PART : PHYSICS

Single Choice Type (एकल विकल्पीय प्रकार)
This section contains 20 Single choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct. इस खण्ड में 20 एकल विकल्पी प्रश्न हैं। प्रत्येक प्रश्न के 4 विकल्प (1), (2), (3) तथा (4) हैं, जिनमें से सिर्फ एक सही है।

1. Kinetic energy of the particle is E and it's De-Broglie wavelength is λ. On increasing it's KE by $\Delta \mathrm{E}$, it's new De-Broglie wavelength becomes $\frac{\lambda}{2}$. Then $\Delta \mathrm{E}$ is
(1) $3 E$
(2) E
(3) 2 E
(4) 4 E

Ans. (1)
Sol. $\lambda=\frac{\mathrm{h}}{\sqrt{2(\mathrm{KE}) \mathrm{m}}} \Rightarrow \lambda \propto \frac{1}{\sqrt{\mathrm{KE}}}$
$\frac{\lambda}{\lambda / 2}=\sqrt{\frac{\mathrm{KE}_{\mathrm{f}}}{\mathrm{KE}}}$
$4 K E_{i}=K E_{f}$
$\Rightarrow \Delta E=4 \mathrm{KE}_{\mathrm{i}}-\mathrm{KE} \mathrm{K}_{\mathrm{i}}=3 \mathrm{KE}=3 \mathrm{E}$
2. The dimensional formula of $\sqrt{\frac{h c^{5}}{G}}$ is

Ans. (2)
Sol. $\quad\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
$[\mathrm{hc}]=\left[\mathrm{ML}^{3} \mathrm{~T}^{-2}\right]$
$[\mathrm{C}]=\left[\mathrm{LT}^{-1}\right]$
$[G]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
3. Two immiscible liquids of refractive index $\sqrt{2}$ and $2 \sqrt{2}$ are filled with equal height h in a vessel. Then apparent depth of bottom surface of the container given that outside medium is air :
(1) $\frac{3 \sqrt{2} h}{4}$
(2) $\frac{3 h}{4}$
(3) $\frac{3 \mathrm{~h}}{2}$
(4) $\frac{3 h}{4 \sqrt{2}}$

Ans. (1)
Sol.

$d=\frac{h}{\sqrt{2}}+\frac{h}{2 \sqrt{2}} \quad \Rightarrow d=\frac{h}{\sqrt{2}} \times \frac{3}{2}=\frac{3 \sqrt{2} h}{4}$
4. Three identical solid spheres each having mass ' m ' and diameter ' d ' are touching each other as shown in figure. Calculate ratio of moment of inertia about an axis (perpendicular to plane of paper) passing through point P and B as shown in figure. Given P is centroid of triangle $A B C$.

(1) $13 / 23$
(2) $11 / 19$
(3) $7 / 9$
(4) $13 / 11$

Ans. (1)
Sol. M.I about $P=3\left[\frac{2}{5} M\left(\frac{d}{2}\right)^{2}+M\left(\frac{d}{\sqrt{3}}\right)^{2}\right]=\frac{13}{10} M d^{2}$
M.I about $B=2\left[\frac{2}{5} M\left(\frac{d}{2}\right)^{2}+M(d)^{2}\right]+\frac{2}{5} M\left(\frac{d}{2}\right)^{2}=\frac{23}{10} M d^{2}$

Now ratio $=\frac{13}{23}$
5. A solid sphere having radius R and Uniform charge density ρ has a cavity of radius $R / 2$ as shown in figure. Find the ratio of magnitude of electric field at point A and B i.e. $\left|\frac{E_{A}}{E_{B}}\right|$.

(1) $\frac{18}{19}$
(2) $\frac{11}{17}$
(3) $\frac{9}{17}$
(4) $\frac{9}{19}$

Ans. (3)
Sol. For a solid sphere
$\mathrm{E}=\frac{\rho \mathrm{r}}{3 \varepsilon_{0}}$
$E_{A}=\frac{-\rho R}{2\left(3 \varepsilon_{0}\right)}$
$\left|E_{A}\right|=\frac{\rho R}{6 \varepsilon_{0}}$
Electric field at point $B=E_{B}=E_{1 A}+E_{2 A}$
$E_{1 A}=$ Electric Field Due to solid sphere of radius $R=\frac{\rho R}{3 \varepsilon_{0}}$
$E_{2 A}=$ Electric Field Due to solid sphere of radius $R / 2$ (which having charge density $-\rho$)
$=-\frac{K Q^{\prime} \times 4}{9 R^{2}}=-\frac{\rho R}{54 \varepsilon_{0}}$
$E_{B}=E_{1 A}+E_{2 A}=\frac{\rho R}{3 \varepsilon_{0}}-\frac{\rho R}{54 \varepsilon_{0}}=\frac{17 \rho R}{54 \varepsilon_{0}}$
$\frac{\left|E_{A}\right|}{\left|E_{B}\right|}=\frac{9}{17}$
6. Consider an infinitely long current carrying cylindrical straight wire having radius 'a'. Then the ratio of magnetic field at distance $\frac{\mathrm{a}}{3}$ and 2 a from axis of wire is.
(1) $\frac{3}{5}$
(2) $\frac{2}{3}$
(3) $\frac{1}{2}$
(4) $\frac{4}{3}$

Ans. (2)

Sol.

$B_{A}=\frac{\mu_{0} i r}{2 \pi a^{2}}=\frac{\mu_{0} i \frac{a}{3}}{2 \pi a^{2}}=\frac{\mu_{0} i}{\pi a^{2}} \frac{a}{6}=\frac{\mu_{0} i}{6 \pi a}$
$B_{B}=\frac{\mu_{0} i}{2 \pi(2 \mathrm{a})}$
$\frac{\mathrm{B}_{\mathrm{A}}}{\mathrm{B}_{\mathrm{B}}}=\frac{4}{6}=\frac{2}{3}$
7. Find current in the wire BC .

(1) 1.6 A
(2) 2 A
(3) 2.4 A
(4) 3 A

Ans. (2)
Sol.

$R_{\text {eff }}=\frac{4}{5}+\frac{6}{5}=2 \Omega$
$i=\frac{20}{2}$
$=10 \mathrm{~A}$
$I=\frac{4 i}{5}-\frac{3 i}{5}=+\frac{i}{5}=2 A$
8. Two electromagnetic waves are moving in free space whose electric field vectors are given by $\vec{E}_{1}=E_{0} \hat{j} \cos (k x-\omega t) \& \vec{E}_{2}=E_{0} \hat{k} \cos (k y-\omega t)$. A charge q is moving with velocity $\vec{v}=0.8 c \hat{j}$. Find the net Lorentz force on this charge at $\mathrm{t}=0$ and when it is at origin.
(1) $q E_{0}(0.4 \hat{i}+0.2 \hat{j}+0.2 \hat{k})$
(2) $q E_{0}(0.8 \hat{i}+\hat{j}+0.2 \hat{k})$
(3) $q E_{0}(0.6 \hat{i}+\hat{j}+0.2 \hat{k})$
(4) $q E_{0}(0.8 \hat{i}+\hat{j}+\hat{k})$

Ans. (2)
Sol. Magnetic field vectors associated with this electromagnetic wave are given by
$\vec{B}_{1}=\frac{E_{0}}{c} \hat{k} \cos (k x-\omega t) \& \vec{B}_{2}=\frac{E_{0}}{c} \hat{i} \cos (k y-\omega t)$
$\vec{F}=q \vec{E}+q(\vec{V} \times \vec{B})$
$=q\left(\overrightarrow{\mathrm{E}}_{1}+\overrightarrow{\mathrm{E}}_{2}\right)+\mathrm{q}\left(\overrightarrow{\mathrm{V}} \times\left(\overrightarrow{\mathrm{B}}_{1}+\overrightarrow{\mathrm{B}}_{2}\right)\right)$
by putting the value of $\overrightarrow{\mathrm{E}}_{1}, \overrightarrow{\mathrm{E}}_{2}, \overrightarrow{\mathrm{~B}}_{1} \& \overrightarrow{\mathrm{~B}}_{2}$
The net Lorentz force on the charged particle is

$$
\overrightarrow{\mathrm{F}}=\mathrm{qE}[0.8 \cos (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{i}}+\cos (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{j}}+0.2 \cos (\mathrm{ky}-\omega \mathrm{t}) \hat{k}]
$$

at $t=0$ and at $x=y=0$

$$
\overrightarrow{\mathrm{F}}=q E_{0}[0.8 \hat{\mathrm{i}}+\hat{\mathrm{j}}+0.2 \hat{k}]
$$

9. Two ideal di-atomic gases A and B. A is rigid, B has an extra degree of freedom due to vibration. Mass of A is m and mass of B is $\frac{m}{4}$. The ratio of molar specific heat of A to B at constant volume is :
(1) $\frac{7}{9}$
(2) $\frac{5}{9}$
(3) $\frac{5}{11}$
(4) $\frac{5}{7}$

Ans. (4)
Sol. Molar heat capacity of A at constant volume $=\frac{5 R}{2}$
Molar heat capacity of B at constant volume $=\frac{7 R}{2}$
Dividing both, $\quad \frac{\left(\mathrm{C}_{\mathrm{v}}\right)_{\mathrm{A}}}{\left(\mathrm{C}_{\mathrm{v}}\right)_{\mathrm{B}}}=\frac{5}{7}$
10. An ideal liquid (water) flowing through a tube of non-uniform cross section area at A and B are $40 \mathrm{~cm}^{2}$ and $20 \mathrm{~cm}^{2}$ respectively. If pressure difference between $A \& B$ is $700 \mathrm{~N} / \mathrm{m}^{2}$ then volume flow rate is :

(1) $2732 \mathrm{~cm}^{3} / \mathrm{s}$
(2) $2142 \mathrm{~cm}^{3} / \mathrm{s}$
(3) $1832 \mathrm{~cm}^{3} / \mathrm{s}$
(4) $3218 \mathrm{~cm}^{3} / \mathrm{s}$

Ans. (1)
Sol. using equation of continuity

$$
40 \mathrm{~V}_{\mathrm{A}}=20 \mathrm{~V}_{\mathrm{B}}
$$

$\Rightarrow \quad 2 \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}$
Using Bernoullies equation

$$
\begin{aligned}
& P_{A}+\frac{1}{2} \rho V_{A}^{2}=P_{B}+\frac{1}{2} \rho V_{B}^{2} \\
\Rightarrow & P_{A}-P_{B}=\frac{1}{2} \rho\left(V_{B}^{2}-V_{A}^{2}\right) \\
\Rightarrow & \Delta P=\frac{1}{2} 1000\left(V_{B}^{2}-\frac{V_{B}^{2}}{4}\right) \\
\Rightarrow & \Delta P=500 \times \frac{3 V_{B}^{2}}{4} \\
\Rightarrow & V_{B}=\sqrt{\frac{(\Delta P) \times 4}{1500}}=\sqrt{\frac{(700) \times 4}{1500}} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Volume flow rate $=20 \times 100 \times \mathrm{V}_{\mathrm{B}}=2732 \mathrm{~cm}^{3} / \mathrm{s}$
11. A screw gauge advances by 3 mm in 6 rotations. There are 50 divisions on circular scale. Find least count of screw gauge ?
(1) 0.002 cm
(2) 0.001 cm
(3) 0.01 cm
(4) 0.02 cm

Ans. (2)

Sol. Pitch $=\frac{3}{6}=0.5 \mathrm{~mm}$
L.C. $=\frac{0.5 \mathrm{~mm}}{50}=\frac{1}{100} \mathrm{~mm}=0.01 \mathrm{~mm}=0.001 \mathrm{~cm}$
12. A telescope of aperture diameter 5 m is used to observe the moon from the earth. Distance between the moon and earth is $4 \times 10^{5} \mathrm{~km}$. Determine the minimum distance between two points on the moon's surface which can be resolved using this telescope. (Wave length of light is 5893 A.
(1) 60 m
(2) 20 m
(3) 600 m
(4) 200 m

Ans. (1)
Sol.

$\theta=1.22 \frac{\lambda}{\mathrm{a}}$
distance $=\mathrm{O}_{1} \mathrm{O}_{2}=\mathrm{d} \theta$

$$
=1.22 \frac{\lambda}{a} d
$$

distance $=\mathrm{O}_{1} \mathrm{O}_{2}=\frac{1.22 \times 5893 \times 10^{-10} \times 4 \times 10^{8}}{5} \approx 57.5 \mathrm{~m}$
\therefore answer from options $=60 \mathrm{~m}$
(minimum distance)
13. A particle of mass m is revolving around a planet in a circular orbit of radius R. At the instant the particle has velocity \vec{V}, another particle of mass $\frac{m}{2}$ moving at velocity $\frac{\vec{V}}{2}$ collides perfectly in-elastically with the first particle. The new path of the combined body will take is
(1) Circular
(2) Elliptical
(3) Straight line
(4) Fall directly below on the ground

Ans. (2)
Sol. Conserving momentum:
$\frac{m}{2} \frac{v}{2}+m v=\left(m+\frac{m}{2}\right) v_{f}$
$v_{f}=\frac{5 m V}{4 \times \frac{3 m}{2}}=\frac{5 V}{6}$
$\mathrm{V}_{\mathrm{f}}<\mathrm{V}_{\text {orb }}(=\mathrm{v})$ thus the combined mass will go on to an elliptical path
14. Two particles of same mass 'm' moving with velocities $\vec{v}_{1}=v \hat{i}$ and $\vec{v}_{2}=\frac{v}{2} \hat{i}+\frac{v}{2} \hat{j}$ collide in-elastically. Find the loss in kinetic energy.
(1) $\frac{m v^{2}}{8}$
(2) $\frac{5 m v^{2}}{8}$
(3) $\frac{m v^{2}}{4}$
(4) $\frac{3 m v^{2}}{8}$

Ans. (1)
Sol. Conserving momentum
$m v \hat{i}+m\left(\frac{v}{2} \hat{i}+\frac{v}{2} \hat{j}\right)=2 m\left(v_{1} \hat{i}+v_{2} \hat{j}\right)$
on solving
$v_{1}=\frac{3 v}{4}$ and $v_{2}=\frac{v}{4}$
Change in K.E.
$\left[\frac{1}{2} m v^{2}+\frac{1}{2} m\left(\frac{v}{2} \sqrt{2}\right)^{2}\right]-\left[\frac{1}{2}(2 m)\left(\frac{9 v^{2}}{16}+\frac{v^{2}}{16}\right)\right]$
$=\frac{3 m v^{2}}{4}-\frac{5 m v^{2}}{8}=\frac{m v^{2}}{8}$
15. Three waves of same intensity (lo) having initial phases $0, \frac{\pi}{4},-\frac{\pi}{4}$ rad respectively interfere at a point. Find the resultant Intensity
(1) I_{0}
(2) 0
(3) $5.8 \mathrm{I}_{0}$
(4) $0.2 \mathrm{I}_{0}$

Ans. (3)

Sol.

Ares $=(\sqrt{2}+1) \mathrm{A}$
$I_{\text {res }}=(\sqrt{2}+1)^{2} I_{0}$
$=(3+2 \sqrt{2}) \mathrm{I}_{0}=5.8 \mathrm{I}_{\mathrm{os}}$
16. Particle moves from point A to point B along the line shown in figure under the action of force. $\vec{F}=-x \hat{i}+y \hat{j}$. Determine the work done on the particle by \vec{F} in moving the particle from point A to point B.

(A) 1 J
(2) $\frac{1}{2} \mathrm{~J}$
(3) 2 J
(4) 3 J

Ans. (1)
Sol. $\quad W=\int \vec{F} . d \vec{s}$

$$
\begin{aligned}
& =(-x \hat{i}+y \hat{j}) \cdot(d x \hat{i}+d y \hat{j}) \\
& =\int_{1}^{0}-x d x+\int_{0}^{1} y d y \\
& =-\left.\frac{x^{2}}{2}\right|_{1} ^{0}+\left.\frac{y^{2}}{2}\right|_{0} ^{1}=\left(0+\frac{1}{2}\right)+\left(\frac{1}{2}\right)=1 \mathrm{~J}
\end{aligned}
$$

17. For the given $\mathrm{P}-\mathrm{V}$ graph for an ideal gas, chose the correct $\mathrm{V}-\mathrm{T}$ graph. Process BC is adiabatic.

(1)

(2)

(3)

(4)

Ans. (1)

Sol. For process A - B ; Volume is constant ;
$\mathrm{PV}=\mathrm{nRT} ; \quad$ as P increases; T increases
For process B-C ;
PV ${ }^{\text {y }}=$ Constant ;
$\Rightarrow \quad \mathrm{TV}^{\mathrm{y}}-1=$ Constant
For process $\mathrm{C}-\mathrm{A}$; pressure is constant

$$
V=k T
$$

18. Given $\vec{p}=-\hat{i}-3 \hat{j}+2 \hat{k}$ and $\vec{r}=\hat{i}+3 \hat{j}+5 \hat{k}$. Find vector parallel to electric field at position \vec{r} [Note that $\vec{p} . \vec{r}=0$]
(1) $\hat{i}+3 \hat{j}-2 \hat{k}$
(2) $3 \hat{i}+\hat{j}+2 \hat{k}$
(3) $-3 \hat{i}-\hat{j}-2 \hat{k}$
(4) $-\hat{i}+3 \hat{j}+2 \hat{k}$

Ans. (1)
Sol. Since $\vec{p} . \vec{r}=0$
\vec{E} must be antiparallel to \vec{p}
So, $\overrightarrow{\mathrm{E}}=-\lambda(\overrightarrow{\mathrm{p}})$
where λ is a arbitrary positive constant
Now $\vec{A}=a \hat{i}+b \hat{j}+c \hat{k}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}} \| \overrightarrow{\mathrm{E}} \\
& \begin{array}{l}
\frac{\mathrm{a}}{\lambda}=\frac{\mathrm{b}}{3 \lambda}=\frac{c}{-2 \lambda}=k \\
\overrightarrow{\mathrm{~A}}=\lambda k(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
\end{array}
\end{aligned}
$$

So
19. Coming Soon
20. Coming Soon

Numerical Value Type (संख्यात्मक प्रकार)
 This section contains 5 Numerical value type questions.

इस खण्ड में 5 संख्यात्मक प्रकार के प्रश्न हैं।
21. A rod of length 1 m is released from rest as shown in the figure below.

If ω of rod is $\sqrt{\mathrm{n}}$ at the moment it hits the ground, then find n .
Ans.
15
Sol. $\quad \mathrm{mg} \frac{\ell}{2} \sin 30^{\circ}=\frac{1}{2} \frac{\mathrm{~m} \ell^{2}}{3} \omega^{2}$
Solving
$\omega^{2}=15$
$\omega=\sqrt{15}$
22. If reversible voltage of 200 V is applied across an inductor, current in it reduces from 0.25 A to 0 A in 0.025 ms . Find inductance of inductor (in mH).

Ans. 20
Sol. $\quad 200=\frac{\mathrm{L}(0.25)}{0.025} \times 10^{3}$
$\therefore \quad \mathrm{L}=200 \times 10^{-4} \mathrm{H}$

$$
=20 \mathrm{mH}
$$

23. A wire of length $\ell=3 \mathrm{~m}$ and area of cross section $10^{-2} \mathrm{~cm}^{2}$ and breaking stress $4.8 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$ is attached with block of mass 10kg. Find the maximum possible value of angular velocity with which block can be moved in circle with string fixed at one end.

Ans. $4 \mathrm{rad} / \mathrm{s}$

Sol.

$\frac{T}{A}=\sigma$
$\mathrm{T}=\mathrm{m} \omega^{2} \ell$
Solving
$\omega=4 \mathrm{rad} / \mathrm{s}$
24. Position of a particle as a function of time is given $a s x^{2}=a t^{2}+2 b t+c$, where a, b, c are constants. Acceleration of particle varies with x^{-n} then value of n is.

Ans. $\mathrm{n}=3$
Sol. $x^{2}=a t^{2}+2 b t+c$
$2 x v=2 a t+2 b$
$x v=a t+b$
$v^{2}+a x=a$
$a x=a-\left(\frac{a t+b}{x}\right)^{2}$
$a=\frac{a\left(a t^{2}+2 b t+c\right)-(a t+b)^{2}}{x^{3}}$
$a=\frac{a c-b^{2}}{x^{3}}$
$a \propto x^{-3}$
25. Coming Soon

