FINAL JEE-MAIN EXAMINATION - APRIL, 2023

(Held On Saturday 08 ${ }^{\text {th }}$ April, 2023)
TIME : 9: 00 AM to 12: 00 NOON

MATHEMATICS

SECTION-A

1. Let $I(x)=\int \frac{(x+1)}{x\left(1+\mathrm{xe}^{\mathrm{x}}\right)^{2}} d x, x>0$,

If $\lim _{x \rightarrow \infty} I(x)=0$, then $I(1)$ is equal to
(1) $\frac{e+1}{e+2}-\log _{e}(e+1)$
(2) $\frac{e+1}{e+2}+\log _{e}(e+1)$
(3) $\frac{e+2}{e+1}+\log _{e}(e+1)$
(4) $\frac{e+2}{e+1}-\log _{e}(e+1)$

Official Ans. by NTA (4)
Ans. (4)
2. If the equation of the plane containing the line $x+2 y+3 z-4=0=2 x+y-z+5$
and perpendicular to the plane $\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \mathrm{k}) \quad$ is $a x+b y+c z=4$, then $(a-b+c)$ is equal to
(1) 20
(2) 24
(3) 22
(4) 18

Official Ans. by NTA (3)
Ans. (3)
3. Let R be the focus of the parabola $y^{2}=20 x$ and the line $y=m x+c$ intersect the parabola at two points P and Q . Let the point $\mathrm{G}(10,10)$ be the centroid of the triangle $P Q R$. If $c-m=6$, then $(\mathrm{PQ})^{2}$ is
(1) 325
(2) 317
(3) 296
(4) 346

Official Ans. by NTA (1)
Ans. (1)

TEST PAPER WITH ANSWER

4. Let $\mathrm{C}(\alpha, \beta)$ be the circumcenter of the triangle formed by the lines
$4 x+3 y=69$
$4 y-3 x=17$ and
$x+7 y=61$

Then $(\alpha-\beta)^{2}+\alpha+\beta$ is equal to
(1) 18
(2) 17
(3) 16
(4) 15

Official Ans. by NTA (2)
Ans. (2)
5. Let $\mathrm{P}=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], \mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad$ and
$\mathrm{Q}=\mathrm{PQP}^{\mathrm{T}} . \quad$ If $\quad \mathrm{P}^{\mathrm{T}} \mathrm{Q}^{2007} \mathrm{P}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right], \quad$ then
$2 a+b-3 c-4 d$ equal to
(1) 2007
(2) 2005
(3) 2006
(4) 2004

Official Ans. by NTA (2)
Ans. (2)
6. Let α, β, γ be the three roots of the equation $x^{3}+b x+c=0$. If $\quad \beta \gamma=1=-\alpha, \quad$ then $\mathrm{b}^{3}+2 \mathrm{c}^{3}-3 \alpha^{3}-6 \beta^{3}-8 \gamma^{3}$ is equal to
(1) 21
(2) $\frac{169}{8}$
(3) 19
(4) $\frac{155}{8}$

Official Ans. by NTA (3)
Ans. (3)
7. The number of ways, in which 5 girls and 7 boys can be seated at a round table so that no two girls sit together, is
(1) $126(5!)^{2}$
(2) $7(360)^{2}$
(3) 720
(4) $7(720)^{2}$

Official Ans. by NTA (1)

Ans. (1)

8. In a bolt factory, machines A, B and C manufacture respectively $20 \%, 30 \%$ and 50% of the total bolts. Of their output 3,4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found the defective, then the probability that it is manufactured by the machine C is
(1) $\frac{2}{7}$
(2) $\frac{9}{28}$
(3) $\frac{5}{14}$
(4) $\frac{3}{7}$

Official Ans. by NTA (3)

Ans. (3)
9. The number of arrangements of the letter of the word "INDEPENDENCE" in which all the vowels always occur together is
(1) 16800
(2) 14800
(3) 18000
(4) 33600

Official Ans. by NTA (1)

Ans. (1)

10. Let $f(x)=\frac{\sin x+\cos x-\sqrt{2}}{\sin x-\cos x}, x \in[0, \pi]-\left\{\frac{\pi}{4}\right\}$. Then $\mathrm{f}\left(\frac{7 \pi}{12}\right) \mathrm{f}^{\prime \prime}\left(\frac{7 \pi}{12}\right)$ is equal to
(1) $\frac{-2}{3}$
(2) $\frac{2}{9}$
(3) $-\frac{1}{3 \sqrt{3}}$
(4) $\frac{-2}{3 \sqrt{3}}$

Official Ans. by NTA (2)

Ans. (2)
11. If the points with vectors $\alpha \hat{i}+10 \hat{j}+13 \hat{k}$, $6 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}, \quad \frac{9}{2} \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}-8 \hat{\mathrm{k}}$ are collinear, then $(19 \alpha-6 \beta)^{2}$ is equal to
(1) 36
(2) 16
(3) 25
(4) 49

Official Ans. by NTA (1)
Ans. (1)
12. If the coefficients of the three consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio $1: 5: 20$, then the coefficient of the fourth term is
(1) 3654
(2) 1827
(3) 5481
(4) 2436

Official Ans. by NTA (1)
Ans. (1)
13. Let $\mathrm{S}_{\mathrm{k}}=\frac{1+2+\ldots .+\mathrm{K}}{\mathrm{K}}$ and $\sum_{j=1}^{n} S_{j}^{2}=\frac{n}{A}\left(\mathrm{Bn}^{2}+\mathrm{Cn}+\mathrm{D}\right)$, where $A, B, C, D \in N$ and A has least value. Then
(1) $A+B$ is divisible by D
(2) $\mathrm{A}+\mathrm{B}=5(\mathrm{D}-\mathrm{C})$
(3) $\mathrm{A}+\mathrm{C}+\mathrm{D}$ is not divisible by B
(4) $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$ is divisible by 5

Official Ans. by NTA (1)
Ans. (1)
14. Let $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$. If $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2 A))|=(16)^{n}$, then n is equal to
(1) 10
(2) 9
(3) 12
(4) 8

Official Ans. by NTA (1)
Ans. (1)
15. Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is
(1) $(\sim \mathrm{p}) \vee \mathrm{q}$
(2) $(\sim q) \wedge p$
(3) $q \wedge(\sim p)$
(4) $\mathrm{p} \vee(\sim \mathrm{q})$

Official Ans. by NTA (3)

Ans. (3)
16. The shortest distance between the lines $\frac{x-4}{4}=\frac{y+2}{5}=\frac{z+3}{3}$ and $\frac{x-1}{3}=\frac{y-3}{4}=\frac{z-4}{2}$ is
(1) $3 \sqrt{6}$
(2) $6 \sqrt{3}$
(3) $6 \sqrt{2}$
(4) $2 \sqrt{6}$

Official Ans. by NTA (1)
Ans. (1)
17. The area of the region

$$
\left\{(x, y): x^{2} \leq y \leq 8-x^{2}, y \leq 7\right\} \text { is }
$$

(1) 21
(2) 18
(3) 24
(4) 20

Official Ans. by NTA (4)
Ans. (4)
18. Let the number of elements in sets A and B be five and two respectively. Then the number of subsets of $\mathrm{A} \times \mathrm{B}$ each having at least 3 and at most 6 element is :
(1) 792
(2) 752
(3) 782
(4) 772

Official Ans. by NTA (1)

Ans. (1)
19. $\lim _{x \rightarrow 0}\left(\left(\frac{1-\cos ^{2}(3 x)}{\cos ^{3}(4 x)}\right)\left(\frac{\sin ^{3}(4 x)}{\left(\log _{e}(2 x+1)\right)^{5}}\right)\right)$ is equal to \qquad
(1) 9
(2) 18
(3) 15
(4) 24

Official Ans. by NTA (2)
Ans. (2)
20. If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation
(1) $x^{2}+7 x+12=0$
(2) $x^{2}+3 x-4=0$
(3) $x^{2}+2 x-3=0$
(4) $\mathrm{x}^{2}+\mathrm{x}-12=0$

Official Ans. by NTA (1)
Ans. (1)

SECTION-B

21. Let [t] denotes the greatest integer $\leq t$. Then $\frac{2}{\pi} \int_{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$ is equal to

Official Ans. by NTA (14)
Ans. (14)
22. Let $[t]$ denotes the greatest integer $\leq t$. If the constant term in the expansion of $\left(3 x^{2}-\frac{1}{2 x^{5}}\right)^{7}$ is α, then $[\alpha]$ is equal to \qquad
Official Ans. by NTA (1275)
Ans. (1275)
23. Let $\vec{a}=6 \hat{i}+9 \hat{j}+12 \hat{k}, \vec{b}=\alpha \hat{i}+11 \hat{j}-2 \hat{k}$ and \vec{c} be vectors such that $\vec{a} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$. If $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}=-12$, $\overrightarrow{\mathrm{c}} \cdot(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})=5$, then $\overrightarrow{\mathrm{c}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ is equal to

Official Ans. by NTA (11)

Ans. (11)
24. The largest natural number n such that 3^{n} divides 66 ! is \qquad
Official Ans. by NTA (31)
Ans. (31)
25. If a_{n} is the greatest term in the sequence $a_{n}=\frac{n^{3}}{n^{4}+147}, n=1,2,3 \ldots \ldots$, then α is equal to

Official Ans. by NTA (5)
Ans. (5)
26. Let $A=\{0,3,4,6,7,8,9,10\}$ and R be the relation defined on A such that $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \in \mathrm{A} \times \mathrm{A}: \mathrm{x}-\mathrm{y} \quad$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation R, so that it is a symmetric relation, is equal to \qquad

Official Ans. by NTA (19)

Ans. (19)
27. Consider a circle $C_{1}: x^{2}+y^{2}-4 x-2 y=\alpha-5$.

Let its mirror image in the line $y=2 x+1$ be another
circle
$C_{2}: 5 x^{2}+5 y^{2}-10 f x-10 g y+36=0$. Let r be the radius of C_{2}. Then $\alpha+\mathrm{r}$ is equal to \qquad

Official Ans. by NTA (2)

Ans. (2)
28. If the solution curve of the differential equation $\left(y-2 \log _{e} x\right) d x+\left(x \log _{e} x^{2}\right) d y=0, x>1$
passes through the points $\left(\mathrm{e}, \frac{4}{3}\right)$ and $\left(\mathrm{e}^{4}, \alpha\right)$, then α is equal to \qquad
Official Ans. by NTA (3)
Ans. (3)
29. Let λ_{1}, λ_{2} be the values of λ for which the points $\left(\frac{5}{2}, 1, \lambda\right)$ and $(-2,0,1)$ are at equal distance from the plane $2 x+3 y-6 z+7=0$. if $\lambda_{1}>\lambda_{2}$, then the distance of the point $\left(\lambda_{1}-\lambda_{2}, \lambda_{2}, \lambda_{1}\right)$ from the line $\frac{x-5}{1}=\frac{y-1}{2}=\frac{z+7}{2}$ is \qquad
Official Ans. by NTA (9)
Ans. (9)
30. Let the mean and variance of 8 numbers $x, y, 10$, $12,6,12,4,8$, be 9 and 9.25 respectively. If $x>y$, then $3 x-2 y$ is equal to \qquad
Official Ans. by NTA (25)
Ans. (25)

