FINAL JEE-MAIN EXAMINATION - APRIL, 2023

(Held On Tuesday 11th April, 2023)
TIME: 3:00 PM to 6:00 PM

CHEMISTRY

SECTION-A

61. Which hydride among the following is less stable?
(1) BeH_{2}
(2) NH_{3}
(3) HF
(4) LiH

Official Ans. by NTA (1)
Ans. (1)
Solution : BeH_{2} is hypovalent
62. Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A :
 can be subjected to

Wolff-Kishner reduction to give

Reason \mathbf{R} : Wolff-Kishner reduction is used to

In the light of the above statements, choose the correct answer from the options given below :
(1) Both A and R are true but R is NOT the correct explanation of A .
(2) A is true but R is false.
(3) A is false but R is true.
(4) Both A and R are true and R is the correct explanation of A .

Official Ans. by NTA (3)
Ans. (3)

Solution :

Wolff-Kishner reduction is not suitable for base sensitive group.

TEST PAPER WITH SOLUTION

63. The major product formed in the following reaction is:

(A)

(B)

(C)

(D)

Choose the correct answer from the options given below :
(1) A only
(2) B only
(3) C only
(4) D only

Official Ans. by NTA (2)
Ans. (2)

Solution :

64. Which of the following compounds is an example of Freon?
(1) $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}$
(2) $\mathrm{C}_{2} \mathrm{HF}_{3}$
(3) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$
(4) $\mathrm{C}_{2} \mathrm{~F}_{4}$

Official Ans. by NTA (1)

Ans. (1)
Solution : Freons are chlorofluoro carbon.
65. For a chemical reaction $\mathrm{A}+\mathrm{B} \rightarrow$ Product, the order is 1 with respect to A and B.

Rate $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	$[\mathrm{A}]$ $\mathrm{mol} \mathrm{L}^{-1}$	$[\mathrm{B}]$ $\mathrm{mol} \mathrm{L}^{-1}$
0.10	20	0.5
0.40	x	0.5
0.80	40	y

What is the value of x and y ?
(1) 80 and 2
(2) 40 and 4
(3) 160 and 4
(4) 80 and 4

Official Ans. by NTA (1)
Ans. (1)

Solution :

$\mathrm{r}=\mathrm{K}[\mathrm{A}]^{1}[\mathrm{~B}]^{1}$
$0.1=\mathrm{K}(20)^{1}(0.5)^{1}$
$0.40=K(x)^{1}(0.5)^{1}$
$0.80=K(40)^{1}(y)^{1}$
From (i) and (ii)
$x=80$
From (i) and (iii)
$y=2$
66. Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ absorbs at lower wavelength of light with respect to $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$
Reason \mathbf{R} : It is because the wavelength of the light absorbed depends on the oxidation state of the metal ion.

In the light of the above statements, choose the correct answer from the options given below :
(1) A is false but R is true.
(2) A is true but R is false.
(3) Both A and R are true and R is the correct explanation of A.
(4) Both A and R are true and R is NOT the correct explanation of A.

Official Ans. by NTA (1)
Ans. (1)
Solution : Since $\mathrm{H}_{2} \mathrm{O}$ is strong field ligand compared to chloride and Co^{3+} ion is present.
\therefore CFSE is higher for $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}\right]^{+3}$, hence it will absorb at lower wavelength.
67. Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : A solution of the product obtained by heating a mole of glycine with a mole of chlorine in presence of red phosphorous generates chiral carbon atom.
Reason R : A molecule with 2 chiral carbons is always optically active.
In the light of the above statements, choose the correct answer from the options given below :
(1) A is false but R is true.
(2) A is true but R is false.
(3) Both A and R are true and R is the correct explanation of A.
(4) Both A and R are true and R is NOT the correct explanation of A.
Official Ans. by NTA (2)
Ans. (2)

Solution :

(1)

(2) Meso compound are optically inactive.
(i) $\mathrm{NaI}, \mathrm{H}_{3} \mathrm{PO}_{4}$
68.
(ii) Mg , Dry ether

Product [X] formed in the above reaction is :
(1)

(2)

(3)

(4) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$

Official Ans. by NTA (1)
Ans. (1)

Solution :

69. Given below are two statements :

Statements I : Ethene at 333 to 343 K and 6-7 atm pressure in the presence of AlEt_{3} and TiCl_{4} undergoes addition polymerization to give LDP.

Statement II : Caprolactam at $533-543 \mathrm{~K}$ in $\mathrm{H}_{2} \mathrm{O}$ through step growth polymerizes to give Nylon 6. In the light of the above Statements, chose the correct answer from the options given below :
(1) Both Statement I and Statement II are true.
(2) Statement I is false but Statement II is true.
(3) Statement I is true but Statement II is false.
(4) Both Statement I and Statement II are false.

Official Ans. by NTA (2)
Ans. (2)
Solution : $\mathrm{S}_{1} \Rightarrow$ HDPE is formed by $\mathrm{TiCl}_{4} \&$ $\mathrm{Al}(\mathrm{Et})_{3}$.
$\mathbf{S}_{\mathbf{2}} \Rightarrow$ Nylon-6 is formed by caprolactam.
70. Compound ' B ' is

(1)

(2)

(3)

(4)

Official Ans. by NTA (2)
Ans. (2)

Solution :

71. Which one of the following pairs is an example of polar molecular solids?
(1) $\mathrm{SO}_{2}(\mathrm{~s}), \mathrm{NH}_{3}(\mathrm{~s})$
(2) $\mathrm{SO}_{2}(\mathrm{~s}), \mathrm{CO}_{2}(\mathrm{~s})$
(3) $\mathrm{HCl}(\mathrm{s}), \mathrm{AlN}(\mathrm{s})$
(4) $\mathrm{MgO}(\mathrm{s}), \mathrm{SO}_{2}(\mathrm{~s})$

Official Ans. by NTA (1)

Ans. (1)

Solution : SO_{2} and NH_{3} are polar molecules. They are constituent particles of polar molecular solids.
72. One mole of P_{4} reacts with 8 moles of SOCl_{2} to give 4 moles of A, x mole of SO_{2} and 2 moles of B. A, B and x respectively are
(1) $\mathrm{PCl}_{3}, \mathrm{~S}_{2} \mathrm{Cl}_{2}$ and 4
(2) $\mathrm{POCl}_{3}, \mathrm{~S}_{2} \mathrm{Cl}_{2}$ and 4
(3) $\mathrm{PCl}_{3}, \mathrm{~S}_{2} \mathrm{Cl}_{2}$ and 2
(4) $\mathrm{POCl}_{3}, \mathrm{~S}_{2} \mathrm{Cl}_{2}$ and 2

Official Ans. by NTA (1)
Ans. (1)
Solution : $\mathrm{P}_{4}+8 \mathrm{SOCl}_{2} \rightarrow 4 \mathrm{PCl}_{3}+2 \mathrm{~S}_{2} \mathrm{Cl}_{2}+4 \mathrm{SO}_{2}$
73. Compound from the following that will not produce precipitate on reaction with AgNO_{3} is :
(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Ans. (1)

Solution :

Carbocation
74. A solution is prepared by adding $2 g$ of " X " of 1 mole of water. Mass percent of " X " in the solution is :
(1) 20%
(2) 5%
(3) 2%
(4) 10%

Official Ans. by NTA (4)

Ans. (4)
Solution : Solute (X) $=2 \mathrm{~g}$
Solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)=1$ mole $=18 \mathrm{~g}$
Total mass $=2+18=20 \mathrm{~g}$
$\%$ mass of $X=\frac{2}{20} \times 100=10 \%$
75. Given below are two statements :

Statement-I : In the metallurgy process, sulphide ore is converted to oxide before reduction.

Statement-II : Oxide ores in general are easier to reduce.

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both Statement I and Statement II are correct.
(2) Statement I is correct but Statement II is incorrect.
(3) Both Statement I and Statement II are incorrect.
(4) Statement I is incorrect but Statement II is correct.

Official Ans. by NTA (1)
Ans. (1)
Solution : $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
Oxides on carbon reduction forms CO_{2} while sulphide on carbon reduction gives CS_{2}.
CO_{2} is more volatile compared to CS_{2} therefore oxides are easy to reduce.
76. Alkali metal from the following with least melting point is :
(1) Rb
(2) K
(3) Na
(4) Cs

Official Ans. by NTA (4)

Ans. (4)
Solution : On moving down the group in alkali metals melting point decreases.
77. What weight of glucose must be dissolved in 100 g of water to lower the vapour pressure by 0.20 mm Hg ?
(Assume dilute solution is being formed)
Given : Vapour pressure of pure water is 54.2 mm Hg at room temperature. Molar mass of glucose is $180 \mathrm{~g} \mathrm{~mol}^{-1}$.
(1) 4.69 g
(2) 3.59 g
(3) 2.59 g
(4) 3.69 g

Official Ans. by NTA (4)

Ans. (4)
Solution : $\frac{\mathrm{P}^{0}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}^{0}}=\frac{\mathrm{n}}{\mathrm{N}}$ (for dilute solution)
$\frac{0.2}{54.2}=\frac{\mathrm{n} \times 18}{100}$
$\mathrm{n}=\frac{100}{271 \times 18}$
$\mathrm{w}=\frac{100 \times 180}{271 \times 18} ; \mathrm{w}=3.69 \mathrm{~g}$
78. The magnetic moment is measured in Bohr Magneton (BM).
Spin only magnetic moment of Fe in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ complexes respectively is :
(1) 6.92 B.M. in both
(2) 4.89 B.M. and 6.92 B.M.
(3) 3.87 B.M. and 1.732 B.M.
(4) 5.92 B.M. and 1.732 B.M

Official Ans. by NTA (4)
Ans. (4)
Solution : $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
$\mathrm{Fe}^{3+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$
No pairing

\therefore Unpaired $\mathrm{e}^{-}=5$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$
$=\sqrt{5(5+2)}$
$\mu=\sqrt{35}=5.92$ B.M.
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-3}$
$\mathrm{Fe}^{3+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{\circ}$

Pairing occur due to strong field ligand CN^{-}

\therefore Unpaired $\mathrm{e}^{-} \Rightarrow 1$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$
$=\sqrt{1(1+2)}=\sqrt{3}=1.732$ B.M.
79. Match List I with List II

List I Complex		List II Colour	
A.	$\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$	I.	Brown
B.	$\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$	II.	White
C.	$\mathrm{MnO}(\mathrm{OH})_{2}$	III.	Yellow
D.	$\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$	IV.	blue

Choose the correct answer from the options given below :
(1) A-II, B-III, C-I, D-IV
(2) A-III, B-IV, C-II, D-I
(3) A-II, B-IV, C-I, D-III
(4) A-II, B-III, C-IV, D-I

Official Ans. by NTA (1)
Ans. (1)
Solution : $\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \Rightarrow$ White
$\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right] \Rightarrow$ Yellow
$\mathrm{MnO}(\mathrm{OH})_{2} \Rightarrow$ Brown
$\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \Rightarrow$ Blue
80. If Ni^{2+} is replaced by Pt^{2+} in the complex $\left[\mathrm{NiCl}_{2} \mathrm{Br}_{2}\right]^{2-}$, which of the following properties are expected to get changed?
A. Geometry
B. Geometrical isomerism
C. Optical isomerism
D. Magnetic properties
(1) A, B and C
(2) A, B and D
(3) A and D
(4) B and C

Official Ans. by NTA (2)

Ans. (2)
Solution : $\left[\mathrm{NiBr}_{2} \mathrm{Cl}_{2}\right]^{2-} \rightarrow$ This complex species is tetrahedral as $\mathrm{Br}^{\Theta} \& \mathrm{Cl}^{\Theta}$ are weak field ligands.
$\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-} \rightarrow$ As Pt belongs to 5 d series. This complex species is square planar.

Both the complex species are optically inactive.
$\left[\mathrm{NiBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$, being tetrahedral does not show Geometrical Isomerism.
$\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ shows two Geometrical Isomers.

SECTION-B

81. Number of compounds from the following which will not produce orange red precipitate with Benedict solution is \qquad Glucose, maltose, sucrose, ribose, 2-deoxyribose, amylose, lactose.

Official Ans. by NTA (3)

Ans. (2)

Solution :

Amylose

Sucrose :

Both Amylose and Sucrose does not give Benedict's test.
82. 4.5 moles each of hydrogen and iodine is heated in a sealed ten litre vessel. At equilibrium, 3 moles of HI were found. The equilibrium constant for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is. \qquad

Official Ans. by NTA (1)

Ans. (1)

Solution :

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

$\mathrm{t}=0$
4.5
$t_{\text {eq }}$
$3 \quad 3 \quad 3$
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(3)^{2}}{3 \times 3}=\frac{9}{9}=1$
83. The number of correct statements about modern adsorption theory of heterogeneous catalysis from the following is \qquad
A. The catalyst is diffused over the surface of reactants.
B. Reactants are adsorbed on the surface of the catalyst.
C. Occurrence of chemical reaction on the catalyst's surface through formation of an intermediate.
D. It is a combination of intermediate compound formation theory and the old adsorption theory.
E. It explains the action of the catalyst as well as those of catalytic promoters and poisons.
Official Ans. by NTA (3)
Ans. (3)
Solution : B, C and D are correct.
(NCERT - Surface Chemistry)
84. The number of correct statements from the following \qquad
A. For 1 s orbital, the probability density is maximum at the nucleus.
B. For 2 s orbital, the probability density first increases to maximum and then decreases sharply to zero.
C. Boundary surface diagrams of the orbitals encloses a region of 100% probability of finding the electron.
D. p and d-orbitals have 1 and 2 angular nodes respectively.
E. Probability density of p-orbital is zero at the nucleus.
Official Ans. by NTA (3)
Ans. (3)
Solution : A, D and E statements are correct.

For 2 s orbital, the probability density first decreases and then increases.

At any distance from nucleus the probability density of finding electron is never zero and it always have some finite value.
85. The number of possible isomeric products formed when 3-chloro-1-butene reacts with HCl through carbocation formation is \qquad
Official Ans. by NTA (4)
Ans. (4)
Solution :

Total Possible Isomeric product $=1+3=4$
86. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{XH}_{2} \mathrm{O}$ and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{YH}_{2} \mathrm{O}$, represent formula of the crystalline forms of nitrate salts. Sum of X and Y is \qquad -
Official Ans. by NTA (6)
Ans. (6)
Solution : $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is a hydrated salt whereas $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is a anhydrous salt.
$\therefore \mathrm{x}+\mathrm{y}=6$
87. The total number of intensive properties from the following is \qquad
Volume, Molar heat capacity, Molarity, E^{θ} cell, Gibbs free energy change, Molar mass, Mole
Official Ans. by NTA (4)
Ans. (4)
Solution : Extensive \Rightarrow Mole, Volume, Gibbs free energy.
Intensive \Rightarrow Molar mass, Molar heat capacity, Molarity, E^{θ} cell.
88. The maximum number of lone pairs of electrons on the central atom from the following species is \qquad $\mathrm{ClO}_{3}^{-}, \mathrm{XeF}_{4}, \mathrm{SF}_{4}$ and I_{3}^{-}
Official Ans. by NTA (3)
Ans. (3)

Solution :

[2 lone pair]

[1 lone pair]

[3 lone pair]
[1 lone pair]
89. The volume of hydrogen liberated at STP by treating 2.4 g of magnesium with excess of hydrochloric acid is \qquad $\times 10^{-2} \mathrm{~L}$.

Given: Molar volume of gas is 22.4 L at STP.
Molar mass of magnesium is $24 \mathrm{~g} \mathrm{~mol}^{-1}$.
Official Ans. by NTA (224)
Ans. (224)

Solution :

$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \uparrow$
$\mathrm{w}=2.4 \mathrm{~g}$
$\mathrm{N}=\frac{2.4}{24}=0.1 \mathrm{~mole}$
1 mole of gas at $\mathrm{STP} \Rightarrow 22.4$ lit.
$\therefore \quad 0.1$ mole of gas $=0.1 \times 22.4$
$=2.24$ lit. $=224 \times 10^{-2}$ litre
90. The number of correct statements from the following is :
A. $\mathrm{E}_{\text {cell }}$ is an intensive parameter.
B. A negative E^{Θ} means that the redox couple is a stronger reducing agent than the $\mathrm{H}^{+} / \mathrm{H}_{2}$ couple.
C. The amount of electricity required for oxidation or reduction depends on the stoichiometry of the electrode reaction.
D. The amount of chemical reaction which occurs at any electrode during electrolysis by a current is proportional to the quantity of electricity passed through the electrolyte.

Official Ans. by NTA (4)
Ans. (4)
Solution : Given statements A, B, C and D are correct.

