<u>**&Saral**</u>

FINAL JEE-MAIN EXAMINATION – APRIL, 2023				
(Held On Saturday 08th April, 2023)				TIME: 9:00 AM to 12:00 NOON
	MAT	HEMATICS		TEST PAPER WITH ANSWER
1.	Let $I(x) = \int \frac{(x)}{x(1-x)}$ If $\lim_{x \to \infty} I(x) = 0$, the	en I(1) is equal to	4.	Let $C(\alpha,\beta)$ be the circumcenter of the triangle formed by the lines 4x + 3y = 69 4y - 3x = 17 and x + 7y = 61
	$(1)\frac{e+1}{e+2} - \log_{e}\left(e-\frac{1}{e+2}\right) + \log_{$			Then $(\alpha - \beta)^2 + \alpha + \beta$ is equal to (1) 18 (2) 17 (3) 16 (4) 15
	(3) $\frac{e+2}{e+1} + \log_{e}(e+1)$ (4) $\frac{e+2}{e+1} - \log_{e}(e+1)$ Official Ans. by NTA (4) Ans. (4)	5.	Official Ans. by NTA (2) Ans. (2) Let $P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and	
2.	If the equation of x + 2y + 3z - 4 = and perpendic $\vec{r} = (\hat{i} - \hat{j}) + \lambda(\hat{i} + ax + by + cz = 4)$,	the plane containing the line 0 = 2x + y - z + 5 ular to the plane $\hat{j} + \hat{k} + \mu (\hat{i} - 2\hat{j} + 3k)$ is then $(a-b+c)$ is equal to		$Q = PQP^{T}. \text{If} P^{T}Q^{2007}P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{then}$ $2a + b - 3c - 4d \text{ equal to}$ (1) 2007 (2) 2005
3.	(1) 20 (2) 24 (3) 22 (4) 18 Official Ans. by NTA (3) Ans. (3) Let R be the focus of the parabola $y^2 = 20x$ and	6.	(3) 2006 (4) 2004 Official Ans. by NTA (2) Ans. (2) Let α, β, γ be the three roots of the equation $x^{3} + bx + c = 0$. If $\beta \gamma = 1 = -\alpha$, then	
	the line $y = mx + c$ intersect the parabola at two points P and Q. Let the point G(10, 10) be the centroid of the triangle PQR. If $c-m = 6$, then $(PQ)^2$ is			b ³ + 2c ³ - 3 α^{3} - 6 β^{3} - 8 γ^{3} is equal to (1) 21 (2) $\frac{169}{8}$
	 (1) 325 (3) 296 Official Ans. by N Ans. (1) 	(2) 317 (4) 346 TA (1)		(3) 19 (4) $\frac{155}{8}$ Official Ans. by NTA (3) Ans. (3)

7. The number of ways , in which 5 girls and 7 boys can be seated at a round table so that no two girls sit together, is

 $(1)126(5!)^2$

- $(2)7(360)^2$
- (3) 720
- (4) $7(720)^2$

Official Ans. by NTA (1)

Ans. (1)

8. In a bolt factory, machines A, B and C manufacture respectively 20%, 30% and 50% of the total bolts. Of their output 3, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found the defective, then the probability that it is manufactured by the machine C is

(1)
$$\frac{2}{7}$$
 (2) $\frac{9}{28}$
(3) $\frac{5}{14}$ (4) $\frac{3}{7}$

Official Ans. by NTA (3)

Ans. (3)

9. The number of arrangements of the letter of the word "INDEPENDENCE" in which all the vowels always occur together is

(1) 16800
(2) 14800

(3) 18000 (4) 33600

Official Ans. by NTA (1) Ans. (1)

10. Let
$$f(x) = \frac{\sin x + \cos x - \sqrt{2}}{\sin x - \cos x}, x \in [0, \pi] - \left\{\frac{\pi}{4}\right\}$$

Then $f\left(\frac{7\pi}{12}\right) f''\left(\frac{7\pi}{12}\right)$ is equal to
 $(1)\frac{-2}{3}$ (2) $\frac{2}{9}$
 $(3) -\frac{1}{3\sqrt{3}}$ (4) $\frac{-2}{3\sqrt{3}}$

Official Ans. by NTA (2) Ans. (2)

- 11. If the points with vectors $\alpha \hat{i} + 10\hat{j} + 13\hat{k}$, $6\hat{i} + 11\hat{j} + 11\hat{k}$, $\frac{9}{2}\hat{i} + \beta\hat{j} - 8\hat{k}$ are collinear, then $(19\alpha - 6\beta)^2$ is equal to (1) 36 (2) 16 (3) 25
 - (4) 49

Official Ans. by NTA (1) Ans. (1)

- 12. If the coefficients of the three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1 : 5 : 20, then the coefficient of the fourth term is (1) 3654 (2) 1827
 - (3) 5481 (4) 2436

Official Ans. by NTA (1)

Ans. (1)
13. Let
$$S_k = \frac{1+2+....+K}{K}$$
 and

$$\sum_{j=1}^{n} S_{j}^{2} = \frac{n}{A} \Big(Bn^{2} + Cn + D \Big), \text{ where } A, B, C, D \in N$$

and A has least value. Then (1) A + B is divisible by D

- (2) A + B = 5 (D C)
- (3) A + C + D is not divisible by B
- (4) A + B + C + D is divisible by 5

Official Ans. by NTA (1)

Ans. (1)

14. Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
. If $|adj(adj(adj2A))| = (16)^n$,
then n is equal to (1) 10

(1) 10 (2) 9

(3) 12 (4) 8

Official Ans. by NTA (1) Ans. (1)

Final JEE-Main Exam April, 2023/08-04-2023/Morning Session

- **15.** Negation of $(p \Rightarrow q) \Rightarrow (q \Rightarrow p)$ is (1) $(\sim p) \lor q$ (2) $(\sim q) \land p$
 - (3) $q \wedge (\sim p)$ (4) $p \vee (\sim q)$

Official Ans. by NTA (3)

Ans. (3)

16. The shortest distance between the lines $\frac{x-4}{4} = \frac{y+2}{5} = \frac{z+3}{3}$ and $\frac{x-1}{3} = \frac{y-3}{4} = \frac{z-4}{2}$ is (1) $3\sqrt{6}$ (2) $6\sqrt{3}$ (3) $6\sqrt{2}$ (4) $2\sqrt{6}$

Official Ans. by NTA (1) Ans. (1)

17. The area of the region

$$\{(x, y): x^{2} \le y \le 8 - x^{2}, y \le 7\}$$
 is
(1) 21 (2) 18
(3) 24 (4) 20

Official Ans. by NTA (4) Ans. (4)

18. Let the number of elements in sets A and B be five and two respectively. Then the number of subsets of A × B each having at least 3 and at most 6 element is :

(1) 792 (2) 752

(3) 782 (4) 772

Official Ans. by NTA (1)

Ans. (1)

Official Ans. by NTA (2) Ans. (2) 20. If for $z = \alpha + i\beta$, |z + 2| = z + 4(1+i), then $\alpha + \beta$ and $\alpha\beta$ are the roots of the equation (1) $x^2 + 7x + 12 = 0$ (2) $x^2 + 3x - 4 = 0$

*Saral

(3)
$$X + 2X - 3 = 0$$

$$(4) \ x^2 + x - 12 = 0$$

Official Ans. by NTA (1) Ans. (1)

SECTION-B

21. Let [t] denotes the greatest integer $\leq t$. Then $\frac{2}{\pi} \int_{\pi/6}^{5\pi/6} \left(8 \left[\cos e c \, x \right] - 5 \left[\cot x \right] \right) dx \text{ is equal to}$

Official Ans. by NTA (14)

Ans. (14)

22. Let [t] denotes the greatest integer $\leq t$. If the

constant term in the expansion of $\left(3x^2 - \frac{1}{2x^5}\right)^7$ is

 α , then $\left[\alpha \right]$ is equal to _____

Official Ans. by NTA (1275)

Ans. (1275)

23. Let $\vec{a} = 6\hat{i} + 9\hat{j} + 12\hat{k}$, $\vec{b} = \alpha\hat{i} + 11\hat{j} - 2\hat{k}$ and \vec{c} be vectors such that $\vec{a} \times \vec{c} = \vec{a} \times \vec{b}$. If $\vec{a}.\vec{c} = -12$, $\vec{c}.(\hat{i} - 2\hat{j} + \hat{k}) = 5$, then $\vec{c}.(\hat{i} + \hat{j} + \hat{k})$ is equal to

Official Ans. by NTA (11)

Ans. (11)

24. The largest natural number n such that 3ⁿ divides 66! is _____

Official Ans. by NTA (31)

Ans. (31)

Final JEE-Main Exam April, 2023/08-04-2023/Morning Session

25. If a_n is the greatest term in the sequence n^3

 $a_n = \frac{n^3}{n^4 + 147}, n = 1, 2, 3....,$ then α is equal to

Official Ans. by NTA (5)

Ans. (5)

Sara

26. Let $A = \{0, 3, 4, 6, 7, 8, 9, 10\}$ and R be the relation defined on A such that $R = \{(x, y) \in A \times A : x - y \text{ is odd positive integer or } x - y = 2\}$. The minimum number of elements that must be added to the relation R, so that it is a symmetric relation, is equal to _____

Official Ans. by NTA (19)

Ans. (19)

27. Consider a circle $C_1: x^2 + y^2 - 4x - 2y = \alpha - 5$. Let its mirror image in the line y = 2x + 1 be another circle

 $C_2: 5x^2 + 5y^2 - 10fx - 10gy + 36 = 0.Let$ r be

the radius of C_2 . Then $\alpha + r$ is equal to _____

Official Ans. by NTA (2)

Ans. (2)

28. If the solution curve of the differential equation $(y-2\log_e x)dx + (x\log_e x^2)dy = 0, x > 1$ passes through the points $(e, \frac{4}{3})$ and (e^4, α) ,

then α is equal to _____

Official Ans. by NTA (3)

Ans. (3)

29. Let λ_1, λ_2 be the values of λ for which the points $\left(\frac{5}{2}, 1, \lambda\right)$ and (-2, 0, 1) are at equal distance from the plane 2x + 3y - 6z + 7 = 0. if $\lambda_1 > \lambda_2$, then the distance of the point $(\lambda_1 - \lambda_2, \lambda_2, \lambda_1)$ from the line $\frac{x-5}{1} = \frac{y-1}{2} = \frac{z+7}{2}$ is _____

Official Ans. by NTA (9)

Ans. (9)

30. Let the mean and variance of 8 numbers x, y, 10, 12, 6, 12, 4, 8, be 9 and 9.25 respectively. If x > y, then 3x - 2y is equal to ____

Official Ans. by NTA (25)

Ans. (25)