TEST PAPER OF J EE(MAIN) EXAMINATION - 2019

(Held On Wednes day 09 ${ }^{\text {th }}$ J ANUARY, 2019) TIME : 02 : 30 PM To 05 : 30 PM

MATHEMATICS

1. Let f be a differentiable function from R to R such that $|f(x)-f(y)| \leq 2|x-y|^{\frac{3}{2}}$, for all $x, y \varepsilon R$. If
$f(0)=1$ then $\int_{0}^{1} f^{2}(\mathrm{x}) \mathrm{dx}$ is equal to
(1) 0
(2) $\frac{1}{2}$
(3) 2
(4) 1

Ans. (4)
Sol. $|f(\mathrm{x})-f(\mathrm{y})| \leq 2|\mathrm{x}-\mathrm{y}|^{3 / 2}$
divide both sides by $|x-y|$
$\left|\frac{f(\mathrm{x})-f(\mathrm{y})}{\mathrm{x}-\mathrm{y}}\right| \leq 2 .|\mathrm{x}-\mathrm{y}|^{1 / 2}$
apply limit $\mathrm{x} \rightarrow \mathrm{y}$
$\left|f^{\prime}(\mathrm{y})\right| \leq 0 \Rightarrow f^{\prime}(\mathrm{y})=0 \Rightarrow f(\mathrm{y})=\mathrm{c} \Rightarrow f(\mathrm{x})=1$
$\int_{0}^{1} 1 . d x=1$
2. If $\int_{0}^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{2 \mathrm{ksec} \theta}} \mathrm{d} \theta=1-\frac{1}{\sqrt{2}},(k>0)$, then the value of k is :
(1) 2
(2) $\frac{1}{2}$
(3) 4
(4) 1

Ans. (1)
Sol. $\frac{1}{\sqrt{2 \mathrm{k}}} \int_{0}^{\pi / 3} \frac{\tan \theta}{\sqrt{\sec \theta}} \mathrm{~d} \theta=\frac{1}{\sqrt{2 \mathrm{k}}} \int_{0}^{\pi / 3} \frac{\sin \theta}{\sqrt{\cos \theta}} \mathrm{~d} \theta$
$=-\left.\frac{1}{\sqrt{2 \mathrm{k}}} 2 \sqrt{\cos \theta}\right|_{0} ^{\pi / 3}=-\frac{\sqrt{2}}{\sqrt{\mathrm{k}}}\left(\frac{1}{\sqrt{2}}-1\right)$
given it is $1-\frac{1}{\sqrt{2}} \Rightarrow \mathrm{k}=2$
3. The coefficient of t^{4} in the expansion of $\left(\frac{1-t^{6}}{1-t}\right)^{3}$ is
(1) 12
(2) 15
(3) 10
(4) 14

Ans. (2)
Sol. $\left(1-t^{6}\right)^{3}(1-t)^{-3}$
$\left(1-t^{18}-3 t^{6}+3 t^{12}\right)(1-t)^{-3}$
\Rightarrow cofficient of t^{4} in $(1-t)^{-3}$ is
${ }^{3+4-1} C_{4}={ }^{6} C_{2}=15$
4. For each $x \& R$, let [x] be the greatest integer less than or equal to x. Then
$\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \sin [x]}{|x|}$ is equal to
(1) $-\sin 1$
(2) 0
(3) 1
(4) $\sin 1$

Ans. (1)
Sol. $\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \sin [x]}{|x|}$
$\mathrm{x} \rightarrow 0^{-}$
$[x]=-1 \Rightarrow \lim _{x \rightarrow 0^{-}} \frac{x(-x-1) \sin (-1)}{-x}=-\sin 1$
$|x|=-x$
5. If both the roots of the quadratic equation $x^{2}-m x+4=0$ are real and distinct and they lie in the interval [1,5], then m lies in the interval:
(1) $(4,5)$
(2) $(3,4)$
(3) $(5,6)$
(4) $(-5,-4)$

Ans. (Bonus/1)
Sol. $x^{2}-m x+4=0$
$\alpha, \beta \in[1,5]$
(1) $\mathrm{D}>0 \Rightarrow \mathrm{~m}^{2}-16>0$

$$
\Rightarrow \mathrm{m} \in(-\infty,-4) \cup(4, \infty)
$$

(2) $f(1) \geq 0 \Rightarrow 5-\mathrm{m} \geq 0 \Rightarrow \mathrm{~m} \in(-\infty, 5]$
(3) $f(5) \geq 0 \Rightarrow 29-5 \mathrm{~m} \geq 0 \Rightarrow \mathrm{~m} \in\left(-\infty, \frac{29}{5}\right]$
(4) $1<\frac{-\mathrm{b}}{2 \mathrm{a}}<5 \Rightarrow 1<\frac{\mathrm{m}}{2}<5 \Rightarrow \mathrm{~m} \in(2,10)$

$$
\Rightarrow \mathrm{m} \in(4,5)
$$

No option correct : Bonus

* If we consider $\alpha, \beta \in(1,5)$ then option (1) is correct.

JEE (Main)Examination-2019/Evening Session/ 09-01-2019

6. If

$$
A=\left[\begin{array}{ccc}
e^{t} & e^{-t} \cos t & e^{-t} \sin t \\
e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\
e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t
\end{array}\right]
$$

Then A is-
(1) Invertible only if $t=\frac{\pi}{2}$
(2) not invertible for any $t \varepsilon R$
(3) invertible for all $t \in R$
(4) invertible only if $t=\pi$

Ans. (3)
Sol. $|A|=e^{-t}\left|\begin{array}{ccc}1 & \cos t & \sin t \\ 1 & -\cos t-\sin t & -\sin t+\cos t \\ 1 & 2 \sin t & -2 \cos t\end{array}\right|$
$=\mathrm{e}^{-\mathrm{t}}\left[5 \cos ^{2} \mathrm{t}+5 \sin ^{2} \mathrm{t}\right] \forall \mathrm{t} \in \mathrm{R}$
$=5 \mathrm{e}^{-\mathrm{t}} \neq 0 \forall \mathrm{t} \in \mathrm{R}$
7. The area of the region
$A=[(x, y): 0 \leq y \leq x|x|+1$ and $-1 \leq x \leq 1]$
in sq. units, is :
(1) $\frac{2}{3}$
(2) $\frac{1}{3}$
(3) 2
(4) $\frac{4}{3}$

Ans. (3)
Sol. The graph is a follows

$$
\int_{-1}^{0}\left(-x^{2}+1\right) d x+\int_{0}^{1}\left(x^{2}+1\right) d x=2
$$

8. Let z_{0} be a root of the quadratic equation, $\mathrm{x}^{2}+\mathrm{x}+1=0$. If $\mathrm{z}=3+6 \mathrm{iz}_{0}^{81}-3 \mathrm{iz}_{0}^{93}$, then $\arg \mathrm{z}$ is equal to:
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{3}$
(3) 0
(4) $\frac{\pi}{6}$

Ans. (1)
Sol. $\mathrm{z}_{0}=\omega$ or ω^{2} (where ω is a non-real cube root of unity)
$\mathrm{z}=3+6 \mathrm{i}(\omega)^{81}-3 \mathrm{i}(\omega)^{93}$
$\mathrm{z}=3+3 \mathrm{i}$
$\Rightarrow \arg \mathrm{z}=\frac{\pi}{4}$
9. Let $\vec{a}=\hat{i}+\hat{j}+\sqrt{2} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+\sqrt{2} \hat{k} \quad$ and $\overrightarrow{\mathrm{c}}=5 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\sqrt{2} \hat{\mathrm{k}}$ be three vectors such that the projection vector of \vec{b} on \vec{a} is \vec{a}. If $\vec{a}+\vec{b}$ is perpendicular to \vec{c}, then $|\vec{b}|$ is equal to:
(1) $\sqrt{22}$
(2) 4
(3) $\sqrt{32}$
(4) 6

Ans. (4)
Sol. Projection of \vec{b} on $\vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=|\vec{a}|$
$\Rightarrow \mathrm{b}_{1}+\mathrm{b}_{2}=2$
and $(\vec{a}+\vec{b}) \perp \vec{c} \Rightarrow(\vec{a}+\vec{b}) \cdot \vec{c}=0$
$\Rightarrow 5 b_{1}+b_{2}=-10$
from (1) and (2) $\Rightarrow b_{1}=-3$ and $b_{2}=5$
then $|\vec{b}|=\sqrt{b_{1}^{2}+b_{2}^{2}+2}=6$
10. Let $A(4,-4)$ and $B(9,6)$ be points on the parabola, $y^{2}+4 x$. Let C be chosen on the arc AOB of the parabola, where O is the origin, such that the area of $\triangle \mathrm{ACB}$ is maximum. Then, the area (in sq. units) of $\triangle \mathrm{ACB}$, is:
(1) $31 \frac{3}{4}$
(2) 32
(3) $30 \frac{1}{2}$
(4) $31 \frac{1}{4}$

Ans. (4)

Sol.

Area $=5\left|\mathrm{t}^{2}-\mathrm{t}-6\right|=5\left|\left(\mathrm{t}-\frac{1}{2}\right)^{2}-\frac{25}{4}\right|$
is maximum if $\mathrm{t}=\frac{1}{2}$
11. The logical statement
$[\sim(\sim \mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r}) \wedge(\sim \mathrm{q} \wedge \mathrm{r})]$ is equivalent to:
(1) $(\mathrm{p} \wedge \mathrm{r}) \wedge \sim \mathrm{q}$
(2) $(\sim p \wedge \sim q) \wedge r$
(3) $\sim p \vee r$
(4) $(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{r}$

Ans. (1)
Sol. $\mathrm{s}[\sim(\sim \mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \wedge \mathrm{r})] \cap(\sim \mathrm{q} \wedge \mathrm{r})$
$\equiv[(\mathrm{p} \wedge \sim \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})] \wedge(\sim \mathrm{q} \wedge \mathrm{r})$
$\equiv[\mathrm{p} \wedge(\sim \mathrm{q} \vee \mathrm{r})] \wedge(\sim \mathrm{q} \wedge \mathrm{r})$
$\equiv \mathrm{p} \wedge(\sim \mathrm{q} \wedge \mathrm{r})$
$\equiv(\mathrm{p} \wedge \mathrm{r}) \sim \mathrm{q}$
12. An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is :
(1) $\frac{26}{49}$
(2) $\frac{32}{49}$
(3) $\frac{27}{49}$
(4) $\frac{21}{49}$

Ans. (2)

Sol. E_{1} : Event of drawing a Red ball and placing a green ball in the bag
E_{2} : Event of drawing a green ball and placing a red ball in the bag

E : Event of drawing a red ball in second draw
$P(E)=P\left(E_{1}\right) \times P\left(\frac{E}{E_{1}}\right)+P\left(E_{2}\right) \times P\left(\frac{E}{E_{2}}\right)$
$=\frac{5}{7} \times \frac{4}{7}+\frac{2}{7} \times \frac{6}{7}=\frac{32}{49}$
13. If $0 \leq x<\frac{\pi}{2}$, then the number of values of x for which $\sin x-\sin 2 x+\sin 3 x=0$, is
(1) 2
(2) 1
(3) 3
(4) 4

Ans. (1)
Sol. $\quad \sin x-\sin 2 x+\sin 3 x=0$
$\Rightarrow(\sin \mathrm{x}+\sin 3 \mathrm{x})-\sin 2 \mathrm{x}=0$
$\Rightarrow 2 \sin \mathrm{x} \cdot \cos \mathrm{x}-\sin 2 \mathrm{x}=0$
$\Rightarrow \sin 2 \mathrm{x}(2 \cos \mathrm{x}-1)=0$
$\Rightarrow \sin 2 x=0$ or $\cos x=\frac{1}{2}$
$\Rightarrow \mathrm{x}=0, \frac{\pi}{3}$
14. The equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is:
(1) $x+2 y-2 z=0$
(2) $x-2 y+z=0$
(3) $5 x+2 y-4 z=0$
(4) $3 x+2 y-3 z=0$

Ans. (2)

JEE (Main)Examination-2019/Evening Session/ 09-01-2019

Sol. Vector along the normal to the plane containing the lines
$\frac{\mathrm{x}}{3}=\frac{\mathrm{y}}{4}=\frac{\mathrm{z}}{2}$ and $\frac{\mathrm{x}}{4}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}}{3}$
is $(8 \hat{i}-\hat{j}-10 \hat{k})$
vector perpendicular to the vectors $2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $8 \hat{i}-\hat{j}-10 \hat{k}$ is $26 \hat{i}-52 \hat{j}+26 \hat{k}$
so, required plane is
$26 x-52 y+26 z=0$
$x-2 y+z=0$
15. Let the equations of two sides of a triangle be $3 x$ $-2 y+6=0$ and $4 x+5 y-20=0$. If the orthocentre of this triangle is at $(1,1)$, then the equation of its third side is :
(1) $122 y-26 x-1675=0$
(2) $26 x+61 y+1675=0$
(3) $122 y+26 x+1675=0$
(4) $26 x-122 y-1675=0$

Ans. (4)
Sol. Equation of AB is
$3 x-2 y+6=0$
equation of $A C$ is
$4 x+5 y-20=0$
Equation of BE is
$2 x+3 y-5=0$

Equation of CF is $5 x-4 y-1=0$
\Rightarrow Equation of BC is $26 \mathrm{x}-122 \mathrm{y}=1675$
16. If $x=3 \tan t$ and $y=3 \sec t$, then the value of $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$ at $\mathrm{t}=\frac{\pi}{4}$, is:
(1) $\frac{3}{2 \sqrt{2}}$
(2) $\frac{1}{3 \sqrt{2}}$
(3) $\frac{1}{6}$
(4) $\frac{1}{6 \sqrt{2}}$

Ans. (4)
Sol. $\frac{\mathrm{dx}}{\mathrm{dt}}=3 \sec ^{2} \mathrm{t}$
$\frac{\mathrm{dy}}{\mathrm{dt}}=3 \sec \mathrm{t} \tan \mathrm{t}$
$\frac{d y}{d x}=\frac{\tan t}{\sec t}=\sin t$
$\frac{d^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\cos \frac{\mathrm{dt}}{\mathrm{dx}}$
$=\frac{\cos t}{3 \sec ^{2} t}=\frac{\cos ^{3} t}{3}=\frac{1}{3.2 \sqrt{2}}=\frac{1}{6 \sqrt{2}}$
17. If $x=\sin ^{-1}(\sin 10)$ and $y=\cos ^{-1}(\cos 10)$, then $y-x$ is equal to:
(1) π
(2) 7π
(3) 0
(4) 10

Ans. (1)

Sol.

$\mathrm{x}=\sin ^{-1}(\sin 10)=3 \pi-10$

$y=\cos ^{-1}(\cos 10)=4 \pi-10$
$y-x=\pi$
18. If the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} z+b^{\prime}$, $y=c^{\prime} z+d^{\prime}$ are perpendicular, then:
(1) $\mathrm{cc}^{\prime}+\mathrm{a}+\mathrm{a}^{\prime}=0$
(2) $a a^{\prime}+c+c^{\prime}=0$
(3) $\mathrm{ab}^{\prime}+\mathrm{bc}^{\prime}+1=0$
(4) $\mathrm{bb}^{\prime}+\mathrm{cc}^{\prime}+1=0$

Ans. (2)
Sol. Line $x=a y+b, z=c y+d \Rightarrow \frac{x-b}{a}=\frac{y}{1}=\frac{z-d}{c}$
Line $x=a^{\prime} z+b^{\prime}, y=c^{\prime} z+d^{\prime}$

$$
\Rightarrow \frac{\mathrm{x}-\mathrm{b}^{\prime}}{\mathrm{a}^{\prime}}=\frac{\mathrm{y}-\mathrm{d}^{\prime}}{\mathrm{c}^{\prime}}=\frac{\mathrm{z}}{1}
$$

Given both the lines are perpendicular $\Rightarrow \mathrm{aa}^{\prime}+\mathrm{c}^{\prime}+\mathrm{c}=0$
19. The number of all possible positive integral values of α for which the roots of the quadratic equation, $6 x^{2}-11 x+\alpha=0$ are rational numbers is :
(1) 2
(2) 5
(3) 3
(4) 4

Ans. (3)
Sol. $6 x^{2}-11 x+\alpha=0$
given roots are rational
$\Rightarrow \mathrm{D}$ must be perfect square
$\Rightarrow 121-24 \alpha=\lambda^{2}$
\Rightarrow maximum value of α is 5
$\alpha=1 \Rightarrow \lambda \notin \mathrm{I}$
$\alpha=2 \Rightarrow \lambda \notin \mathrm{I}$
$\alpha=3 \Rightarrow \lambda \in \mathrm{I} \quad \Rightarrow 3$ integral values
$\alpha=4 \Rightarrow \lambda \in I$
$\alpha=5 \Rightarrow \lambda \in \mathrm{I}$
20. A hyperbola has its centre at the origin, passes through the point $(4,2)$ and has transverse axis of length 4 along the x -axis. Then the eccentricity of the hyperbola is :
(1) $\frac{2}{\sqrt{3}}$
(2) $\frac{3}{2}$
(3) $\sqrt{3}$
(4) 2

Ans. (1)

Sol.

$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$2 \mathrm{a}=4 \quad \mathrm{a}=2$
$\frac{x^{2}}{4}-\frac{y^{2}}{b^{2}}=1$
Passes through $(4,2)$
$4-\frac{4}{\mathrm{~b}^{2}}=1 \Rightarrow \mathrm{~b}^{2}=\frac{4}{3} \Rightarrow \mathrm{e}=\frac{2}{\sqrt{3}}$
21. Let $A=\{x \in R: x$ is not a positive integer $\}$

Define a function $f: \mathrm{A} \rightarrow \mathrm{R}$ as $f(\mathrm{x})=\frac{2 \mathrm{x}}{\mathrm{x}-1}$ then f is
(1) injective but not surjective
(2) not injective
(3) surjective but not injective
(4) neither injective nor surjective

Ans. (1)
Sol. $f(\mathrm{x})=2\left(1+\frac{1}{\mathrm{x}-1}\right)$
$f^{\prime}(x)=-\frac{2}{(x-1)^{2}}$
$\Rightarrow f$ is one-one but not onto
22. If $f(x)=\int \frac{5 x^{8}+7 \mathrm{x}^{6}}{\left(\mathrm{x}^{2}+1+2 \mathrm{x}^{7}\right)^{2}} \mathrm{dx},(\mathrm{x} \geq 0) \quad$ and $f(0)=0$, then the value of $f(1)$ is:
(1) $-\frac{1}{2}$
(2) $\frac{1}{2}$
(3) $-\frac{1}{4}$
(4) $\frac{1}{4}$

Ans. (4)

Sol. $\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x$
$=\int \frac{5 x^{-6}+7 x^{-8}}{\left(\frac{1}{x^{7}}+\frac{1}{x^{5}}+2\right)^{2}} d x=\frac{1}{2+\frac{1}{x^{5}}+\frac{1}{x^{7}}}+C$
As $f(0)=0, f(\mathrm{x})=\frac{\mathrm{x}^{7}}{2 \mathrm{x}^{7}+\mathrm{x}^{2}+1}$
$f(1)=\frac{1}{4}$
23. If the circles $x^{2}+y^{2}-16 x-20 y+164=r^{2}$ and $(x-4)^{2}+(y-7)^{2}=36$ intersect at two distinct points, then:
(1) $0<r<1$
(2) $1<r<11$
(3) $r>11$
(4) $r=11$

Ans. (2)
Sol. $x^{2}+y^{2}-16 x-20 y+164=r^{2}$
$\mathrm{A}(8,10), \mathrm{R}_{1}=\mathrm{r}$
$(x-4)^{2}+(y-7)^{2}=36$
$B(4,7), R_{2}=6$
$\left|\mathrm{R}_{1}-\mathrm{R}_{2}\right|<\mathrm{AB}<\mathrm{R}_{1}+\mathrm{R}_{2}$
$\Rightarrow 1<\mathrm{r}<11$
24. Let S be the set of all triangles in the xy-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in S has area 50 sq. units, then the number of elements in the set S is:
(1) 9
(2) 18
(3) 32
(4) 36

Ans. (4)
Sol. Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$
be the vectors of the given triangle AOB
$\Rightarrow|\alpha \beta|=100$
\Rightarrow Number of triangles
$=4 \times$ (number of divisors of 100)
$=4 \times 9=36$
25. The sum of the follwing series
$1+6+\frac{9\left(1^{2}+2^{2}+3^{2}\right)}{7}+\frac{12\left(1^{2}+2^{2}+3^{2}+4^{2}\right)}{9}$
$+\frac{15\left(1^{2}+2^{2}+\ldots+5^{2}\right)}{11}+\ldots$ up to 15 terms, is:
(1) 7820
(2) 7830
(3) 7520
(4) 7510

Ans. (1)

Sol. $\mathrm{T}_{\mathrm{n}}=\frac{(3+(\mathrm{n}-1) \times 3)\left(1^{2}+2^{2}+\ldots .+\mathrm{n}^{2}\right)}{(2 \mathrm{n}+1)}$
$\mathrm{T}_{\mathrm{n}}=\frac{3 \cdot \frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}}{2 \mathrm{n}+1}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)}{2}$
$\mathrm{S}_{15}=\frac{1}{2} \sum_{\mathrm{n}=1}^{15}\left(\mathrm{n}^{3}+\mathrm{n}^{2}\right)=\frac{1}{2}\left[\left(\frac{15(15+1)}{2}\right)^{2}+\frac{15 \times 16 \times 31}{6}\right]$

$$
=7820
$$

26. Let a, b and c be the $7^{\text {th }}, 11^{\text {th }}$ and $13^{\text {th }}$ terms respectively of a non-constant A.P. If these are also the three consecutive terms of a G.P., then $\frac{\mathrm{a}}{\mathrm{c}}$ is equal to:
(1) $\frac{1}{2}$
(2) 4
(3) 2
(4) $\frac{7}{13}$

Ans. (2)
Sol. $a=A+6 d$
$\mathrm{b}=\mathrm{A}+10 \mathrm{~d}$
$\mathrm{c}=\mathrm{A}+12 \mathrm{~d}$
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P.
$\Rightarrow(\mathrm{A}+10 \mathrm{~d})^{2}=(\mathrm{A}+6 \mathrm{~d})(\mathrm{a}+12 \mathrm{~d})$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{d}}=-14$
$\frac{a}{c}=\frac{A+6 d}{A+12 d}=\frac{6+\frac{A}{d}}{12+\frac{A}{d}}=\frac{6-14}{12-14}=4$
27. If the system of linear equations
$x-4 y+7 z=g$
$3 y-5 z=h$
$-2 x+5 y-9 z=k$
is consistent, then :
(1) $g+h+k=0$
(2) $2 \mathrm{~g}+\mathrm{h}+\mathrm{k}=0$
(3) $g+h+2 k=0$
(4) $g+2 h+k=0$

Ans. (2)
Sol. $P_{1} \equiv x-4 y+7 z-g=0$
$P_{2} \equiv 3 x-5 y-h=0$
$P_{3} \equiv-2 x+5 y-9 z-k=0$
Here $\Delta=0$
$2 \mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}=0$ when $2 \mathrm{~g}+\mathrm{h}+\mathrm{k}=0$
28. Let $f:[0,1] \rightarrow \mathrm{R}$ be such that $f(\mathrm{xy})=f(\mathrm{x}) . f(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y}, \varepsilon[0,1]$, and $f(0) \neq 0$. If $\mathrm{y}=\mathrm{y}(\mathrm{x})$ satisfies the differential equation, $\frac{\mathrm{dy}}{\mathrm{dx}}=f(\mathrm{x})$ with $y(0)=1$, then $y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)$ is equal to
(1) 4
(2) 3
(3) 5
(4) 2

Ans. (2)
Sol. $f(\mathrm{xy})=f(\mathrm{x}) . f(\mathrm{y})$
$f(0)=1$ as $f(0) \neq 0$
$\Rightarrow f(\mathrm{x})=1$
$\frac{\mathrm{dy}}{\mathrm{dx}}=f(\mathrm{x})=1$
$\Rightarrow \mathrm{y}=\mathrm{x}+\mathrm{c}$
At, $x=0, y=1 \Rightarrow c=1$
$y=x+1$
$\Rightarrow \mathrm{y}\left(\frac{1}{4}\right)+\mathrm{y}\left(\frac{3}{4}\right)=\frac{1}{4}+1+\frac{3}{4}+1=3$
29. A data consists of n observations: $x_{1}, \quad x_{2}, \quad \ldots ., \quad x_{n}$. If $\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}+1\right)^{2}=9 \mathrm{n} \quad$ and $\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-1\right)^{2}=5 \mathrm{n}$, then the standard deviation of this data is :
(1) 5
(2) $\sqrt{5}$
(3) $\sqrt{7}$
(4) 2

Ans. (2)

Sol. $\quad \sum\left(x_{i}+1\right)^{2}=9 n$
$\sum\left(\mathrm{x}_{\mathrm{i}}-1\right)^{2}=5 \mathrm{n}$
$(1)+(2) \Rightarrow \sum\left(x_{1}^{2}+1\right)=7 n$
$\Rightarrow \frac{\sum x_{i}^{2}}{n}=6$
(1) - (2) $\Rightarrow 4 \sum \mathrm{x}_{\mathrm{i}}=4 \mathrm{n}$
$\Rightarrow \Sigma \mathrm{x}_{\mathrm{i}}=\mathrm{n}$
$\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=1$
\Rightarrow variance $=6-1=5$
\Rightarrow Standard diviation $=\sqrt{5}$
30. The number of natural numbers less than 7,000 which can be formed by using the digits $0,1,3,7,9$ (repitition of digits allowed) is equal to :
(1) 250
(2) 374
(3) 372
(4) 375

Ans. (2)
Sol.

a_{1}	a_{2}	a_{3}

Number of numbers $=5^{3}-1$

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{a}_{4} & \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\hline
\end{array}
$$

2 ways for a_{4}
Number of numbers $=2 \times 5^{3}$
Required number $=5^{3}+2 \times 5^{3}-1$
$=374$

