FINAL JEE-MAIN EXAMINATION - AUGUST, 2021

(Held On Wednesday 01st September, 2021)

CHEMISTRY
 SECTION-A

1. Water sample is called cleanest on the basis of which one of the BOD values given below
(1) 11 ppm
(2) 15 ppm
(3) 3 ppm
(4) 21 ppm

Official Ans. by NTA (3)
Sol. Clean water could have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.
2. Calamine and Malachite, respectively, are the ores of:
(1) Nickel and Aluminium
(2) Zinc and Copper
(3) Copper and Iron
(4) Aluminium and Zinc

Official Ans. by NTA (2)
Sol. Calamine $\Rightarrow \mathrm{ZnCO}_{3}$
Malachite $\Rightarrow \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{CuCO}_{3}$
3. Experimentally reducing a functional group cannot be done by which one of the following reagents?
(1) $\mathrm{Pt}-\mathrm{C} / \mathrm{H}_{2}$
(2) $\mathrm{Na} / \mathrm{H}_{2}$
(3) $\mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2}$
(4) $\mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$

Official Ans. by NTA (2)
Sol. Solution NaH_{2} is not reducing agent
4. Which one of the following given graphs represents the variation of rate constant (k) with temperature (T) for an endothermic reaction?
(1)

(2)

(3)

(4)

Official Ans. by NTA (3)
Sol. By observation we get this plot during measurable temperatures
Ans. $3^{\text {rd }}$ Option.

TEST PAPER WITH SOLUTION

5. Identify A in the following reaction.

(1)

(2)

(3)

(4)

Official Ans. by NTA (1)

Sol.

6. In the following sequence of reactions a compound

A, (molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$) with a straight chain structure gives a C_{4} carboxylic acid. \mathbf{A} is :
$\mathrm{A} \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{LiAlH}_{4}} \mathbf{B} \xrightarrow{\text { Oxidation }} \mathrm{C}_{4}$ - carboxylic acid
(1)

(2)

(3) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COO}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(4) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$

Official Ans. by NTA (3)

Sol.

(A) $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right]$
(1) LiAlH_{4}
(2) $\mathrm{H}_{3} \mathrm{O}^{+}$

7. Match List - I with List - II.

	List -I olloid Preparation Method)	List -II(Chemical Reaction)	
(a)	Hydrolysis	(i)	$\begin{aligned} & 2 \mathrm{AuCl}_{3}+3 \mathrm{HCHO}+3 \mathrm{H}_{2} \mathrm{O} \\ & \overrightarrow{2 \mathrm{Au}(\mathrm{sol})+3 \mathrm{HCOOH}+} \\ & 6 \mathrm{HC} 1 \end{aligned}$
(b)	Reduction	(ii)	$\begin{aligned} & \mathrm{As}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{As}_{2} \mathrm{~S}_{3}(\mathrm{sol}) \\ & +3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
(c)	Oxidation	(iii)	$\begin{aligned} & \begin{array}{l} \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}(\text { sol }) \\ +2 \mathrm{H}_{2} \mathrm{O} \end{array} \\ & \hline \end{aligned}$
(d)	Double Decomposition	(iv)	$\begin{array}{\|l} \hline \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{sol})+3 \mathrm{HCl} \end{array}$

Choose the most appropriate answer from the options given below.
(1) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
(2) (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
(3) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
(4) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)

Official Ans. by NTA (2)
Sol. According to type of reactions for preparation, colloids have been classified
8. The Crystal Field Stabilization Energy (CFSE) and magnetic moment (spin-only) of an octahedral aqua complex of a metal ion $\left(\mathrm{M}^{2+}\right)$ are $-0.8 \Delta_{0}$ and 3.87 BM , respectively. Identify $\left(\mathrm{M}^{Z+}\right)$:
(1) V^{3+}
(2) Cr^{3+}
(3) Mn^{4+}
(4) Co^{2+}

Official Ans. by NTA (4)

Sol. $\quad \mathrm{V}^{3+} \Rightarrow \square \mathrm{e}_{\mathrm{g}}=2 \times 0.4 \Delta_{0}$

$$
\begin{array}{rlll}
\hline 1 & 1 & & \mathrm{t}_{2 \mathrm{~g}}
\end{array} \quad=-0.8 \Delta_{0} .
$$

Co^{2+}| 1 | 1 |
| :--- | :--- |
| e_{g} | |$\left[2 \times 0.6 \Delta_{0}-5 \times 0.4 \Delta_{0}\right]$

$$
=-0.8 \Delta_{0}
$$

\mathbb{L}	$1 L$	1
$\mathrm{t}_{2 \mathrm{~g}}$		

9. Monomer units of Dacron polymer are :
(1) ethylene glycol and phthalic acid
(2) ethylene glycol and terephthalic acid
(3) glycerol and terephthalic acid
(4) glycerol and phthalic acid

Official Ans. by NTA (2)
Sol.

10. Which one of the following compounds is aromatic in nature?
(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Allen Ans. $(1,4)$
Sol. (1) (Acenaphthene)

(2)

Aromatic
(3)

Antiaromatic
(4)

11. In the given chemical reaction, colors of the Fe^{2+} and Fe^{3+} ions, are respectively:
$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$
(1) Yellow, Orange
(2) Yellow, Green
(3) Green, Orange
(4) Green, Yellow

Official Ans. by NTA (4)
Sol. Colour of Fe^{2+} is observed green and Fe^{3+} is yellow
12. The stereoisomers that are formed by electrophilic addition of bromine to trans-but-2-ene is/are :
(1) 2 enantiomers and 2 mesomers
(2) 2 identical mesomers
(3) 2 enantiomers
(4) 1 racemic and 2 enantiomers

Official Ans. by NTA (2)
Sol.

[I]
meso product
13. Hydrogen peroxide reacts with iodine in basic medium to give :
(1) IO_{4}^{-}
(2) IO
(3) I-
(4) IO_{3}^{-}

Official Ans. by NTA (3)
Sol. $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
14. In the following sequence of reactions,
$\mathrm{C}_{3} \mathrm{H}_{6} \xrightarrow{\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}} \mathbf{A} \xrightarrow[\text { dil } \mathrm{KOH}]{\mathrm{KIO}} \mathbf{B}+\mathbf{C}$
The compounds \mathbf{B} and \mathbf{C} respectively are :
(1) $\mathrm{CI}_{3} \mathrm{COOK}, \mathrm{HCOOH}$
(2) $\mathrm{CI}_{3} \mathrm{COOK}, \mathrm{CH}_{3} \mathrm{I}$
(3) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{HCOOK}$
(4) $\mathrm{CHI}_{3}, \mathrm{CH}_{3} \mathrm{COOK}$

Official Ans. by NTA (4)
Sol.

(B)
(C)
15. Given below are two statements:

Statement I : The nucleophilic addition of sodium hydrogen sulphite to an aldehyde or a ketone involves proton transfer to form a stable ion.
Statement II : The nucleophilic addition of hydrogen cyanide to an aldehyde or a ketone yields amine as final product.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both Statement I and Statement II are true.
(2) Statement I is true but Statement II is false.
(3) Statement I is false but Statement II is true.
(4) Both Statement I and Statement II are false.

Official Ans. by NTA (2)
Sol. Statement I : Correct

(White crystalline soluble ppt)

Statement II :

(Amine not formed)
16. Which one of the following gives the most stable Diazonium salt?
(1) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(2)

(3)

(4)

Official Ans. by NTA (2)

Sol. (1)

(2)

(Most stable) +H -effect
(3)

(4)

17. The potassium ferrocyanide solution gives a Prussian blue colour, when added to :
(1) CoCl_{3}
(2) FeCl_{2}
(3) CoCl_{2}
(4) FeCl_{3}

Official Ans. by NTA (4)
Sol. $\mathrm{FeCl}_{3}+\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$

> Prussian blue
18. The oxide without nitrogen-nitrogen bond is:
(1) $\mathrm{N}_{2} \mathrm{O}$
(2) $\mathrm{N}_{2} \mathrm{O}_{4}$
(3) $\mathrm{N}_{2} \mathrm{O}_{3}$
(4) $\mathrm{N}_{2} \mathrm{O}_{5}$

Official Ans. by NTA (4)

Sol. (1) $\mathrm{N} \equiv \mathrm{N}^{+}-\mathrm{O}^{-}$
(2)

(3)

(4)

19. Number of paramagnetic oxides among the following given oxides is \qquad .
$\mathrm{Li}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}_{2}, \mathrm{KO}_{2}, \mathrm{MgO}$ and $\mathrm{K}_{2} \mathrm{O}$
(1) 1
(2) 2
(3) 3
(4) 0

Official Ans. by NTA (1)
Sol. $\quad \mathrm{Li}_{2} \mathrm{O} \quad \Rightarrow 2 \mathrm{Li}^{+} \quad \mathrm{O}^{2-}$ $\mathrm{MgO} \Rightarrow \mathrm{Mg}^{2+} \mathrm{O}^{2-}$
$\mathrm{CaO} \Rightarrow \mathrm{Ca}^{2+} \quad \mathrm{O}^{2-}$
$\mathrm{K}_{2} \mathrm{O} \Rightarrow 2 \mathrm{~K}^{+} \quad \mathrm{O}^{2-}$
$\mathrm{Na}_{2} \mathrm{O}_{2} \Rightarrow 2 \mathrm{Na}^{+} \quad \mathrm{O}_{2}^{2-}$
$\mathrm{KO}_{2} \quad \Rightarrow \mathrm{~K}^{+} \quad \mathrm{O}_{2}^{-}$
$\mathrm{O}_{2}^{-} \Rightarrow$ Complete octet, diamagnetic
$\mathrm{O}^{2-} \Rightarrow \sigma_{1 \mathrm{~s}}^{2} \sigma_{1 \mathrm{~s}}^{* 2} \sigma_{2 \mathrm{~s}}^{2} \sigma_{2 \mathrm{~s}}^{* 2} \sigma_{2 \mathrm{px}}^{2} \pi_{2 \mathrm{py}}^{2} \simeq \pi_{2 \mathrm{pz}}^{2} \pi_{2 \mathrm{py}}^{* 2} \simeq \pi_{2 \mathrm{pz}}^{* 2}(\mathrm{dia})$
$\mathrm{O}_{2}^{-} \Rightarrow \sigma_{1 \mathrm{~s}}^{2} \sigma_{1 \mathrm{~s}}^{* 2} \sigma_{2 \mathrm{~s}}^{2} \sigma_{2 \mathrm{~s}}^{* 2} \sigma_{2 \mathrm{px}}^{2} \pi_{2 \mathrm{py}}^{2} \simeq \pi_{2 \mathrm{pz}}^{2} \pi_{2 \mathrm{py}}^{* 2} \simeq \pi_{2 \mathrm{pz}}^{*_{1}}$ (para)
20. Identify the element for which electronic configuration in +3 oxidation state is $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$:
(1) Ru
(2) Mn
(3) Co
(4) Fe

Official Ans. by NTA (4)
Sol. $\mathrm{Fe}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{5}$

SECTION-B

1. An empty LPG cylinder weighs 14.8 kg . When full, it weighs 29.0 kg and shows a pressure of 3.47 atm. In the course of use at ambient temperature, the mass of the cylinder is reduced to 23.0 kg . The final pressure inside of the cylinder is \qquad atm. (Nearest integer)
(Assume LPG of be an ideal gas)
Official Ans. by NTA (2)
Sol. Initial mass of gas $=29-14.8=14.2 \mathrm{Kg}$
mass of gas used $=29-23=6 \mathrm{Kg}$
gas left $=14.2-6=8.2 \mathrm{Kg}$
(1) $3.47 \times V=\left(\frac{14.2 \times 10^{3}}{M}\right) \times R \times T$
(2) $p \times V=\left(\frac{8.2 \times 10^{3}}{M}\right) \times R \times T$

Divide :
$\frac{(1)}{(2)} \Rightarrow \frac{3.47}{\mathrm{P}}=\frac{14.2}{8.2}$
$\mathrm{P}=2.003$
2. The molar solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ in 0.1 M NaOH solution is $\mathrm{x} \times 10^{-18} \mathrm{M}$. The value of x is
\qquad (Nearest integer)
(Given : The solubility product of $\mathrm{Zn}(\mathrm{OH})_{2}$ is 2×10^{-29})

Official Ans. by NTA (2)
Sol. $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Zn}^{+2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

$$
\mathrm{S} \quad(0.1+2 \mathrm{~s}) \simeq 0.1
$$

$\mathrm{K}_{\mathrm{sp}}=\mathrm{S}(0.1)^{2}$
$2 \times 10^{-20}=\mathrm{s} \times 10^{-2} \Rightarrow \mathrm{~s}=2 \times 10^{-18}$

$$
=x \times 10^{-18}
$$

$\mathrm{x}=2$
3. For the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$, when $\Delta \mathrm{S}=-176.0 \mathrm{JK}^{-1}$ and $\Delta \mathrm{H}=-57.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the magnitude of $\Delta \mathrm{G}$ at 298 K for the reaction is \qquad
$\mathrm{kJ} \mathrm{mol}^{-1}$. (Nearest integer)
Official Ans. by NTA (5)
Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\Delta \mathrm{G}=57.8-\frac{298(-176)}{1000}$
$\Delta \mathrm{G}=-5.352 \mathrm{~kJ} / \mathrm{mole}$
\mid Nearest integer value $\mid=5$
4. The sum of oxidation states of two silver ions in $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ complex is \qquad .
Official Ans. by NTA (2)

5. The number of atoms in 8 g of sodium is $\mathrm{x} \times 10^{23}$. The value of x is \qquad .(Nearest integer)
[Given : $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass of $\mathrm{Na}=23.0 \mathrm{u}$]
Official Ans. by NTA (2)
Sol. No. of atoms $=\frac{8}{23} \times 6.02 \times 10^{23}=2.09 \times 10^{23}$

$$
\begin{aligned}
& \simeq 2 \times 10^{23} \\
& =\mathrm{x} \times 10^{23}
\end{aligned}
$$

$\mathrm{x}=2$
6. If 80 g of copper sulphate $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is dissolved in deionised water to make 5 L of solution. The concentration of the copper sulphate solution is $\mathrm{x} \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$. The value of x is
\qquad .
[Atomic masses $\mathrm{Cu}: 63.54 \mathrm{u}, \mathrm{S}: 32 \mathrm{u}, \mathrm{O}: 16 \mathrm{u}, \mathrm{H}: 1 \mathrm{u}$]
Official Ans. by NTA (64)
Sol. Moles of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\frac{80}{249.54}$
Molarity $=\frac{80}{\frac{249.54}{5}}=64.117 \times 10^{-3}$
Nearest integer, $\mathrm{x}=64$
7. A 50 watt bulb emits monochromatic red light of wavelength of 795 nm . The number of photons emitted per second by the bulb is $\mathrm{x} \times 10^{20}$. The value of x is \qquad .
[Given : $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^{8} \mathrm{~ms}^{-1}$]
Official Ans. by NTA (2)
Sol. Total energy per sec. $=50 \mathrm{~J}$
$50=\frac{\mathrm{n} \times 6.63 \times 10^{-34} \times 3 \times 10^{8}}{795 \times 10^{-9}}$
$\mathrm{n}=1998.49 \times 10^{17} \quad \mathrm{n}=$ no. of photons per second]
$=1.998 \times 10^{20}$
$\simeq 2 \times 10^{20}$
$=\mathrm{x} \times 10^{20}$
$\mathrm{x}=2$
8. The spin-only magnetic moment value of B_{2}^{+} species is \qquad $\times 10^{-2} \mathrm{BM}$. (Nearest integer)
[Given : $\sqrt{3}=1.73$]
Official Ans. by NTA (173)
Sol. $\quad \mathrm{B}_{2}^{+} \Rightarrow \sigma_{1 \mathrm{~s}}^{2} \sigma_{1 \mathrm{~s}}^{* 2} \sigma_{2 \mathrm{~s}}^{2} \sigma_{2 \mathrm{~s}}^{* 2} \pi_{2 \mathrm{py}}^{1} \simeq \pi_{2 \mathrm{pz}}^{0}$
$\Rightarrow 9 \mathrm{e}^{-}$
$\mu=\sqrt{1(1+2)}=\sqrt{3} \mathrm{BM}$
$=1.73 \mathrm{BM}$
$=1.73 \times 10^{-2} \mathrm{BM}$
9. If the conductivity of mercury at $0^{\circ} \mathrm{C}$ is 1.07×10^{6} $\mathrm{S} \mathrm{m}^{-1}$ and the resistance of a cell containing mercury is 0.243Ω, then the cell constant of the cell is $\mathrm{x} \times 10^{4} \mathrm{~m}^{-1}$. The value of x is
\qquad .(Nearest integer)
Official Ans. by NTA (26)
Sol. $\mathrm{k}=1.07 \times 10^{6} \mathrm{Sm}^{-1}, \quad \mathrm{R}=0.243 \Omega$

$$
\mathrm{G}=\frac{1}{\mathrm{R}}=\frac{1}{0.243} \Omega^{-1}
$$

$\mathrm{k}=\mathrm{G} \times \mathrm{G}^{*}$
$\mathrm{G}^{*}=\frac{\mathrm{k}}{\mathrm{G}}=\frac{1.07 \times 10^{6}}{\frac{1}{0.243}} \simeq 26 \times 10^{4} \mathrm{~m}^{-1}$
10. A peptide synthesized by the reactions of one molecule each of Glycine, Leucine, Aspartic acid and Histidine will have \qquad peptide linkages.
Official Ans. by NTA (3)

Total (3) peptide linkages are present

3 peptide linkage
Ans. (3)

