

# FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Thursday 03rd SEPTEMBER, 2020) TIME: 9 AM to 12 PM

### **MATHEMATICS**

- 1. A die is thrown two times and the sum of the scores appearing on the die is observed to be a multiple of 4. Then the conditional probability that the score 4 has appeared atleast once is:
  - (1)  $\frac{1}{8}$
- (3)  $\frac{1}{3}$

Official Ans. by NTA (2)

**Sol.** A: Sum obtained is a multiple of 4.

 $A = \{(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),$ (5, 3), (6, 2), (6, 6)

B: Score of 4 has appeared at least once.

 $B = \{(1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4),$ (4, 1), (4, 2), (4, 3), (4, 5), (4, 6)

Required probability =  $P\left(\frac{B}{A}\right) = \frac{P(B \cap A)}{P(A)}$ 

$$=\frac{1/36}{9/36}=\frac{1}{9}$$

2. The lines

 $\vec{r} = (\hat{i} - \hat{j}) + \ell(2\hat{i} + \hat{k})$  and

 $\vec{r} = (2\hat{i} - \hat{j}) + m(\hat{i} + \hat{j} - \hat{k})$ 

- (1) Intersect when  $\ell = 1$  and m = 2
- (2) Intersect when  $\ell = 2$  and  $m = \frac{1}{2}$
- (3) Do not intersect for any values of  $\ell$  and m
- (4) Intersect for all values of  $\ell$  and m

Official Ans. by NTA (3)

**Sol.**  $\vec{r} = \hat{i}(1+2\ell) + \hat{i}(-1) + \hat{k}(\ell)$ 

 $\vec{r} = \hat{i}(2+m) + \hat{i}(m-1) + \hat{k}(-m)$ 

### TEST PAPER WITH SOLUTION

For intersection

 $1 + 2\ell = 2 + m$ 

..... (ii) -1 = m - 1

..... (iii)  $\ell = -m$ 

from (ii) m = 0

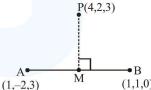
from (iii)  $\ell = 0$ 

These values of m and  $\ell$  do not satisfy equation (1).

Hence the two lines do not intersect for any values of  $\ell$  and m.

- The foot of the perpendicular drawn from the 3. point (4, 2, 3) to the line joining the points (1, -2, 3) and (1, 1, 0) lies on the plane:
  - (1) x + 2y z = 1 (2) x 2y + z = 1
  - (3) x y 2z = 1
- (4) 2x + y z = 1

Official Ans. by NTA (4)



Sol.

Equation of AB =  $\vec{r} = (\hat{i} + \hat{j}) + \lambda(3\hat{i} - 3\hat{k})$ 

Let coordinates of  $M = (1, (1 + 3\lambda), -3\lambda)$ .

$$\overrightarrow{PM} = -3\hat{i} + (3\lambda - 1)\hat{j} - 3(\lambda + 1)\hat{k}$$

$$\overrightarrow{AB} = 3\hat{j} - 3\hat{k}$$

$$\therefore \overrightarrow{PM} \perp \overrightarrow{AB} \Rightarrow \overrightarrow{PM} \cdot \overrightarrow{AB} = 0$$

$$\Rightarrow$$
 3(3 $\lambda$  – 1) + 9( $\lambda$  + 1) = 0

$$\Rightarrow \lambda = -\frac{1}{3}$$

M = (1, 0, 1)

Clearly M lies on 2x + y - z = 1.



- 4. A hyperbola having the transverse axis of length  $\sqrt{2}$  has the same foci as that of the ellipse  $3x^2 + 4y^2 = 12$ , then this hyperbola does not pass through which of the following points?

  - $(1) \left(1, -\frac{1}{\sqrt{2}}\right) \qquad (2) \left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$

  - $(3) \left(\frac{1}{\sqrt{2}}, 0\right) \qquad (4) \left(-\sqrt{\frac{3}{2}}, 1\right)$

Official Ans. by NTA (2)

- **Sol.** Ellipse :  $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 
  - eccentricity =  $\sqrt{1 \frac{3}{4}} = \frac{1}{2}$
  - $\therefore$  foci =  $(\pm 1, 0)$

for hyperbola, given  $2a = \sqrt{2} \implies a = \frac{1}{\sqrt{2}}$ 

hyperbola will be

$$\frac{x^2}{1/2} - \frac{y^2}{b^2} = 1$$

eccentricity =  $\sqrt{1+2b^2}$ 

- $\therefore \text{ foci} = \left(\pm \sqrt{\frac{1+2b^2}{2}}, 0\right)$
- : Ellipse and hyperbola have same foci

$$\Rightarrow \sqrt{\frac{1+2b^2}{2}} = 1$$

$$\Rightarrow$$
  $b^2 = \frac{1}{2}$ 

 $\therefore$  Equation of hyperbola :  $\frac{x^2}{1/2} - \frac{y^2}{1/2} = 1$ 

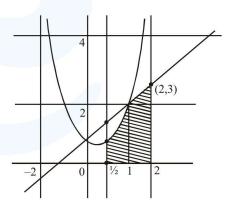
$$\Rightarrow x^2 - y^2 = \frac{1}{2}$$

Clearly  $\left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$  does not lie on it.

- The area (in sq. units) of the region  $\{(x,\ y)\,:\, 0\,\leq\, y\,\leq\, x^2\,+\,1,\ 0\,\leq\, y\,\leq\, x\,+\,1,$  $\frac{1}{2} \le x \le 2$  is:
  - $(1) \frac{79}{16}$
- (3)  $\frac{79}{24}$

Official Ans. by NTA (3)

**Sol.**  $0 \le y \le x^2 + 1$ ,  $0 \le y \le x + 1$ ,  $\frac{1}{2} \le x \le 2$ 



Required area = 
$$\int_{1/2}^{1} (x^2 + 1) dx + \frac{1}{2} (2 + 3) \times 1$$

$$=\frac{19}{24}+\frac{5}{2}=\frac{79}{24}$$

- 6. If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is :
  - (1)  $\frac{1}{4}$
- (2)  $\frac{1}{5}$
- $(3) \frac{1}{7}$

Official Ans. by NTA (4)

**Sol.** Sum of 1st 25 terms = sum of its next 15 terms

$$\Rightarrow$$
  $(T_1 + ..... + T_{25}) = (T_{26} + ..... + T_{40})$ 

$$\Rightarrow$$
  $(T_1 + \dots + T_{40}) = 2(T_1 + \dots + T_{25})$ 

$$\Rightarrow \frac{40}{2} [2 \times 3 + (39d)] = 2 \times \frac{25}{2} [2 \times 2 + 24d]$$

$$\Rightarrow$$
 d =  $\frac{1}{6}$ 

7. Let P be a point on the parabola,  $y^2 = 12x$  and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of PN, parallel to its axis which meets the parabola at Q. If the

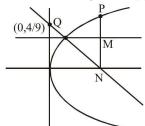
y-intercept of the line NQ is  $\frac{4}{3}$ , then:

- (1) MQ =  $\frac{1}{3}$
- (2) PN = 3
- (3) MQ =  $\frac{1}{4}$

Sol.

(4) PN = 4

Official Ans. by NTA (3)



Let 
$$P = (3t^2, 6t)$$
;  $N = (3t^2, 0)$ 

$$M = (3t^2, 3t)$$

Equation of MQ : y = 3t

$$\therefore Q = \left(\frac{3}{4}t^2, 3t\right)$$

Equation of NQ

$$y = \frac{3t}{\left(\frac{3}{4}t^2 - 3t^2\right)}(x - 3t^2)$$

y-intercept of NQ = 4t =  $\frac{4}{3}$   $\Rightarrow$  t =  $\frac{1}{3}$ 

$$MQ = \frac{9}{4}t^2 = \frac{1}{4}$$

$$PN = 6t = 2$$

For the frequency distribution: 8.

Variate (x):

$$x_1 \quad x_2 \quad x_3 \dots x_{15}$$

Frequency (f):  $f_1$   $f_2$   $f_3$  .... $f_{15}$ 

$$f_2$$
  $f_3$  ....  $f$ 

where  $0 < x_1 < x_2 < x_3 < \dots < x_{15} = 10$  and

 $\sum_{i=1}^{13} f_i > 0$ , the standard deviation cannot be:

- (1) 2
- (2) 1
- (3) 4
- (4) 6

Official Ans. by NTA (4)

Sol. 
$$: \sigma^2 \leq \frac{1}{4} (M - m)^2$$

Where M and m are upper and lower bounds of values of any random variable.

$$\therefore \quad \sigma^2 < \frac{1}{4}(10-0)^2$$

$$\Rightarrow 0 < \sigma < 5$$

$$\sigma \neq 6$$
.

9.  $\int_{-\pi}^{\pi} |\pi - |x| |dx \text{ is equal to :}$ 

(1)  $\pi^2$ 

(2)  $2\pi^2$ 

(3)  $\sqrt{2}\pi^2$ 

(4)  $\frac{\pi^2}{2}$ 

Official Ans. by NTA (1)

**Sol.**  $\int_{-\pi}^{\pi} |\pi - |x| dx = 2 \int_{0}^{\pi} |\pi - x| dx$ 

$$=2\int_{0}^{\pi}(\pi-x)\,\mathrm{d}x$$

$$=2\bigg[\pi x - \frac{x^2}{2}\bigg]_0^{\pi} = \pi^2$$

10. Consider the two sets:

 $A = \{m \in R : both the roots of \}$ 

 $x^2 - (m + 1)x + m + 4 = 0$  are real and

B = [-3, 5).

Which of the following is not true?

(1) A - B =  $(-\infty, -3) \cup (5, \infty)$ 

(2)  $A \cap B = \{-3\}$ 

(3) B - A = (-3, 5)

 $(4) A \cup B = R$ 

Official Ans. by NTA (1)

**Sol.**  $A: D \ge 0$ 

$$\Rightarrow$$
  $(m + 1)^2 - 4(m + 4) \ge 0$ 

$$\Rightarrow$$
 m<sup>2</sup> + 2m + 1 - 4m - 16  $\ge$  0

 $\Rightarrow$  m<sup>2</sup> - 2m - 15  $\geq$  0

 $\Rightarrow$   $(m-5)(m+3) \ge 0$ 

 $\Rightarrow$  m  $\in$   $(-\infty, -3] <math>\cup$  [5,  $\infty$ )

 $\therefore$  A =  $(-\infty, -3] \cup [5, \infty)$ 

B = [-3, 5)

 $A - B = (-\infty, -3) \cup [5, \infty)$ 

 $A \cap B = \{-3\}$ 

B - A = (-3, 5)

 $A \cup B = R$ 

11. If  $y^2 + \log_e(\cos^2 x) = y$ ,  $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ , then :

(1) |y''(0)| = 2

(2) |y'(0)| + |y''(0)| = 3

(3) |y'(0)| + |y''(0)| = 1 (4) y''(0) = 0

Official Ans. by NTA (1)

**Sol.**  $y^2 + \ln(\cos^2 x) = y$   $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 

for x = 0

y = 0 or 1

Differentiating wrt x

 $\Rightarrow$  2yy' - 2 tan x = y'

At (0, 0) y' = 0

At (0, 1) y' = 0

Differentiating wrt x

 $2yy'' + 2(y')^2 - 2 \sec^2 x = y''$ 

At (0, 0) y'' = -2

At (0, 1) y'' = 2

|y''(0)| = 2

12. The function,  $f(x) = (3x - 7)x^{2/3}$ ,  $x \in R$ , is increasing for all x lying in :

 $(1) (-\infty, 0) \cup \left(\frac{3}{7}, \infty\right)$ 

 $(2) (-\infty, 0) \cup \left(\frac{14}{15}, \infty\right)$ 

(3)  $\left(-\infty, \frac{14}{15}\right)$ 

 $(4)\left(-\infty,-\frac{14}{15}\right)\cup(0,\,\infty)$ 

Official Ans. by NTA (2)

### **Sol.** $f(x) = (3x - 7)x^{2/3}$

$$\Rightarrow$$
 f(x) = 3x<sup>5/3</sup> - 7x<sup>2/3</sup>

$$\Rightarrow$$
 f(x) =  $5x^{2/3} - \frac{14}{3x^{1/3}}$ 

$$=\frac{15x-14}{3x^{1/3}}>0$$

$$\therefore f'(x) > 0 \ \forall \ x \in (-\infty, 0) \cup \left(\frac{14}{15}, \infty\right)$$

- 13. The value of  $(2.^{1}P_{0} 3.^{2}P_{1} + 4.^{3}P_{2} ....$  up to  $51^{th}$  term) + (1! 2! + 3! .... up to  $51^{th}$  term) is equal to :
  - (1) 1 + (51)!
- (2) 1 51(51)!
- (3) 1 + (52)!
- (4) 1

#### Official Ans. by NTA (3)

**Sol.** S =  $(2.^{1}p_{0} - 3.^{2}p_{1} + 4.^{3}p_{2}$  ......... upto 51 terms) + (1! + 2! + 3! ....... upto 51 terms)

$$[:: {}^{n}p_{n-1} = n!]$$

 $S = (2 \times 1! - 3 \times 2! + 4 \times 3! \dots + 52.51!) + (1! - 2! + 3! \dots (51)!)$ 

$$= 1! + 52!.$$

14. If  $\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix}$ 

 $Ax^3 + Bx^2 + Cx + D$ , then B + C is equal to :

- (1) -1
- (2) 1
- (3) -3
- (4) 9

Official Ans. by NTA (3)

Sol. 
$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix}$$

$$= Ax^3 + Bx^2 + Cx + D.$$

$$R_2 \rightarrow R_2 - R_1 \qquad \quad R_3 \rightarrow R_3 - R_2$$

$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-1 & x-1 & x-1 \\ x-2 & 2(x-2) & 6(x-2) \end{vmatrix}$$

$$= (x - 1) (x - 2) \begin{vmatrix} x - 2 & 2x - 3 & 3x - 4 \\ 1 & 1 & 1 \\ 1 & 2 & 6 \end{vmatrix}$$

$$= -3(x - 1)^{2} (x - 2) = -3x^{3} + 12x^{2} - 15x + 6$$

$$\therefore$$
 B + C = 12 - 15 = -3

15. The solution curve of the differential equation,

$$(1 + e^{-x}) (1 + y^2) \frac{dy}{dx} = y^2$$
, which passes

through the point (0, 1), is:

(1) 
$$y^2 = 1 + y \log_e \left(\frac{1 + e^x}{2}\right)$$

(2) 
$$y^2 + 1 = y \left( \log_e \left( \frac{1 + e^x}{2} \right) + 2 \right)$$

(3) 
$$y^2 = 1 + y \log_e \left( \frac{1 + e^{-x}}{2} \right)$$

(4) 
$$y^2 + 1 = y \left( \log_e \left( \frac{1 + e^{-x}}{2} \right) + 2 \right)$$

Official Ans. by NTA (1)



**Sol.** 
$$(1 + e^{-x}) (1 + y^2) \frac{dy}{dx} = y^2$$

$$\Rightarrow$$
  $(1 + y^{-2}) dy = \left(\frac{e^x}{1 + e^x}\right) dx$ 

$$\Rightarrow \left(y - \frac{1}{y}\right) = \ell n (1 + e^{x}) + c$$

 $\therefore$  It passes through  $(0, 1) \Rightarrow c = -\ell n 2$ 

$$\Rightarrow$$
  $y^2 = 1 + y \ln\left(\frac{1 + e^x}{2}\right)$ 

- If the number of integral terms in the expansion of  $(3^{1/2} + 5^{1/8})^n$  is exactly 33, then the least value of n is:
  - (1) 264
- (2) 256
- (3) 128
- (4) 248

Official Ans. by NTA (2)

**Sol.** 
$$T_{r+1} = {}^{n}C_{r}(3)^{\frac{n-r}{2}}(5)^{\frac{r}{8}}$$
  $(n \ge r)^{\frac{r}{8}}$ 

Clearly r should be a multiple of 8.

there are exactly 33 integral terms

Possible values of r can be

$$0, 8, 16, \dots, 32 \times 8$$

- $\therefore$  least value of n = 256.
- 17. If  $\alpha$  and  $\beta$  are the roots of the equation  $x^2 + px + 2 = 0$  and  $\frac{1}{\alpha}$  and  $\frac{1}{\beta}$  are the roots of the equation  $2x^2 + 2qx + 1 = 0$ , then  $\left(\alpha - \frac{1}{\alpha}\right) \left(\beta - \frac{1}{\beta}\right) \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$  is equal to:

  - (1)  $\frac{9}{4}(9 + p^2)$  (2)  $\frac{9}{4}(9 q^2)$
  - (3)  $\frac{9}{4}$  (9 p<sup>2</sup>) (4)  $\frac{9}{4}$  (9 + q<sup>2</sup>)

Official Ans. by NTA (3)

**Sol.** 
$$\alpha$$
,  $\beta$  are roots of  $x^2 + px + 2 = 0$ 

$$\Rightarrow \alpha^2 + p\alpha + 2 = 0 \& \beta^2 + p\beta + 2 = 0$$

$$\Rightarrow \frac{1}{\alpha}, \frac{1}{\beta}$$
 are roots of  $2x^2 + px + 1 = 0$ 

But  $\frac{1}{\alpha}$ ,  $\frac{1}{\beta}$  are roots of  $2x^2 + 2qx + 1 = 0$ 

$$\Rightarrow$$
 p = 2q

Also 
$$\alpha + \beta = -p$$
  $\alpha\beta = 2$ 

$$\left(\alpha - \frac{1}{\alpha}\right) \left(\beta - \frac{1}{\beta}\right) \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$$

$$= \left(\frac{\alpha^2 - 1}{\alpha}\right) \left(\frac{\beta^2 - 1}{\beta}\right) \left(\frac{\alpha\beta + 1}{\beta}\right) \left(\frac{\alpha\beta + 1}{\alpha}\right)$$

$$=\frac{(-p\alpha-3)(-p\beta-3)(\alpha\beta+1)^2}{(\alpha\beta)^2}$$

$$= \frac{9}{4} (p\alpha\beta + 3p(\alpha + \beta) + 9)$$

$$=\frac{9}{4}(9-p^2)=\frac{9}{4}(9-4q^2)$$

18. Let [t] denote the greatest integer  $\leq$  t. If for some

$$\lambda \in R - \{0, 1\}, \lim_{x \to 0} \left| \frac{1 - x + |x|}{\lambda - x + |x|} \right| = L$$
, then L is

equal to:

- (1) 1
- (2) 2
- (3)  $\frac{1}{2}$
- (4) 0

Official Ans. by NTA (2)

**Sol.** LHL: 
$$\lim_{x\to 0^{-}} \left| \frac{1-x-x}{\lambda-x-1} \right| = \left| \frac{1}{\lambda-1} \right|$$

RHL: 
$$\lim_{x\to 0^+} \left| \frac{1-x+x}{\lambda-x+1} \right| = \left| \frac{1}{\lambda} \right|$$

For existence of limit

LHL = RHL

$$\Rightarrow \frac{1}{|\lambda - 1|} = \frac{1}{|\lambda|} \Rightarrow \lambda = \frac{1}{2}$$

$$\therefore L = \frac{1}{|\lambda|} = 2$$

19. 
$$2\pi - \left(\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}\right)$$
 is equal to:

- $(1) \ \frac{7\pi}{4}$
- $(2) \ \frac{5\pi}{4}$
- (3)  $\frac{3\pi}{2}$
- (4)  $\frac{\pi}{2}$

Official Ans. by NTA (3)

**Sol.** 
$$2\pi - \left(\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right)\right)$$

$$=2\pi - \left(\tan^{-1}\left(\frac{4}{3}\right) + \tan^{-1}\left(\frac{5}{12}\right) + \tan^{-1}\left(\frac{16}{63}\right)\right)$$

$$= 2\pi - \left( \tan^{-1} \left( \frac{63}{16} \right) + \tan^{-1} \left( \frac{16}{63} \right) \right)$$

$$=2\pi-\frac{\pi}{2}=\frac{3\pi}{2}$$

- **20.** The proposition  $p \rightarrow \sim (p \land \sim q)$  is equivalent to:
  - $(1) (\sim p) \lor q$
- (2) q
- (3) ( $\sim$ p)  $\wedge$  q
- $(4) (\sim p) \vee (\sim q)$

Official Ans. by NTA (1)

**Sol.** 
$$p \rightarrow \sim (p \land \sim q)$$

$$=\sim p \lor \sim (p \land \sim q)$$

$$=\sim p \lor \sim p \lor q$$

$$=\sim (p \land q) \lor q$$

$$=\sim p \vee q$$

21. Let 
$$A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$
,  $x \in R$  and  $A^4 = [a_{ij}]$ . If

 $a_{11} = 109$ , then  $a_{22}$  is equal to \_\_\_\_\_\_.

Official Ans. by NTA (10)

Sol. 
$$A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} x^{2} + 1 & x \\ x & 1 \end{bmatrix} \begin{bmatrix} x^{2} + 1 & x \\ x & 1 \end{bmatrix}$$

$$= \begin{bmatrix} (x^2+1)^2 + x^2 & x(x^2+1) + x \\ x(x^2+1) + x & x^2 + 1 \end{bmatrix}$$

$$a_{11} = (x^2 + 1)^2 + x^2 = 109$$

$$\rightarrow x = +3$$

$$a_{22} = x^2 + 1 = 10$$

22. If 
$$\lim_{x\to 0} \left\{ \frac{1}{x^8} \left( 1 - \cos\frac{x^2}{2} - \cos\frac{x^2}{4} + \cos\frac{x^2}{2} \cos\frac{x^2}{4} \right) \right\} = 2^{-k}$$
,

then the value of k is \_\_\_\_\_.

Official Ans. by NTA (8)

**Sol.** 
$$\lim_{x \to 0} \left\{ \frac{1}{x^8} \left( 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right) \right\} = 2^{-k}$$

$$\Rightarrow \lim_{x \to 0} \frac{\left(1 - \cos\frac{x^2}{2}\right) \left(1 - \cos\frac{x^2}{4}\right)}{4\left(\frac{x^2}{2}\right)^2} = \frac{1}{8} \times \frac{1}{32} = 2^{-k}$$

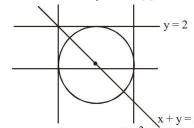
$$\Rightarrow 2^{-8} = 2^{-k} \Rightarrow k = 8$$
.



23. The diameter of the circle, whose centre lies on the line x + y = 2 in the first quadrant and which touches both the lines x = 3 and y = 2, is

\_\_\_\_

#### Official Ans. by NTA (3)



Sol.

: center lies on x + y = 2 and in 1st quadrant center =  $(\alpha, 2 - \alpha)$ 

where  $\alpha > 0$  and  $2 - \alpha > 0 \Rightarrow 0 < \alpha < 2$ 

- $\therefore$  circle touches x = 3 and y = 2
- $\Rightarrow$   $|3 \alpha| = |2 (2 \alpha)| = radius$
- $\Rightarrow$   $|3 \alpha| = |\alpha| \Rightarrow \alpha = \frac{3}{2}$
- $\therefore$  radius =  $\alpha$
- $\Rightarrow$  Diameter =  $2\alpha = 3$ .
- **24.** The value of  $(0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \log \infty\right)}$  is equal to \_\_\_\_\_\_.

Official Ans. by NTA (4)

**Sol.**  $(0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \dots + \cos \infty\right)}$ 

$$= \left(\frac{4}{25}\right)^{\log_{\left(\frac{5}{2}\right)}\left(\frac{1}{2}\right)}$$

$$= \left(\frac{1}{2}\right)^{\log_{\left(\frac{5}{2}\right)}\left(\frac{4}{25}\right)} = \left(\frac{1}{2}\right)^{-2} = 4$$

**25.** If  $\left(\frac{1+i}{1-i}\right)^{\frac{m}{2}} = \left(\frac{1+i}{i-1}\right)^{\frac{n}{3}} = 1$ ,  $(m, n \in N)$  then the

greatest common divisor of the least values of m and n is \_\_\_\_\_.

Official Ans. by NTA (4)

**Sol.** 
$$\left(\frac{1+i}{1-i}\right)^{m/2} = \left(\frac{1+i}{i-1}\right)^{n/3} = 1$$

$$\Rightarrow \left(\frac{(1+i)^2}{2}\right)^{m/2} = \left(\frac{(1+i)^2}{-2}\right)^{n/3} = 1$$

$$\Rightarrow$$
 (i)m/2 = (-i)n/3 = 1

$$\Rightarrow \frac{m}{2} = 4k_1$$
 and  $\frac{n}{3} = 4k_2$ 

 $\Rightarrow$  m =  $8k_1$  and n =  $12k_2$ 

Least value of m = 8 and n = 12.

$$\therefore$$
 GCD = 4