

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Saturday 05th SEPTEMBER, 2020) TIME: 3 PM to 6 PM

CHEMISTRY

1. The rate constant (k) of a reaction is measured at different temperatures (T), and the data are plotted in the given figure. The activation energy of the reaction in kJ mol-1 is:

(R is gas constant)

- (1) 2R
- (2) R
- (3) 1/R
- (4) 2/R

Sol. Official Ans. by NTA (1)

Slope =
$$-\frac{E_a}{R}$$

$$-\frac{10}{5} = -\frac{E_a}{R}$$

$$E_a = 2R$$

2. The major product of the following reaction is:

Official Ans. by NTA (2)

TEST PAPER WITH ANSWER & SOLUTION

H ⊕O–Ų CH₂CH₃ CH,CH, Sol. HO from (H₂SO₄) $-H_2O$

$$\begin{array}{c} \text{CH}_2\text{-CH}_3 \\ \text{HSO}_4 \\ \text{-H}_2\text{SO}_4 \end{array} \begin{array}{c} \text{CH}_2\text{CH}_3 \\ \text{+} \text{H} \\ \text{O} \end{array}$$

3. The following molecule acts as an:

- (1) Antiseptic
- (2) Anti-bacterial
- (3) Anti-histamine
- (4) Anti-depressant

Official Ans. by NTA (3)

An element crystallises in a face-centred cubic 4. (fcc) unit cell with cell edge a. The distance between the centres of two nearest octahedral voids in the crystal lattice is

- (2) $\sqrt{2}a$ (3) $\frac{a}{\sqrt{2}}$ (4) $\frac{a}{2}$

Official Ans. by NTA (3)

Sol.

distance between octahedral nearest voids(O.V.)

$$= \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} \qquad \Rightarrow = \frac{a}{\sqrt{2}}$$

5. The variation of molar conductivity with concentration of an electrolyte (X) in aqueous solution is shown in the given figure.

The electrolyte X is:

- (1) CH₃COOH
- (2) KNO₃
- (3) HCl
- (4) NaCl

Official Ans. by NTA (1)

- **Sol.** Its a weak electrolyte hence : CH₃COOH
- **6.** The one that is NOT suitable for the removal of permanent hardness of water is:
 - (1) Treatment with sodium carbonate
 - (2) Calgon's method
 - (3) Clark's method
 - (4) Ion-exchange method

Official Ans. by NTA (3)

- Sol. Temporary hardness of water is removed by clark method and boiling. While permanent hardness of water is removed by treatment with sodium carbonate (Na₂CO₃), calgons method and ion-exchange method
- 7. The correct statement about probability density (except at infinite distance from nucleus) is:
 - (1) It cn be negative for 2p orbital
 - (2) It can be zero for 3p orbital
 - (3) It can be zero for 1s orbital
 - (4) It can never be zero for 2s orbital

Official Ans. by NTA (2)

Sol. [R(r)]² 3p

8. The increasing order of boiling points of the following compounds is:

$$\begin{array}{c|cccc} OH & OH & OH & OH \\ \hline \\ CH_3 & NO_2 & NH_2 & OCH_3 \\ I & II & III & IV \\ \end{array}$$

- (1) I < IV < III < II
- (2) IV < I < II < III
- (3) I < III < IV < II
- (4) III < I < II < IV

Official Ans. by NTA (1)

Sol.

BP ∝ dipolemoment (μ)

Alter

Increasing order of boiling point is:

⇒ Shows hydrogen bonding from –O–H group only

⇒ Shows strongest hydrogen bonding from both sides of –OH group as well as –NO₂ group.

⇒ Shows stronger hydrogen from both side of -OH group as well as -NH₂ group.

- ⇒ Shows stronger hydrogen bonding from one side -OH-group and another side of -OCH₃ group shows only dipole-dipole interaction.
- ⇒ Hence correct order of boiling point is:

$$(I) < (IV) < (III) < (II)$$

- 9. The compound that has the largest H-M-H bond angle (M=N, O, S, C), is:
 - (1) H_2O
- (2) CH₄
- (3) NH₃
- $(4) H_2S$

Official Ans. by NTA (2)

(3)
$$H \stackrel{\text{N}}{\stackrel{\text{N}}{\stackrel{\text{H}}{\stackrel{\text{H}}{\stackrel{\text{H}}{\stackrel{\text{S}}{\stackrel{\text{H}}{\stackrel{\text{H}}{\stackrel{\text{S}}{\stackrel{\text{H}}}{\stackrel{\text{H}}{\stackrel{\text{H}}}{\stackrel{\text{H}}{\stackrel{\text{H}}}{\stackrel{\text{H}}{\stackrel{\text{H}}}{\stackrel{\text{H}}{\stackrel{\text{H}}}{\stackrel{\text{H}}{\stackrel{\text{H}}}{\stackrel{\text{H}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H}}}{\stackrel{\text{H$$

10. Among the following compounds, geometrical isomerism is exhibited by:

Official Ans. by NTA (2)

11. Which one of the following polymers is not obtained by condensation polymerisation?

- (1) Buna N
- (2) Bakelite
- (3) Nylon 6
- (4) Nylon 6, 6

Official Ans. by NTA (1)

BuNa-N is an addition polymer Sol. Buta-1, 3-diene + Acrylonitrile

$$CH_2$$
= CH - CH = CH_2 CH_2 = CH - C = N

$$Na$$

$$[BuNa-N]$$

The final major product of the following reaction is:

Official Ans. by NTA (1)

- 13. Hydrogen peroxide, in the pure state, is:
 - (1) non-planar and almost colorless
 - (2) linear and almost colorless
 - (3) planar and blue in color
 - (4) linear and blue in color

Official Ans. by NTA (1)

hydrogen peroxide, in the pure state, is nonplanar and almost colourless (very pale blue) liquid.

- **14.** Boron and silicon of very high purity can be obtained through:
 - (1) vapour phase refining
 - (2) electrolytic refining
 - (3) liquation
 - (4) zone refining

Official Ans. by NTA (4)

Sol. "Boron" and "Silicon" of very high <u>purity can</u> be obtained through:

zone refining method only.

While other methods are used for other metals/ elements i.e.

- (i) Vapour phase refining
- (ii) electrolytic refining
- (iii) liquation etc.

15. Lattice enthalpy and enthalpy of solution of NaCl are 788 kJ mol⁻¹ and 4 kJ mol⁻¹, respectively. The hydration enthalpy of NaCl is:

(1) -780 kJ mol⁻¹

(2) -784 kJ mol-1

(3) 780 kJ mol⁻¹

(4) 784 kJ mol⁻¹

Official Ans. by NTA (2)

NaCl(s)
$$\xrightarrow{\Delta H = 4}$$
 NaCl(aq)
Sol. $H = +788$ $\Delta H = \frac{1}{12}$ $\Delta H = \frac{1}{12}$

$$4 = 788 + \Delta H$$

$$\Delta H = -784 \text{ kJ}$$

- **16.** Reaction of ammonia with excess Cl₂ gives :
 - (1) NH₄Cl and N₂
 - (2) NCl₃ and NH₄Cl
 - (3) NH₄Cl and HCl
 - (4) NCl₃ and HCl

Official Ans. by NTA (4)

Sol.
$$NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$$

17. The correct order of the ionic radii of O²⁻, N³⁻, F⁻, Mg²⁺, Na⁺ and Al³⁺ is:

(1)
$$Al^{3+} < Na^+ < Mg^{2+} < O^{2-} < F^- < N^{3-}$$

(2)
$$N^{3-} < O^{2-} < F^{-} < Na^{+} < Mg^{2+} < Al^{3+}$$

(3)
$$A1^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$$

(4)
$$N^{3-} < F^{-} < O^{2-} < Mg^{2+} < Na^{+} < Al^{3+}$$

Official Ans. by NTA (3)

Sol. Correct order of size for isoelectronic species. $Al^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$

18. Consider the complex ions,

trans-[Co(en)₂Cl₂]⁺ (A) and

cis-[Co(en)₂Cl₂]⁺ (B). The correct statement regarding them is :

- (1) both (A) and (B) can be optically active
- (2) both (A) and (B) cannot be optically active
- (3) (A) can be optically active, but (B) cannot be optically active
- (4) (A) cannot be optically active, but (B) can be optically active

Official Ans. by NTA (4)

Sol. (A) $trans-[Co(en)_2Cl_2]^+$

- ⇒ (A) is trans form and shows plane of symmetry which is optically inactive (not optically active)
- (B) cis-[Co(en)₂Cl₂]⁺

- \Rightarrow (B) is cis form and does not shows plane of symmetry, hence it is optically active.
- 19. Adsorption of a gas follows Freundlich adsorption isotherm. If x is the mass of the gas adsorbed on mass m of the adsorbent, the

correct plot of $\frac{x}{m}$ versus p is : $\frac{200 \text{ K}}{250 \text{ K}}$ $\frac{200 \text{ K}}{270 \text{ K}}$

(1)

250 K

200 K

p
Official Ans. by NTA (3)

 $\overline{\mathbf{m}}$

(4)

Sol.
$$\frac{x}{m} = K.P.^{1/n}$$
 T_1 T_2 $T_2 = T_1$

20. The major product formed in the following reaction is:

$$CH_3CH = CHCH(CH_3)_2 \xrightarrow{HBr}$$

- (1) CH₃ CH₂ CH₂ C(Br) (CH₃)₂
- (2) Br(CH₂)₃ CH(CH₃)₂
- (3) CH₃ CH₂ CH(Br) CH(CH₃)₂
- (4) CH₃ CH(Br) CH₂ CH(CH₃)₂

Official Ans. by NTA (1)

Addition of HBr according to M.R.

21. The number of chiral carbons present in sucrose is

Official Ans. by NTA (9)

Total no. of chiral carbon in sucrose = 9

22. For a dimerization reaction,

2 A(g)
$$\rightarrow$$
 A₂(g)
at 298 K, Δ U $^{\odot}$, = - 20kJ mol $^{-1}$, Δ S $^{\odot}$ = -30 J K $^{-1}$ mol $^{-1}$, then the Δ G $^{\odot}$ will be

Official Ans. by NTA (-13538.00)

Sol.
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= (\Delta U^{\circ} + \Delta n_{g}RT) - T\Delta S^{\circ}$$

$$= \left[\left\{ -20 + (-1)\right\} \frac{8.314}{1000} \times 298 \right\} - \frac{298}{1000} \times (-30) \right] kJ$$

$$= -13.537572 \text{ kJ}$$

= -13.337372 RJ= -13537.57 Joule

23. For a reaction $X + Y \rightleftharpoons 2Z$, 1.0 mol of X, 1.5 mol of Y and 0.5 mol of Z were taken in a 1 L vessel and allowed to react. At equilibrium, the concentration of Z was 1.0 mol L^{-1} . The equilibrium constant of the reaction is

$$\frac{x}{15}$$
. The value of x is $\frac{x}{15}$.

Official Ans. by NTA (16)

Sol.
$$X + Y = 2Z$$

 $t = 0 \quad 1 \quad 1.5 \quad 0.5$
At eq. 0.75 \quad 1.25 \quad 1

$$K_{\text{eq.}} = \frac{1^2}{\frac{3}{4} \times \frac{5}{4}} = \frac{16}{15}$$

24. The volume, in mL, of 0.02 M $K_2Cr_2O_7$ solution required to react with 0.288 g of ferrous oxalate in acidic medium is ______. (Molar mass of Fe = 56 g mol⁻¹)

Sol. $K_2Cr_2O_7 + FeC_2O_4 \longrightarrow Cr^{+3} + Fe^{+3} + CO_2$ n = 6 n = 3

Official Ans. by NTA (50.00)

$$\frac{0.02 \times 6 \times \text{V(mL)}}{1000} = \frac{0.288}{144} \times 3$$

 \Rightarrow V = 50mL

25. Considering that $\Delta_0 > P$, the magnetic moment (in BM) of $[Ru(H_2O)_6]^{2+}$ would be_____.

Official Ans. by NTA (00)

Official Ans. by NTA (00)

Sol. Magnetic moment (in B.M.) of $[Ru(H_2O)_6]^{2+}$ would be; while considering that $\Delta_0 > P$,

Ru₍₄₄₎; [Kr]4d⁷5s¹ (in ground state)

$$\Rightarrow$$
 In Ru²⁺ \Rightarrow 4d⁶ \Rightarrow (t₂g)⁶(eg)⁰

⇒ Here number of unpaired electrons in

$$Ru^{2+} = (t_2g)^6 \text{ (eg)}^0 = 0 \text{ and Hence}$$

$$\mu_m = \sqrt{n(n+2)} B.M. = \boxed{0 \ B.M.}$$