$
$\Rightarrow \mathrm{a}= \pm \sqrt{2} \mathrm{c}$
\Rightarrow direction ratio $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(\sqrt{2},-1,1)$ or $(\sqrt{2}, 1,-1)$
20. If $x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4(y>0)$, then $d y / d x$ at $x=e$ is equal to :
(1) $\frac{\mathrm{e}}{\sqrt{4+\mathrm{e}^{2}}}$
(2) $\frac{(1+2 \mathrm{e})}{2 \sqrt{4+\mathrm{e}^{2}}}$
(3) $\frac{(2 \mathrm{e}-1)}{2 \sqrt{4+\mathrm{e}^{2}}}$
(4) $\frac{(1+2 \mathrm{e})}{\sqrt{4+\mathrm{e}^{2}}}$

Ans. (3)
Sol. Differentiating with respect to x ,
$x \cdot \frac{1}{\ell n x} \cdot \frac{1}{x}+\ell n(\ell n x)-2 x+2 y \cdot \frac{d y}{d x}=0$
at $\mathrm{x}=\mathrm{e}$ we get
$1-2 e+2 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{2 e-1}{2 y}$
$\Rightarrow \frac{d y}{d x}=\frac{2 e-1}{2 \sqrt{4+\mathrm{e}^{2}}}$ as $\mathrm{y}(\mathrm{e})=\sqrt{4+\mathrm{e}^{2}}$
21. The straight line $x+2 y=1$ meets the coordinate axes at A and B . A circle is drawn through A , B and the origin. Then the sum of perpendicular distances from A and B on the tangent to the circle at the origin is :
(1) $\frac{\sqrt{5}}{4}$
(2) $\frac{\sqrt{5}}{2}$
(3) $2 \sqrt{5}$
(4) $4 \sqrt{5}$

Ans. (2)
Sol.

Equation of circle
$(x-1)(x-0)+(y-0)\left(y-\frac{1}{2}\right)=0$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}-\frac{\mathrm{y}}{2}=0$
Equation of tangent of origin is $2 x+y=0$

$$
\begin{aligned}
& \ell_{1}+\ell_{2}=\frac{2}{\sqrt{5}}+\frac{1}{2 \sqrt{5}} \\
&=\frac{4+1}{2 \sqrt{5}}=\frac{\sqrt{5}}{2}
\end{aligned}
$$

22. If q is false and $p \wedge q \leftrightarrow r$ is true, then which one of the following statements is a tautology?
(1) $(\mathrm{p} \vee \mathrm{r}) \rightarrow(\mathrm{p} \wedge \mathrm{r})$
(2) $\mathrm{p} \vee \mathrm{r}$
(3) $\mathrm{p} \wedge \mathrm{r}$
(4) $(\mathrm{p} \wedge \mathrm{r}) \rightarrow(\mathrm{p} \vee \mathrm{r})$

Ans. (4)
Sol. Given q is F and $(\mathrm{p} \wedge \mathrm{q}) \leftrightarrow \mathrm{r}$ is T
$\Rightarrow \mathrm{p} \wedge \mathrm{q}$ is F which implies that r is F
$\Rightarrow \mathrm{q}$ is F and r is F
$\Rightarrow(\mathrm{p} \wedge \mathrm{r})$ is always F
$\Rightarrow(\mathrm{p} \wedge \mathrm{r}) \rightarrow(\mathrm{p} \vee \mathrm{r})$ is tautology.
23. If $y(x)$ is the solution of the differential equation

$$
\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}, x>0
$$

where $\mathrm{y}(1)=\frac{1}{2} \mathrm{e}^{-2}$, then :
(1) $y(x)$ is decreasing in $(0,1)$
(2) $y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
(3) $y\left(\log _{e} 2\right)=\frac{\log _{\mathrm{e}} 2}{4}$
(4) $y\left(\log _{e} 2\right)=\log _{e} 4$

Ans. (2)
Sol. $\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}$
I.F. $=e^{\int\left(\frac{2 x+1}{x}\right) d x}=e^{\int\left(2+\frac{1}{x}\right) d x}=e^{2 x+\ln x}=e^{2 x} \cdot x$

So, $y\left(x e^{2 x}\right)=\int e^{-2 x} \cdot \mathrm{xe}^{2 x}+C$
$\Rightarrow \mathrm{xye}^{2 \mathrm{x}}=\int \mathrm{xdx}+\mathrm{C}$
$\Rightarrow 2 \mathrm{xye}^{2 \mathrm{x}}=\mathrm{x}^{2}+2 \mathrm{C}$
It passess through $\left(1, \frac{1}{2} \mathrm{e}^{-2}\right)$ we get $\mathrm{C}=0$

$$
y=\frac{x e^{-2 x}}{2}
$$

$\Rightarrow \frac{d y}{d x}=\frac{1}{2} e^{-2 x}(-2 x+1)$
$\Rightarrow f(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
$\mathrm{y}\left(\log _{\mathrm{e}} 2\right)=\frac{\left(\log _{\mathrm{e}} 2\right) \mathrm{e}^{-2\left(\log _{\mathrm{e}} 2\right)}}{2}$
$=\frac{1}{8} \log _{\mathrm{e}} 2$
24. The maximum value of the function $f(x)=3 x^{3}-18 x^{2}+27 x-40$ on the set $S=\left\{x \in R: x^{2}+30 \leq 11 x\right\}$ is :
(1) 122
(2) -222
(3) -122
(4) 222

Ans. (1)
Sol. $S=\left\{x \in R, x^{2}+30-11 x \leq 0\right\}$
$=\{x \in R, 5 \leq x \leq 6\}$
Now $f(x)=3 x^{3}-18 x^{2}+27 x-40$
$\Rightarrow f^{\prime}(x)=9(x-1)(x-3)$,
which is positive in $[5,6]$
$\Rightarrow f(x)$ increasing in $[5,6]$
Hence maximum value $=f(6)=122$
25. If one real root of the quadratic equation $81 x^{2}+k x+256=0$ is cube of the other root, then a value of k is
(1) -81
(2) 100
(3) -300
(4) 144

Ans. (3)
Sol. $81 x^{2}+k x+256=0 ; x=\alpha, \alpha^{3}$
$\Rightarrow \alpha^{4}=\frac{256}{81} \Rightarrow \alpha= \pm \frac{4}{3}$
Now $-\frac{k}{81}=\alpha+\alpha^{3}= \pm \frac{100}{27}$
$\Rightarrow \mathrm{k}= \pm 300$
26. Two circles with equal radii are intersecting at the points $(0,1)$ and $(0,-1)$. The tangent at the point $(0,1)$ to one of the circles passes through the centre of the other circle. Then the distance between the centres of these circles is :
(1) 1
(2) $\sqrt{2}$
(3) $2 \sqrt{2}$
(4) 2

Ans. (4)
Sol. In $\triangle \mathrm{APO}$

$$
\begin{aligned}
& \left(\frac{\sqrt{2} r}{2}\right)^{2}+1^{2}=r^{2} \\
& \Rightarrow r=\sqrt{2}
\end{aligned}
$$

So distance between centres $=\sqrt{2} r=2$
27. Equation of a common tangent to the parabola $y^{2}=4 x$ and the hyperbole $\mathrm{xy}=2$ is :
(1) $x+2 y+4=0$
(2) $x-2 y+4=0$
(3) $x+y+1=0$
(4) $4 x+2 y+1=0$

Ans. (1)
Sol. Let the equation of tangent to parabola
$y^{2}=4 x$ be $y=m x+\frac{1}{m}$
It is also a tangent to hyperbola $\mathrm{xy}=2$
$\Rightarrow \mathrm{x}\left(\mathrm{mx}+\frac{1}{\mathrm{~m}}\right)=2$
$\Rightarrow \mathrm{x}^{2} \mathrm{~m}+\frac{\mathrm{x}}{\mathrm{m}}-2=0$
$\mathrm{D}=0 \Rightarrow \mathrm{~m}=-\frac{1}{2}$
So tangent is $2 y+x+4=0$
28. The plane containing the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z-1}{3}$ and also containing its projection on the plane $2 x+3 y-z=5$, contains which one of the following points ?
(1) $(2,0,-2)$
(2) $(-2,2,2)$
(3) $(0,-2,2)$
(4) $(2,2,0)$

Ans. (1)
Sol. The normal vector of required plane
$=(2 \hat{i}-\hat{j}+3 \hat{k}) \times(2 \hat{i}+3 \hat{j}-\hat{k})$
$=-8 \hat{i}+8 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}$
So, direction ratio of normal is $(-1,1,1)$
So required plane is
$-(x-3)+(y+2)+(z-1)=0$
$\Rightarrow-x+y+z+4=0$
Which is satisfied by $(2,0,-2)$
29. If tangents are drawn to the ellipse $x^{2}+2 y^{2}=2$ at all points on the ellipse other than its four vertices then the mid points of the tangents intercepted betwen the coordinate axes lie on the curve :
(1) $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$
(2) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
(3) $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
(4) $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1$

Ans. (3)
Sol. Equation of general tangent on ellipse

$$
\begin{aligned}
& \frac{x}{a \sec \theta}+\frac{y}{b \operatorname{cosec} \theta}=1 \\
& a=\sqrt{2}, b=1 \\
& \Rightarrow \frac{x}{\sqrt{2} \sec \theta}+\frac{y}{\operatorname{cosec} \theta}=1
\end{aligned}
$$

Let the midpoint be (h, k)
$h=\frac{\sqrt{2} \sec \theta}{2} \Rightarrow \cos \theta=\frac{1}{\sqrt{2} h}$
and $\mathrm{k}=\frac{\operatorname{cosec} \theta}{2} \Rightarrow \sin \theta=\frac{1}{2 \mathrm{k}}$
$\because \sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow \frac{1}{2 \mathrm{~h}^{2}}+\frac{1}{4 \mathrm{k}^{2}}=1$
$\Rightarrow \frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
30. Two integers are selected at random from the set $\{1,2, \ldots ., 11\}$. Given that the sum of selected numbers is even, the conditional probability that both the numbers are even is :
(1) $\frac{2}{5}$
(2) $\frac{1}{2}$
(3) $\frac{3}{5}$
(4) $\frac{7}{10}$

Ans. (1)
Sol. Since sum of two numbers is even so either both are odd or both are even. Hence number of elements in reduced samples space
$={ }^{5} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}$
so required probability $=\frac{{ }^{5} \mathrm{C}_{2}}{{ }^{5} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}}$

