

FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Monday 25th July, 2022)

CHEMISTRY

SECTION-A

1. Match List I with List II:

List-I	List-II	
(molecule)	(hybridization; shape)	
A. XeO ₃	I. sp ³ d; linear	
B. XeF ₂	II. sp ³ ; pyramidal	
	III. sp ³ d ³ ; distorted octahedral	
D. XeF ₆	IV. sp ³ d ² ; square pyramidal	

Choose the correct answer from the options given below:

- (A) A-II, B-I, C-IV, D-III
- (B) A-II, B-IV, C-III, D-I
- (C) A-IV, B-II, C-III, D-I
- (D) A-IV, B-II, C-I, D-III

Official Ans. by NTA (A)

Ans. (A)

TEST PAPER WITH SOLUTION

TIME: 3:00 PM to 06:00 PM

- 2. Two solutions A and B are prepared by dissolving 1 g of non-volatile solutes X and Y. respectively in 1 kg of water. The ratio of depression in freezing points for A and B is found to be 1:4. The ratio of molar masses of X and Y is:
 - (A) 1 : 4
 - (B) 1: 0.25
 - (C) 1: 0.20
 - (D) 1:5

Official Ans. by NTA (B)

Ans. (B)

Sol.
$$\frac{\Delta T_{fx}}{\Delta T_{fy}} = \frac{k_f \cdot m_x}{k_f \cdot m_y} = \frac{\frac{1}{M_x}}{\frac{1}{M_y}}$$

$$\Rightarrow \frac{1}{4} = \frac{M_y}{M_y}$$

$$\Rightarrow$$
 M_x: M_y = 1:0.25

- 3. Ka, Ka, and Ka, are the respective ionization constants for the following reactions (a),(b), and (c).
 - (a) $H_2C_2O_4 \rightleftharpoons H^+ + HC_2O_4^-$
 - (b) $HC_2O_4^- \rightleftharpoons H^+ + HC_2O_4^{2-}$
 - (c) $H_2C_2O_4 \rightleftharpoons 2H^+ + C_2O_4^{2-}$

The relationship between K_{a_1} , K_{a_2} and K_{a_3} is given as

- (A) $K_{a_3} = K_{a_1} + K_{a_2}$ (B) $K_{a_3} = K_{a_1} K_{a_2}$
- (C) $K_{a_3} = K_{a_1} / K_{a_2}$ (D) $K_{a_3} = K_{a_1} \times K_{a_2}$

Official Ans. by NTA (D)

Ans. (D)

Sol.
$$H_2C_2O_4 \rightleftharpoons H^+ + HC_2O_4^- \qquad K_{a_1}$$

 $H_2C_2O_4^- \rightleftharpoons H^+ + C_2O_4^{2-} \qquad K_{a_2}$
 $H_2C_2O_4 \rightleftharpoons 2H^+ + C_2O_4^{2-} \qquad K_{a_3} = K_{a_1} \times K_{a_2}$

4. The molar conductivity of a conductivity cell filled with 10 moles of 20 mL NaCl solution is $\Lambda_{\rm m1}$ and that of 20 moles another identical cell heaving 80 mL NaCl solution is $\Lambda_{\rm m2}$, The conductivities exhibited by these two cells are same.

The relationship between Λ_{m2} and Λ_{m1} is

- (A) $\Lambda_{m2} = 2\Lambda_{m1}$
- (B) $\Lambda_{m2} = \Lambda_{m1} / 2$
- (C) $\Lambda_{m2} = \Lambda_{m1}$
- (D) $\Lambda_{m2} = 4\Lambda_{m1}$

Official Ans. by NTA (A)

Ans. (A)

Sol. $\Lambda_{m} = \kappa \times \frac{1000}{M}$

$$\Rightarrow \Lambda_{\rm m} \propto \frac{1}{\rm M}$$

$$\frac{\Lambda_{m_1}}{\Lambda_{m_2}} = \frac{M_2}{M_1} = \frac{\frac{20}{80}}{\frac{10}{20}} = \frac{1}{4} \times \frac{2}{1} = \frac{1}{2}$$

- $\Rightarrow \Lambda_{m_2} = 2\Lambda_{m_1}$
- **5.** For micelle formation, which of the following statements are correct?
 - (A) Micelle formation is an exothermic process.
 - (B) Micelle formation is an endothermic process.
 - (C) The entropy change is positive.
 - (D) The entropy change is negative.
 - (A) A and D only
- (B) A and C only
- (C) B and C only
- (D) B and D only

Official Ans. by NTA (A)

Ans. (C)

- **Sol.** For micelle formation, $\Delta S>0$ (hydrophobic effect) This is possible because, the decrease in entropy due to clustering is offset by increase in entropy due to desolvation of the surfactant, Also $\Delta H>0$
- **6.** The first ionization enthalpies of Be, B, N and O follow the order
 - (A) O < N < B < Be
- (B) Be < B < N < O
- (C) B < Be < N < O
- (D) B < Be < O < N

Official Ans. by NTA (D)

Ans. (D)

Sol. 1st I.E. N > O > Be > B $(2p^3) (2p^4) (2s^2) (2p^1)$ 7. Given below are two statements.

Statement I: Pig iron is obtained by heating cast iron with scrap iron.

Statement II: Pig iron has a relatively lower carbon content than that of cast iron. In the light of the above statements, choose the correct answer from the options given below.

- (A) Both Statement I and Statement II are correct.
- (B) Both Statement I and Statement II are not correct.
- (C) Statement I is correct but Statement II is not correct
- (D) Statement I is not correct but Statement II is correct.

Official Ans. by NTA (B)

Ans. (B)

- Sol. Statement –I is incorrect because cast iron is obtained by heating pig iron with scrap iron Statement–II is also incorrect because pig iron has more carbon content (~4%) than cast iron (~3%)
- 8. High purity (>99.95%) dihydrogen is obtained by (A) reaction of zinc with aqueous alkali.
 - (B) electrolysis of acidified water using platinum electrodes.
 - (C) electrolysis of warm aqueous barium hydroxide solution between nickel electrodes.
 - (D) reaction of zinc with dilute acid.

Official Ans. by NTA (C)

Ans. (C)

- Sol. High purity (>99.95%) dihydrogen is obtained by electrolysis of warm aqueous Ba(OH)₂ solution between Ni-electrodes
- 9. The correct order of density is
 - (A) Be > Mg > Ca > Sr
 - (B) Sr > Ca > Mg > Be
 - (C) Sr > Be > Mg > Ca
 - (D) Be > Sr > Mg > Ca

Official Ans. by NTA (C)

Ans. (C)

Sol. In II'A' group density decreases down the group till Ca and after that it increases.

Correct order of density is

- 10. The total number of acidic oxides from the following list is: NO, N_2O , B_2O_3 , N_2O_5 , CO, SO_3 , P_4O_{10}
 - (A) 3
- (B) 4
- (C) 5
- (D) 6

Official Ans. by NTA (B)

Ans. (B)

- **Sol.** Neutral Oxides N₂O, NO, CO Acidic Oxides — B₂O₃, N₂O₅, SO₃, P₄O₁₀
- 11. The correct order of energy of absorption for the following metal complexes is

A: $[Ni(en)_3]^{2+}$, B: $[Ni(NH_3)_6]^{2+}$, C: $[Ni(H_2O)_6]^{2+}$

- (A) C < B < A
- (B) B < C < A
- (C) C < A < B
- (D) A < C < B

Official Ans. by NTA (A)

Ans. (A)

Sol. Stronger the ligand, larger the splitting & higher the energy of absorption.

$$\left[\frac{\text{Ni(en)}_{3}}{\text{(A)}}\right]^{+2} > \left[\frac{\text{Ni(NH}_{3})_{6}}{\text{(B)}}\right]^{+2} > \left[\frac{\text{Ni(H}_{2}O)_{6}}{\text{(C)}}\right]^{+2}$$

12. Match List I with List II.

List-I		List-II		
A.	Sulphate	I.	Pesticide	
В.	Fluoride	II.	Bending of bones	
C.	Nicotine	III.	Laxative effect	
D.	Sodium	IV.	Herbicide	
	arsinite			

Choose the correct answer from the options given below:

- (A) A-II, B-III. C-IV, D-I
- (B) A-IV, B-III, C-II, D-I
- (C) A-III, B-II, C-I, D-IV
- (D) A-III, B-II, C-IV, D-I

Official Ans. by NTA (C)

Ans. (C)

Sol. A-Sulphate – III (Laxative effect)

B-Fluoride - II (Bending of bones)

C-Nictoine – I (pesticides)

D-Sodium Arsinite - IV (herbicide)

13. Major product of the following reaction is

$$0 \longrightarrow 2 \text{ HBr}$$

$$(A) \xrightarrow{Br} O \xrightarrow{Br}$$

$$(B)$$
 Br Br O

$$(D)$$
 Br O O

Official Ans. by NTA (D)

Ans. (D)

Sol.
$$\bigcirc$$
 + H-Br \rightarrow \bigcirc \bigcirc HBr

14. What is the major product of the following reaction?

Official Ans. by NTA (B) Ans. (B)

Sol.
$$H \longrightarrow H \longrightarrow H$$

$$\begin{array}{c|c} H & & & \\ \hline & & \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$$

Aldol formation takes place.

15. Arrange the following in decreasing acidic strength.

(A) A > B > C > D

(B) B > A > C > D

(C) D > C > A > B

(D) D > C > B > A

Official Ans. by NTA (A)

Ans. (A)

Sol. The correct order of acid strength is

$$\begin{array}{c|c}
OH & OH & OH \\
\hline
ONO_2 & OMe
\end{array}$$

$$\begin{array}{c|c}
OH & OH \\
OMe
\end{array}$$

$$\begin{array}{c|c}
OH & OH \\
OMe
\end{array}$$

16. $CH_3 - CH_2 - CN \xrightarrow{CH_3MgBr} A \xrightarrow{H_3O^+} B \xrightarrow{Zn-Hg} C$

The correct structure of C is

OH (C) $CH_3 - CH_2 - CH - CH_3$

(D) CH_3 — CH_2 — $CH = CH_2$

Official Ans. by NTA (A)

Ans. (A)

Sol.
$$CH_3CH_2-C \equiv N \xrightarrow{CH_3MgBr} CH_3CH_2-C-CH_3$$

$$\downarrow H_3O^+$$

$$CH_{3}CH_{2}CH_{2}CH_{3} \leftarrow \frac{Zn/Hg}{HCl} CH_{3}CH_{2} - C - CH_{3}$$

(Clemmensen Reduction)

17. Match List I with List II:

	List-I	List-II
	Polymer	used for items
A.	Nylon 6,6	I. Buckets
B.	Low density	II. Non-stick
	polythene	utensils
C.	High density	III. Bristles of
	polythene	brushes
D.	Teflon	IV. Toys

Choose the correct answer from the options given below:

(A) A-III, B-I, C-IV, D-II

(B) A-III, B-IV, C-I, D-II

(C) A-II, B-I, C-IV, D-III

(D) A-II, B-IV, C-I, D-III

Official Ans. by NTA (B)

Ans. (B)

Sol. LDPE \rightarrow Toys

 $HDPE \rightarrow Buckets$ (As per NCERT)

- 18. Glycosidic linkage between C_1 of α -glucose and C_2 of β -fructose is found in
 - (A) maltose
- (B) sucrose
- (C) lactose
- (D) amylose

Official Ans. by NTA (B)

Ans. (B)

Sol. Theoretical

- **19.** Some drugs bind to a site other than, the active site of an enzyme. This site is known as
 - (A) non-active site
- (B) allosteric site
- (C) competitive site
- (D) therapeutic site

Official Ans. by NTA (B)

Ans. (B)

Sol. Theoretical

- **20.** In base vs. Acid titration, at the end point methyl orange is present as
 - (A) quinonoid form
- (B) heterocyclic form
- (C) phenolic form
- (D) benzenoid form

Official Ans. by NTA (A)

Ans. (A)

Sol.
$$Me_2N$$
 \longrightarrow $N=N$ \longrightarrow SO_3^-Na \longrightarrow Me_2N^+ \longrightarrow $N-NH$ \longrightarrow $SO_3^-Na^+$

(QUINONOID FORM) SECTION-B

1. 56.0 L of nitrogen gas is mixed with excess of hydrogen gas and it is found that 20 L of ammonia gas is produced. The volume of unused nitrogen gas is found to be L.

Official Ans. by NTA (46)

Ans. (46)

2. A sealed flask with a capacity of 2 dm³ contains 11 g of propane gas. The flask is so weak that it will burst if the pressure becomes 2 MPa. The minimum temperature at which the flask will burst is _____ °C. [Nearest integer] (Given: R = 8.3 J K⁻¹ mol⁻¹. Atomic masses of C and H are 12u and 1u respectively.) (Assume that propane behaves as an ideal gas.)

Official Ans. by NTA (1655)

Ans. (1655)

Sol. Moles of $C_3H_8 = \frac{11}{44} = 0.25$ moles

$$PV = nRT$$

$$\Rightarrow$$
 2 × 10⁶ × 2 × 10⁻³ = 0.25 × 8.3 × T

$$\Rightarrow$$
 T = 1927.710 K = 1654.56°C

3. When the excited electron of a H atom from n = 5 drops to the ground state, the maximum number of emission lines observed are

Official Ans. by NTA (10)

Ans. (4)

Sol. Since only a single H atom is present, maximum number of spectral lines = 4

While performing a thermodynamics experiment, a student made the following observations, HCl + NaOH → NaCl + H₂O ΔH = -57.3 kJ mol⁻¹ CH₃COOH + NaOH → CH₃COONa + H₂O ΔH = -55.3 kJ mol⁻¹.

The enthalpy of ionization of CH₃COOH as calculated by the student is _____ kJ mol⁻¹. (nearest integer)

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$\Delta H_{\text{ionisation}} \text{ of CH}_{3} \text{COOH} = \left| -57.3 - (-55.3) \right|$$

= 2 KJ/mol

5. For the decomposition of azomethane.

 $CH_3N_2CH_3(g) \rightarrow CH_3CH_3(g)+N_2(g)$ a first order reaction, the variation in partial pressure with time at 600 K is given as

The half life of the reaction is $___ \times 10^{-5}$ s. [Nearest integer]

Official Ans. by NTA (2)

Ans. (2)

Sol. For first order reaction

$$k = \frac{1}{t} \ln \left(\frac{P_0}{P} \right)$$
$$\ln \left(\frac{P_0}{P} \right) = kt$$

$$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{3.465 \times 10^4} = 2 \times 10^{-5}$$

6. The sum of number of lone pairs of electrons present on the central atoms of

XeO₃, XeOF₄ and XeF₆ is

Official Ans. by NTA (3)

Ans. (3)

Sol. Xe one lone pair on central atom

7. The spin-only magnetic moment value of M^{3+} ion (in gaseous state) from the pairs Cr^{3+}/Cr^{2+} , Mn^{3+}/Mn^2 , Fe^{3+}/Fe^{2+} and Co^{3+}/Co^{2+} that has negative standard electrode potential, is B.M.

[Nearest integer]

Official Ans. by NTA (4)

Ans. (4)

Sol.
$$E_{Cr^{+3}}^0 \mid_{Cr^{+2}} = -0.41V$$

$$[Cr^{+3}] = 4s^0 3d^3$$

$$\mu = \sqrt{n(n+2)} B.M$$

$$=\sqrt{15} \text{ B.M} \sim 4 \text{ B.M}$$

8. A sample of 4.5 mg of an unknown monohydric alcohol, R—OH was added to methylmagnesium iodide. A gas is evolved and is collected and its volume measured to be 3.1 mL. The molecular weight of the unknown alcohol is ____ g/mol. [Nearest integer]

Official Ans. by NTA (33)

Ans. (33)

Sol.
$$ROH + CH_3MgI \rightarrow ROMgI + CH_4(g)$$

moles of $CH_4 = moles$ of ROH

$$\Rightarrow \frac{V}{22400} = \frac{m}{M.M} \text{ (Assuming NTP Condition)}$$

$$\Rightarrow \frac{3.1}{22400} = \frac{4.5 \times 10^{-3}}{\text{M.M}}$$

$$\Rightarrow$$
 MM = 32.51

Nearest Integer = 33

9. The separation of two coloured substances was done by paper chromatography. The distances travelled by solvent front, substance A and substance B from the base line are 3.25 cm. 2.08 cm and 1.05 cm. respectively. The ratio of R_f values of A to B is _____

Official Ans. by NTA (2) Ans. (2)

Sol.
$$\frac{R_{F_A}}{R_{F_B}} = \frac{\frac{2.08}{3.25}}{\frac{1.05}{3.25}} = \frac{2.08}{1.05} \approx 2$$

10. The total number of monobromo derivatives formed by the alkanes with molecular formula C_5H_{12} is (excluding stereo isomers)____

Official Ans. by NTA (8)

Ans. (8)

Sol. The Alkanes and their monobromodervative are