

FINAL JEE-MAIN EXAMINATION - APRIL, 2023

(Held On Saturday 15th April, 2023)

TIME: 9:00 AM to 12:00 NOON

CHEMISTRY

SECTION-A

61. Match List I with List II:

List I-(Monomer)

List II-(Polymer)

- (A) Tetrafluoroethene
- (i) Orlon
- (B) Acrylonitrile
- (ii) Natural rubber
- (C) Caprolactam
- (iii) Teflon
- (D) Isoprene
- (IV) Nylon-6

Choose the correct answer from the options given

below:

- (1) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
- (2) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
- (3) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
- (4) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)

Official Ans. by NTA (1)

Ans. (1)

Sol.

$$\begin{array}{c}
f \\
f
\end{array} = C \begin{pmatrix} f \\
f \end{pmatrix} \longrightarrow \begin{pmatrix} f \\
C \\
C \\
f \end{pmatrix} \begin{pmatrix} f \\
f \\
f \end{pmatrix} \end{pmatrix}_{n}$$

Tetra Fluoroethene

Teflon

$$H_2C = \stackrel{CN}{CH} \longrightarrow (CH_2 - \stackrel{CN}{CH})_n$$

Acrylonitrile

Orlon

$$\begin{array}{c}
O \\
N-n
\end{array}
\longrightarrow \left(H_2C - (H_2C)_4 - C - NH\right)_n$$

Caprolactum

Nylon - 6

$$\begin{array}{c} H_3C \\ C-CH \\ CH_2 \\ CH_2 \end{array} \xrightarrow{C} \begin{array}{c} H_3C \\ C=C \\ CH_2 \\ \end{array}$$

$$\begin{array}{c} C=C \\ CH_2 \\ \end{array}$$

$$\begin{array}{c} C+CH_2 \\ CH_2 \\ \end{array}$$
Natural rubber

TEST PAPER WITH SOLUTION

62. The product formed in the following multistep reaction is:

$$CH_{3}-CH = CH_{2} \frac{ii) H_{2}O_{2},NaOH}{iii) PCC}$$

$$iv) CH_{3}MgBr$$

Official Ans. by NTA (1)

Ans. (1)

Sol.

$$CH_{3}-CH = CH_{2} \xrightarrow{i) B_{2}H_{6}} CH_{3}-CH_{2} - CH_{2}$$

$$\downarrow P.C.C$$

$$CH_{3}-CH_{2} - CH_{2}$$

$$\downarrow P.C.C$$

$$CH_{3}-CH_{2} - CH$$

$$\downarrow CH_{3}MgBr$$

$$OH$$

$$CH_{3}-CH_{2} - CH - CH$$

- **63.** The possibility of photochemical smog formation will be minimum at
 - (1) Kolkata in October
 - (2) Mumbai in May
 - (3) New-Delhi in August (Summer)
 - (4) Srinagar, Jammu and Kashmir in January

Official Ans. by NTA (4)

Ans. (4)

Sol. Photochemical smog occurs in warm, dry and sunny climate.

- Which one of the following is not an example of calcination?
 - (1) $Fe_2O_3 \cdot xH_2O \xrightarrow{\Delta} Fe_2O_3 + xH_2O$
 - (2) $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$
 - (3) $CaCO_3 \cdot MgCO_3 \xrightarrow{\Delta} CaO + MgO + 2CO_2$
 - $(4) 2PbS + 3O_2 \xrightarrow{\Delta} 2PbO + 2SO_2$

Official Ans. by NTA (4)

Ans. (4)

Sol. 2 PbS + 3 $O_2(g) \xrightarrow{\Delta} 2 PbO + 2 SO_2(g)$

It is a roasting reaction.

- 65. Consider the following statements:
 - (A) NF₃ molecule has a trigonal planar structure.
 - (B) Bond length of N_2 is shorter than O_2 .
 - (C) Isoelectronic molecules or ions have identical bond order.
 - (D) Dipole moment of H₂S is higher than that of water molecule.

Choose the correct answer from the option below:

- (1) (A) and (D) are correct
- (2) (C) and (D) are correct
- (3) (A) and (B) are correct
- (4) (B) and (C) are correct

Official Ans. by NTA (4)

Ans. (4)

Sol. (A) NF₃ has trigonal pyramidal shape.

(B) Bond order $\Rightarrow N_2 > O_2$

Bond length \Rightarrow N₂ < O₂

 \Rightarrow (C)

(D) Dipole moment $H_2O > H_2S$

Due to Electronegativity difference.

66. Consider the following sequence of reactions:

$$\underbrace{\frac{\text{NaNO}_2}{0\text{-}5^{\circ}\text{C}}}_{\text{NH}_2} \text{'A'} \xrightarrow{\text{N, N-Dimethylaniline}} \text{'B'}$$

The product 'B' is

(1)
$$H_{2}NHN$$
 $N = N$
 CH_{3}
 CH_{3}

Official Ans. by NTA (2) Ans. (2)

Sol.

$$NaNO_2$$
 $0.5^{\circ}C$
 NH_2
 $NaNO_2$
 $0.5^{\circ}C$
 NH_3
 $NaNO_2$
 $Nime N$
 $Nime N$

- 67. The number of P - O - P bonds in $H_4P_2O_7$, (HPO₃)₃ and P₄O₁₀ are respectively.
 - (1) 1, 3, 6
 - (2)0,3,6
 - (3) 0, 3, 4
 - (4) 1, 2, 4

Official Ans. by NTA (1)

Ans. (1)

Sol.

Number of P-O-P Bond Molecule

 $H_4P_2O_7$ (HPO₃)₃3 6 $P_{4}O_{10}$

68. Given below are two statements:

Statement I: According to Bohr's model of hydrogen atom, the angular momentum of an electron in a given stationary state is quantised.

Statement II: The concept of electron in Bohr's orbit, violates the Heisenberg uncertainty principle. In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct
- (4) Both Statement I and Statement II are incorrect.

Official Ans. by NTA (1)

Ans. (1)

Sol. According to Bohr's model the angular momentum is quantised and equal to $\frac{nh}{2\pi}$.

Heisenberg uncertainty principle explains orbital concept, which is based on probability of finding electron.

69. Decreasing order of reactivity towards electrophilie substitution for the following compounds is:

- (1) c > b > a > d > e
- (2) e > d > a > b > c
- (3) a > d > e > b > c
- (4) d > a > e > c > b

Official Ans. by NTA (2)

Ans. (2)

Sol. Higher the electron density on Benzene Ring, Higher its Reactivity towards electrophilic substitution Reaction

- **70.** Which of the following statement(s) is/are correct?
 - (A) The pH of 1×10^{-8} M HCl solution is 8.
 - (B) The conjugate base H₂PO₄⁻ is HPO₄²⁻.
 - (C) K_w increases with increase in temperature.
 - (D) When a solution of weak monoprotic acid is titrated against a strong base at half neutralisation point, $pH = \frac{1}{2}pK_a$

Choose the correct answer from the option given below.

- (1)(B),(C),(D)
- (2)(A),(D)
- (3)(A),(B),(C)
- (4)(B),(C)

Official Ans. by NTA (4)

Ans. (4)

Sol. (A) pH of 10⁻⁸ M HCl is in acidic range (6.98).

- (B) Conjugate Base of H₂PO₄ is HPO₄²
- (C) K_w increases with increasing Temperature, as the temperature increases, the dissociation of water increases.
- (D) At half neutralisation point, half of the acid is present in the form of salt.

$$pH = Pk_a + \log \frac{1}{1} = Pk_a$$

71. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion (A): BeCl₂ and MgCl₂ produce characteristic flame.

Reason (R): The excitation energy is high in BeCl₂ and MgCl₂

In the light of the above statements, choose the correct answer from the option given below:

- (1) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- (2) (A) is false but (R) is true
- (3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (4) (A) is true but (R) is false.

Official Ans. by NTA (2)

Ans. (2)

Sol. Be, Mg do not give colour to flame due to high excitation energy.

72.
$$CH_3 \longrightarrow COOH$$
 Br
 $COOH$
 CI

In the above conversion the correct sequence of reagents to be added is

- (1) (i) Fe/H⁺, (ii) HONO, (iii) CuCl, (iv) KMnO₄, (v) Br₂
- (2) (i) KMnO₄, (ii) Br₂/Fe, (iii) Fe/H⁺, (iv) Cl₂
- (3) (i) Br₂/Fe, (ii) Fe/H⁺, (iii) HONO, (iv) CuCl, (v) KMnO₄
- (4) Br₂/Fe, (ii) Fe/H⁺, (iii) KMnO₄, (iv) Cl₂

Official Ans. by NTA (3)

Ans. (3)

Sol.

$$CH_3 \qquad CH_3 \qquad Br$$

$$Br_2/Fe \qquad NO_2 \qquad NH_2$$

$$MO_2 \qquad NO_2 \qquad NH_2$$

$$HONO \qquad COOH \qquad CH_3 \qquad Br$$

$$CH_3 \qquad Br$$

$$CH_3 \qquad Br$$

$$CH_3 \qquad Br$$

$$CUCI \qquad DN=N$$

73.
$$H_2O \longrightarrow A$$

major product 'A' formed in the above reaction is

Official Ans. by NTA (4) Ans. (4)

Sol.

- 74. Which is not true for arginine?
 - (1) It is a crystalline solid.
 - (2) It is associated with more than one pK_a values.
 - (3) It has a fairly high melting point.
 - (4) It has high solubility in benzene.

Official Ans. by NTA (4)

Ans. (4)

Sol.
$$H_{2N}$$
 NH_{2} NH_{2} NH_{3}

Arginine exist is zwitterion, so solid in nature and soluble in polar solvent.

- 75. During water-gas shift reaction
 - (1) carbon monoxide is oxidized to carbon dioxide.
 - (2) carbon is oxidized to carbon monoxide.
 - (3) carbon dioxide is reduced to carbon monoxide.
 - (4) water is evaporated in presence of catalyst.

Official Ans. by NTA (1)

Ans. (1)

Sol. Water gas shift reaction

$$CO(g) + H_2$$
 $+ H_2O$ $Constant Constant Const$

- **76.** For a good quality cement, the ratio of silica to alumina is found to be
 - (1) 3
 - (2)4.5
 - (3)2
 - (4) 1.5

Official Ans. by NTA (1)

Ans. (1)

Sol. For good quality cement, the ratio of silica (SlO₂) to Alumina (Al₂O₃) should be between 2.5 to 4.

- **77.** Which of the following statement is correct for paper chromatography?
 - (1) Water present in the mobile phase gets absorbed by the paper which then forms the stationary phase.
 - (2) Water present in the pores of the paper forms the stationary phase.
 - (3) Paper sheet forms the stationary phase.
 - (4) Paper and water present in its pores together form the stationary phase.

Official Ans. by NTA (2)

Ans. (2)

Sol. In paper chromatography, a special quality paper known as chromatography paper is used. Paper contains water trapped in it, which acts as the stationary phase.

78. The major product formed in the Friedel-Craft acylation of chlorobenzene is .

Official Ans. by NTA (1) Ans. (1)

Sol.

 $Cl \longrightarrow CH_{5}-C-Cl + Anhydrous AlCl_{5}$ $Cl \longrightarrow Cl \longrightarrow Cl + Anhydrous AlCl_{5}$ $Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow Cl$ $Cl \longrightarrow Cl \longrightarrow Cl$

Chlorine is ortho/para directing, para is major.

- 79. The complex with highest magnitude of crystal field splitting energy (Δ_0) is
 - (1) $\left[\text{Cr}(\text{OH}_2)_6 \right]^{3+}$
 - (2) $[Ti(OH_2)_6]^{3+}$
 - (3) $[Fe(OH_2)_6]^{3+}$
 - (4) $[Mn(OH_2)_6]^{3+}$

Official Ans. by NTA (1)

Ans. (1)

Sol. $Ti^{+3} = 67$ pm radius

 $Cr^{3+} = 62 \text{ pm radius}$

 $Mn^{+3} = 65 \text{ pm radius}$

 $Fe^{+3} = 65 \text{ pm radius}$

So, Cr³⁺ has highest tendency to attract ligand.

- **80.** Which of the following expressions is correct in case of a CsCl unit cell (edge length'a')?
 - (1) $r_{Cs^+} + r_{Cl^-} = \frac{a}{\sqrt{2}}$
 - (2) $r_{Cs^+} + r_{Cl^-} = a$
 - (3) $r_{Cs^+} + r_{Cl^-} = \frac{\sqrt{3}}{2}a$
 - (4) $r_{Cs^+} + r_{Cl^-} = \frac{a}{2}$

Official Ans. by NTA (3)

Ans. (3)

Sol. For CsCl, Cs[®] is present at Body centre and

Cl^{$$\Theta$$} at all corner. $\frac{\sqrt{3}a}{2} = r_{cs} + r_{Cl}$

SECTION-B

81. The homoleptic and octahedral complex of Co²⁺ and H₂O has ____unpaired electron(s) in the t_{2g} set of orbitals.

Official Ans. by NTA (1)

Ans. (1)

Sol. Co²⁺: 3d⁷ configuration

$$t_{_{2g}}^{221}\ e_{g}^{11}$$

82. The volume (in mL) of 0.1 M AgNO₃ required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H₂O)₅Cl]Cl₂ as silver chloride is_____

Official Ans. by NTA (4)

Ans. (4)

Sol. [Cr (H₂O)₅Cl] Cl₂ + 2 AgNO₃ \rightarrow

0.01M, 20mL 0.1M

For 0.2 milimole AgNO₃ required

= 0.4 milimole

$$0.4 = 0.1 \times V(ml)$$

V = 4mL

83. The total change in the oxidation state of manganese involved in the reaction of KMnO₄ and potassium iodide in the acidic medium is_____

Official Ans. by NTA (5)

Ans. (5)

Sol. $KMnO_4 \rightarrow Mn^{2+}$

+7 +2

Change in oxidation state of Mn= 5

84. In Chromyl chloride, the oxidation state of chromium is (+)

Official Ans. by NTA (6)

Ans. (6)

Sol.
$$CrO_2Cl_2x - 4 - 2 = 0$$

Oxidation State = +6

85. The total number of isoelectronic species from the given set is _____

Official Ans. by NTA (5)

Ans. (5)

Sol.Isoelectronic species O^{2Θ}, F^Θ, Mg²⁺, Na[⊕], Al³⁺

86. The vapour pressure of 30% (w/v) aqueous solution of glucose is _____ mm Hg at 25°C.

[Given: The density of 30% (w/v), aqueous solution of glucose is 1.2 g cm⁻³ and vapour pressure of pure water is 24 mm Hg.]

(Molar mass of glucose is 180 g mol⁻¹.)

Official Ans. by NTA (23)

Ans. (23)

Sol.
$$\frac{24 - P_s}{P_s} = \frac{m \times 18}{1000}$$

wt of solute = 30 gm

Volume of solution = 100 mL

wt. of solution = $1.2 \times 100 = 120$ gm

wt. of solvent = 120 - 30 = 90 gm

$$m = \frac{30 \times 1000}{180 \times 90} = 1.85$$

$$\frac{24 - P_s}{P_s} = \frac{1.85 \times 18}{1000}$$

$$24-P_s = 0.0333 P_s$$

$$P_s(1.033) = 24$$

$$P_s = 23.22$$

87. 20 mL of 0.5 M NaCl is required to coagulate 200 mL of As₂S₃ solution in 2 hours. The coagulating value of NaCl is _____

Official Ans. by NTA (50)

Ans. (50)

Sol. Coagulating value is required milimole of electrolyte needed to coagulate 1 L sol in 2 hours.

Coagulating value =
$$\frac{20 \times 0.5}{200} \times 1000 = 50$$

88. For a reversible reaction A

⇒ B, the ΔH_{forward} reaction = 20 kJ mol⁻¹. The activation energy of the uncatalysed forward reaction is 300 kJ mol⁻¹. When the reaction is catalysed keeping the reactant concentration same, the rate of the catalysed forward reaction at 27°C is found to be same as that of the uncatalysed reaction at 327°C. The activation energy of the cataysed backward reaction is kJ mol⁻¹.

Official Ans. by NTA (130)

Sol. $E_a = 300 \text{ kJ mol}^{-1}$

$$\frac{E_a}{T} = \frac{E_a'}{T'}$$

(Since rate of catalysed and uncatalysed reaction is same)

$$\frac{300}{600} = \frac{E_{a,f}^{'}}{300}$$

$$E'_{af} = 150$$

$$20 = 150 - E'_{a,b}$$

$$E'_{a,b} = 130$$

- **89.** The number of correct statements from the following is
 - (A) Conductivity always decreases with decrease in concentration for both strong and weak electrolytes.
 - (B) The number of ions per unit volume that carry current in a solution increases on dilution.
 - (C) Molar conductivity increases with decrease in concentration.
 - (D) The variation in molar conductivity is different for strong and weak electrolytes.
 - (E) For weak electrolytes, the change in molar conductivity with dilution is due to decrease in degree of dissociation.

Official Ans. by NTA (3)

Ans. (3)

Sol.

- (A) Conductivity decreases with dilution for strong electrolyte as well as weak electrolyte.
- (B) On dilution, The number of ions per unit volume that carry current in a solution decreases.
- (C) Molar conductivity increases with dilution.
- (D) Molar conductivity of strong electrolyte follows DHO equation but it is not applicable for weak electrolyte.
- (E) On dilution degree of dissociation of weak electrolyte increases.

So answer is (A), (C) & (D).

90. 30.4 kJ of heat is required to melt one mole of sodium chloride and the entropy change at the melting point is 28.4 J K⁻¹ mol⁻¹ at 1 atm. The melting point of sodium chloride is _____K (Nearest Integer)

Official Ans. by NTA (1070)

Ans. (1070)

Sol.
$$\Delta S = \frac{\Delta H}{T_{mp}}$$

$$28.4 \!=\! \frac{30.4 \!\times\! 1000}{T_{mp}}$$

$$T_{mp} = 1070.422 \text{ K}.$$