

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Sunday 06th SEPTEMBER, 2020) TIME: 9 AM to 12 PM

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

- 1. The set that contains atomic number of only transition element is -
 - (1) 21, 32, 53, 64
 - (2) 21, 25, 42, 72
 - (3) 9, 17, 34, 38
 - (4) 37, 42, 50, 64

Official Ans. by NTA (2)

- 2. The lanthanoid that does NOT show +4 oxidation state is
 - (1) Dy
 - (2) Eu
 - (3) Ce
 - (4) Tb

Official Ans. by NTA (2)

- **3.** The INCORRECT statement is:
 - (1) bronze is an alloy of copper and tin.(2) brass is an alloy of copper and nickel
 - (3) cast iron is used to manufacture wrought iron.
 - (4) german silver is an alloy of zinc, copper and nickel

Official Ans. by NTA (2)

- **4.** The correct statement with respect to dinitrogen is :
 - (1) liquid dinitrogen is not used in cryosurgery.
 - (2) it can be used as an inert diluent for reactive chemicals.
 - (3) it can combine with dioxygen at 25°C
 - (4) N₂ is paramagnetic in nature.

Official Ans. by NTA (2)

A solution of two components containing n₁ moles of the 1st component and n₂ moles of the 2nd component is prepared. M₁ and M₂ are the molecular weights of component 1 and 2 respectively. If d is the density of the solution in g mL⁻¹, C₂ is the molarity and x₂ is the mole fraction of the 2nd component, then C₂ can be expressed as:

(1)
$$C_2 = \frac{1000x_2}{M_1 + x_2(M_2 - M_1)}$$

(2)
$$C_2 = \frac{dx_2}{M_2 + x_2(M_2 - M_1)}$$

(3)
$$C_2 = \frac{dx_1}{M_2 + x_2(M_2 - M_1)}$$

(4)
$$C_2 = \frac{1000 dx_2}{M_1 + x_2 (M_2 - M_1)}$$

Official Ans. by NTA (4)

6. The major products of the following reaction are:

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{-CH-CH-CH}_3 \\ \text{OSO}_2\text{CH}_3 \end{array} \qquad \begin{array}{c} \text{(i) KO}^t\text{Bu/}\Delta \\ \text{(ii) O}_3/\text{H}_2\text{O}_2 \end{array} \blacktriangleright$$

(2)
$$H_3C$$
 CHO + HCHO

(3)
$$H_3C$$
 O + CH_3CHO

(4)
$$H_3C$$
 CH_3 + CH_3COOH

Official Ans. by NTA (1)

Final JEE-Main Exam September, 2020/06-09-2020/Morning Session

- 7. Kraft temperature is the temperature
 - (1) below which the formation of micelles takes place.
 - (2) below which the aqueous solution of detergents starts freezing.
 - (3) above which the formation of micelles takes place.
 - (4) above which the aqueous solution of detergents starts boiling.

Official Ans. by NTA (3)

8. Consider the Assertion and Reason given below.

Assertion (A): Ethene polymerized in the presence of Ziegler Natta Catalyst at high temperature and pressure is used to make buckets and dustbins.

Reason (R): High density polymers are closely packed and are chemically inert. Choose the correct answer from the following:

- (1) (A) is correct but (R) is wrong.
- (2) (A) and (R) both are wrong.
- (3) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (4) Both (A) and (R) are correct but (R) is not the correct explanation of (A).

Official Ans. by NTA (3)

- 9. The species that has a spin only magnetic moment of 5.9 BM, is -
 - (1) $Ni(CO)_4(T_d)$
 - (2) $[MnBr_4]^{2-}(T_d)$
 - (3) $[NiCl_4]^{2-}(T_d)$
 - (4) $[Ni(CN)_4]^{2-}$ (square planar)

Official Ans. by NTA (2)

10. The major product obtained from the following reaction is -

$$O_2N$$
 O_2N
 O_2N

Official Ans. by NTA (3)

11. For the reaction:

$$Fe_2N(s) + \frac{3}{2}H_2(g) \Longrightarrow 2Fe(s) + NH_3(g)$$

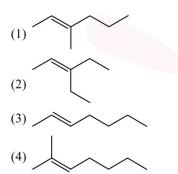
- (1) $K_C = K_P(RT)$
- (2) $K_C = K_P(RT)^{-1/2}$
- (3) $K_C = K_P(RT)^{-3/2}$
- (4) $K_C = K_P(RT)^{1/2}$

Official Ans. by NTA (4)

- **12.** Arrange the following solutions is the decreasing order of pOH:
 - (A) 0.01 M HC1
 - (B) 0.01 M NaOH
 - (C) 0.01 M CH₃COONa
 - (D) 0.01 M NaCl
 - (1) (B) > (C) > (D) > (A)
 - (2) (A) > (C) > (D) > (B)
 - (3) (B) > (D) > (C) > (A)
 - (4) (A) > (D) > (Q > (B)

Official Ans. by NTA (4)

Final JEE-Main Exam September, 2020/06-09-2020/Morning Session


- **13.** The presence of soluble fluoride ion upto 1 ppm concentration in drinking water, is:
 - (1) harmful to bones
 - (2) harmful for teeth
 - (3) safe for teeth
 - (4) harmful to skin

Official Ans. by NTA (3)

14. Consider the following reactions:

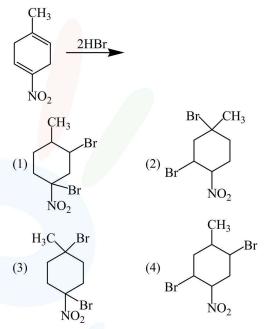
'A' is -

Official Ans. by NTA (2)

15. The increasing order of pK_b values of the following compounds is -

$$N(CH_3)_2$$
 $N(CH_3)_2$ $NHCH_3$ $NHCH_3$ OCH_3 II III IV

- (1) I < II < IV < III
- (2) II < IV < III < I


- (3) II < I < III < IV
- (4) I < II < III < IV

Official Ans. by NTA (1)

- **16.** Among the sulphates of alkaline earth metals, the solubilities of BeSO₄ and MgSO₄ in water, respectively, are:
 - (1) high and high
- (2) poor and poor
- (3) high and poor
- (4) poor and high

Official Ans. by NTA (1)

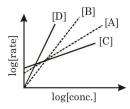
17. The major product of the following reaction is

Official Ans. by NTA (2)

Temperature

18. The variation of equilibrium constant with temperature is given below:

$T_1 = 25^{\circ}C$	$K_1 = 100$
$T_2 = 100^{\circ}C$	$K_2 = 100$
The values of ΔH^{o} , ΔG	o at T_1 and ΔG^o at T_2 (in
kJ mol-1) respectively, are close to	
[Use $R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$]	
(1) 0.64, -5.71 and -14.29	
(2) 28.4, -7.14 and -5.71	
(3) 28.4, -5.71 and -14.29	
(4) 0.64, -7.14 and -5.71	
Official Ans. by NTA (3)	


Equilibrium constant

Final JEE-Main Exam September, 2020/06-09-2020/Morning Session

19. Consider the following reactions:

 $A \rightarrow P1 ; B \rightarrow P2 ; C \rightarrow P3 ; D \rightarrow P4$

The order of the above reactions are a, b, c, and d, respectively. The following graph is obtained when log [rate] vs. log[conc] are plotted:

Among the following, the correct sequence for the order of the reactions is:

- (1) a > b > c > d
- (2) c > a > b > d
- (3) d > b > a > c
- (4) d > a > b > c

Official Ans. by NTA (3)

- **20.** Which of the following compound shows geometrical isomerism
 - (1) 2-methylpent-2-ene
 - (2) 4-methylpent-l-ene
 - (3) 4-methylpent-2-ene
 - (4) 2-methylpent-l-ene

Official Ans. by NTA (3)

21. In an estimation of bromine by Carius method, 1.6 g of an organic compound gave 1.88 g of AgBr. The mass percentage of bromine in the compound is _____

(Atomic mass, Ag=108, Br = 80 g mol-1)

Official Ans. by NTA (50.00)

22. The elevation of boiling point of 0.10 m aqueous CrCl₃.xNH₃ solution is two times that of 0.05m aqueous CaCl₂ solution. The value of x is _____.
[Assume 100% ionisation of the complex and CaCl₂, coordination number of Cr as 6, and that all NH₃ molecules are present inside the coordination sphere]

Official Ans. by NTA (5.00)

23. A spherical balloon of radius 3 cm containing helium gas has a pressure of 48×10^{-3} bar. At the same temperature, the pressure, of a spherical balloon of radius 12 cm containing the same amount of gas will be $\times 10^{-6}$ bar.

Official Ans. by NTA (750.00)

24. The number of CI = O bonds in perchloric acid is, "

Official Ans. by NTA (3.00)

25. Potassium chlorate is prepared by the electrolysis of KCl in basic solution

$$6OH^- + Cl^- \rightarrow ClO_3^- + 3H_2O + 6e^-$$

If only 60% of the current is utilized in the reaction, the time (rounded to the nearest hour) required to produce 10 g of KCIO₃ using a current of 2 A is____.

(Given : $F = 96,500 \text{ C mol}^{-1} \text{ molar mass of } KClO_3=122 \text{ gmol}^{-1}$)

Official Ans. by NTA (11.00)