

FINAL JEE-MAIN EXAMINATION - APRIL, 2023

(Held On Thursday 06th April, 2023)

TEST PAPER WITH SOLUTION

TIME: 9:00 AM to 12:00 NOON

CHEMISTRY

SECTION-A

- 61. A compound is formed by two elements X and Y. The element Y forms cubic close packed arrangement and those of element X occupy one third of the tetrahedral voids. What is the formula of the compound?
 - $(1) X_2 Y_3$
 - (2) X_3Y
 - $(3) X_3 Y_2$
 - $(4) XY_3$

Official Ans. by NTA (1)

Ans. (1)

Sol. $Y : CCP \Rightarrow 4Y$

 $X = 1/3 \text{ THV} = 1/3 \times 8 \Rightarrow 8/3x$

∴ Formula : $X_{8/3}Y_4$ or X_2Y_3

62. Match List I with List II

List I		List II	
Element detected		Reagent used/	
			Product formed
A	Nitrogen	I.	Na ₂ [Fe(CN) ₅ NO]
В	Sulphur	II.	AgNO ₃
С	Phosphorous	III.	Fe ₄ [Fe (CN) ₆] ₃
D	Halogen	IV.	$(NH_4)_2 MoO_4$

Choose the correct answer from the options given below:

- (1) A-II, B-IV, C-I, D-III
- (2) A-IV, B-II, C-I, D-III
- (3) A-II, B-I, C-IV, D-III
- (4) A-III, B-I, C-IV, D-II

Official Ans. by NTA (4)

Ans. (4)

Nitrogen detection by lassaigne's method

$$Na + C + N \rightarrow NaCN$$

6NaCN + FeSO₄ \rightarrow Na₄[Fe(CN)₆] + Na₂SO₄

 $Na_4[Fe(CN)_6] + Fe^{3+} \rightarrow Fe_4[Fe(CN)_6]_3$

(Prussian blue)

Sulphur detection by Sodium nitroprusside

 $Na_2[Fe(CN)_5 NO] + Na_2S \rightarrow Na_4[Fe(CN)_5 NOS]$

[Purple]

Phosphorus detection by ammonium molybdate $Na_3PO_4 + 3HNO_3 \rightarrow H_3PO_4 + 3NaNO_3$

$$H_3PO_4 + 12(NH_4)_2 MoO_4 + 21HNO_3 \rightarrow$$

 $(NH_4)_3 PO_4. 12MoO_3 + 21NH_4NO_3 + 12H_2O$
(canary yellow)

Halogen give specific coloured ppt with AgNO₃(aq)

$$NaCl + AgNO_3(aq) \rightarrow AgCl + NaNO_3$$
(White)

$$NaBr + AgNO_3(aq) \rightarrow AgBr + NaNO_3$$
(Pale yellow)

$$NaI + AgNO_3(aq) \rightarrow AgI + NaNO_3$$
(Yellow)

- 63. The standard electrode potential of M⁺/M in aqueous solution does not depend on
 - (1) Ionisation of a solid metal atom
 - (2) Sublimation of a solid metal
 - (3) Ionisation of a gaseous metal atom
 - (4) Hydration of a gaseous metal ion

Official Ans. by NTA (1)

Ans. (1)

- Sol. Factual
- **64.** Polymer used in orlon is:
 - (1) Polyacrylonitrile
 - (2) Polyethene
 - (3) Polycarbonate
 - (4) Polyamide

Official Ans. by NTA (1)

Ans. (1)

CN
Polymerisation

$$n \ CH_2 = CH$$

Sol. Acrylonitrile

 $CH_2 - CH$
 CN
 $CH_2 - CH$
 $CH_2 - CH$

Polyacrylonitrile (Orlon)

- **65.** The difference between electron gain enthalpies will be maximum between:
 - (1) Ne and F
 - (2) Ne and Cl
 - (3) Ar and Cl
 - (4) Ar and F

Official Ans. by NTA (2)

Ans. (2)

Sol. Cl has the most negative ΔH_{eg} among all the elements and Ne has the most positive ΔH_{eg} .

66. Match List I with List II

	List I Enzymatic reaction	List II Enzyme	
A	Sucrose → Glucose and	I.	Zymase
	Fructose		
В	Glucose→ethyl alcohol and	II.	Pepsin
	CO_2		
С	Starch → Maltose	III.	Invertase
D	Proteins → Amino acids	IV.	Diastase

Choose the correct answer from the options given below:

- (1) A-III, B-I, C-II, D-IV
- (2) A-I, B-IV, C-III, D-II
- (3) A-III, B-I, C-IV, D-II
- (4) A-I, B-II, C-IV, D-III

Official Ans. by NTA (3)

Ans. (3)

Sol. Factual

- 67. The possibility of photochemical smog formation is more at
 - (1) The places with healthy vegetation
 - (2) Himalayan villages in winter
 - (3) Marshy lands
 - (4) Industrial areas

Official Ans. by NTA (4)

Ans. (4)

- **Sol.** Photochemical smog occurs in warm, dry and sunny climate. The main components come from the action of sunlight on unsaturated hydrocarbon and nitrogen oxides produced by automobiles and factories.
- **68.** The setting time of Cement is increased by adding
 - (1) Clay
 - (2) Silica
 - (3) Limestone
 - (4) Gypsum

Official Ans. by NTA (4)

Ans. (4)

Sol. Factual

69. Given below are two statements: one is labelled as assertion and the other is labelled as reason.

Assertion: Loss of electron from hydrogen atom results in nucles of $\sim 1.5 \times 10^{-3}$ pm size.

Reason: Proton (H⁺) always exists in combined form

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both A and R are correct and R is the correct explanation of A
- (2) A is correct but R is not correct
- (3) A is not correct but R is correct
- (4) Both A and R are correct but R is NOT the correct explanation of A.

Official Ans. by NTA (4)

Ans. (4)

Sol. Factual

70.

Compound P

(M.F.
$$C_{14}H_{13}ON$$
)

M.F = MOLECULAR FORMULA

Residue Q

Filtrate

NaOH

Oily Liquid R.

Compound P is neutral. Q gives effervescence with NaHCO₃ while R reacts with Hinsbergs reagent to give solid soluble in NaOH. Compound P is

(1)
$$CH_3$$
 (2) CH_3 (2) CH_3 (2) CH_3 (4) CH_3 (7) CH_3

Official Ans. by NTA (2)

Ans. (2)

Sol.

71. Match List I with List II

N	List I Name of reaction		List II Reagent used		
A	Hell-Volhard- Zelinsky reaction	I.	NaOH + I ₂		
В	Iodoform reaction	II.	(i) CrO ₂ Cl ₂ ,CS ₂ (ii) H ₂ O		
С	Etard reaction	III.	(i) Br ₂ /red phosphorus (ii) H ₂ O		
D	Gatterman-Koch reaction	IV.	CO, HCl, anhyd. A1C1 ₃		

Choose the correct answer from the options given below:

- (1) A-III, B-II, C-I, D-IV
- (2) A-III, B-I, C-IV, D-II
- (3) A-I, B-II, C-III, D-IV
- (4) A-III, B-I, C-II, D-IV

Official Ans. by NTA (4)

Ans. (4)

Sol. HVZ reactions = $Br_2 / red P$

Iodoform reaction = $NaOH + I_2$

Etard reaction = (i) $CrO_2 Cl_2$, $CS_2(ii) H_2O$

Gatterman-Koch Reaction = CO, HCl, Anhydrous,

72. The major products A and B from the following reactions are:

$$B \xleftarrow{\text{LiAl } H_4} \xrightarrow{\text{H}} \xrightarrow{Br_2/AcOH} A$$

(1)
$$A = \bigcup_{Br}^{Br} \bigcup_{Br}^{H} B = \bigcup_{OH}^{H}$$

(2)
$$A = \bigvee_{Br}^{H} \bigcup_{O}^{H} B = \bigvee_{OH}^{N} \bigcup_{OH}^{N}$$

(3)
$$A = \begin{bmatrix} Br & H \\ N & N \\ Br & B \end{bmatrix}$$
 $B = \begin{bmatrix} NH_2 \\ NH_2 \end{bmatrix}$

$$(4) A = \bigcup_{Br} \bigcup_{O} B = \bigcup_{N} \bigcup_{O} B$$

Official Ans. by NTA (4)

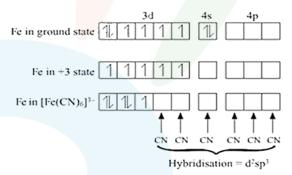
Ans. (4)

73. Given below are two statements, one is labelled as

Assertion A and the other is labelled as Reason R.

Assertion A: The spin only magnetic moment value for $[Fe(CN)_6]^{3-}$ is 1.74 BM, whereas for $[Fe(H_2O)_6]^{3+}$ is 5.92 BM.

Reason R: In both complexes, Fe is present in +3 oxidation state.


In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true but R is NOT the correct explanation of A
- (2) A is false but R is true
- (3) A is true but R is false
- (4) Both A and R are true and R is the correct explanation of A

Official Ans. by NTA (1)

Ans. (1)

 $[Fe(CN)_6]^{3-}$ Sol.

Unpaired electron = 1

$$\mu = \sqrt{n(n+2)} = \sqrt{1 \times 3} = 1.74 \text{ B.M.}$$

[Fe(H₂O)₆]³⁺ No pairing because H₂O is WFL Number of unpaired electrons = 5, $\mu = 5.92$ BM Assertion is true, Reason is true but not correct explanation.

74. **Match List I with List II**

List I Vitamin		List II Deficiency disease		
	A	Vitamin A	I.	Beri-Beri
	В	Thiamine	II.	Cheilosis
	С	Ascorbic acid	III.	Xeropthalmia
	D	Riboflavin	IV.	Scurvy

Choose the correct answer from the options given below:

- (1) A-IV, B-II, C-III, D-I (2) A-III, B-II, C-IV, D-I
- (3) A-IV, B-I,C-III, D-II (4) A-III,B-I,C-IV, D-II

Official Ans. by NTA (4)

Ans. (4)

Factual Sol.

Which of the following options are correct for the

$$2[Au(CN)_2]^{-}_{(aq)} + Zn(s) \rightarrow 2Au(s) + [Zn(CN)_4]^{2-}_{(aq)}$$

- A. Redox reaction
- B. Displacement reaction
- C. Decomposition reaction
- D. Combination reaction

Choose the correct answer from the options given below:

- (1) A and B only
- (2) A only
- (3) C and D only
- (4) A and D only

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$2 \begin{bmatrix} ^{+1} \text{Au}(\text{CN})_2 \end{bmatrix}^{-} + \overset{0}{Z} \text{n(s)} \longrightarrow 2 \overset{0}{\text{Au}} + \begin{bmatrix} ^{+2} \text{Zn}(\text{CN})_4 \end{bmatrix}^{-2}$$

Zn displaced Au⁺

Reduction and Oxidation both are taking place.

Match List I with List II **76.**

List I			List II
Oxide		Type of Bond	
A	N_2O_4	I.	1N = O bond
В	NO_2	II.	1N – O – N bond
C	N_2O_5	III.	1N – N bond
D	N ₂ O	IV.	$1N = N / N \equiv N \text{ bond}$

Choose the correct answer from the options given below:

- (1) A-II, B-IV, C-III, D-I
- (2) A-II, B-I, C-III, D-IV
- (3) A-III, B-I, C-IV, D-II
- (4) A-III, B-I, C-II, D-IV

Official Ans. by NTA (4)

Ans. (4)

Sol. N_2O_4

 NO_2

 N_2O_5

N₂O

$$\ddot{O}$$
 $\stackrel{+1}{\longrightarrow}$ $\stackrel{-1}{N}$: and $\ddot{O} = \ddot{N} = \ddot{N}$

- 77. Strong reducing and oxidizing agents among the following, respectively, are
 - (1) Ce⁴⁺ and Eu²⁺
- (2) Ce^{4+} and Tb^{4+}
- (3) Ce^{3+} and Ce^{4+}
- (4) Eu²⁺ and Ce⁴⁺

Official Ans. by NTA (4)

Allen Ans. (4)

- Sol. **Factual**
- The major product formed in the following **78.** reaction is

$$\begin{array}{c}
\text{COOCH}_{2} & \xrightarrow{\text{Br}_{2}/\text{NaOH}} \\
\xrightarrow{\Delta}
\end{array}$$

$$(2) \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

Official Ans. by NTA (3)

Ans. (3)

For a concentrated solution of a weak electrolyte $(K_{eq}$ = equilibrium constant) A_2B_3 of concentration 'c', the degree of dissociation "\au' is

$$(1) \left(\frac{K_{eq}}{108c^4}\right)^{\frac{1}{5}} \qquad (2) \left(\frac{K_{eq}}{6c^5}\right)^{\frac{1}{5}}$$

$$(2) \left(\frac{K_{eq}}{6c^5}\right)^{\frac{1}{5}}$$

$$(3) \left(\frac{K_{eq}}{5c^4}\right)^{\frac{1}{5}}$$

$$(4) \left(\frac{K_{eq}}{25c^2} \right)^{\frac{1}{5}}$$

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$A_2B_3(aq.) \rightleftharpoons 2A_{(aq.)}^{3+} + 3B_{(aq)}^{2-}$$

 $c(1-\alpha)$

$$K_{eq} = \frac{\left[A^{3+}\right]^{2} \left[B^{2-}\right]^{3}}{\left[A_{2}B_{3}\right]} = \frac{4c^{2}\alpha^{2} \times 27c^{3}\alpha^{3}}{c(1-\alpha)}$$

$$K_{eq} == \frac{108c^5 \alpha^5}{c} \quad \alpha = \left(\frac{K_{eq}}{108c^4}\right)^{\frac{1}{5}}$$

80. For the reaction:

$$RCH_2Br + I^- \xrightarrow{Acetone} RCH_2I + Br^-$$

The correct statement is:

- (1) The transition state formed in the above reaction is less polar than the localised anion.
- (2) The reaction can occur in acetic acid also.
- (3) The solvent used in the reaction solvates the ions formed in rate determining step.
- (4) Br can act as competing nucleophile.

Official Ans. by NTA (1)

Ans. (1)

Sol. This is finkelstein reaction

$$R \longrightarrow CH_2 \longrightarrow R \longrightarrow R \longrightarrow Cl_2 \longrightarrow I + Br$$
Transition state
$$I \longrightarrow C \longrightarrow Br$$

Clearly, the transition state is less polar than free anions. Br⁻and I⁻

Acetic acid is protic which does not support $S_N 2$ Acetone does not solvate anion

Br gets precipitated and hence can not compete with I

So only (1) is correct

SECTION-B

81. The wavelength of an electron of kinetic energy $4.50 \times 10^{-29} \text{J is.....} \times 10^{-5} \text{ m.}$ (Nearest integer)

Given : mass of electron is 9 \times 10 $^{-31}$ kg, h =6.6 \times 10 $^{-34}$ J s

Official Ans. by NTA (7)

Ans. (7)

Sol.
$$\lambda_d = \frac{h}{mv} = \frac{h}{\sqrt{2mKE}} = \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 9 \times 10^{-31} \times 4.5 \times 10^{-29}}}$$

$$= \frac{6.6 \times 10^{-34}}{\sqrt{9^2 \times 10^{-60}}}$$

$$= \frac{6.6 \times 10^{-34}}{9 \times 10^{-30}} = \frac{6.6}{9} \times 10^{-4}$$

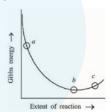
$$= 7.3 \times 10^{-5} \text{ m}$$
Therefore Ans = 7

82. Number of bromo derivatives obtained on treating ethane with excess of Br₂, in diffused sunlight is...

Official Ans. by NTA (9)

Ans. (9)

Sol. $CH_3 - CH_3 + Br_2 (Excess) \xrightarrow{hv}$


Monobromo Br

Tribromo Br

Pentabromo Br

$$Br \xrightarrow{Br} Br$$
 $Br \xrightarrow{Br} Br$

Hexabromo

- A. Reaction is spontaneous at (a) and (b)
- B. Reaction is at equilibrium at point (b) and non-spontaneous at point (c)
- C. Reaction is spontaneous at (a) and non-spontaneous at (c)
- D. Reaction is non-spontaneous at (a) and (b)

Official Ans. by NTA (2)

Ans. (2)

Sol. For, Spontaneous process dG<0

For, Equilibrium dG = 0

For, Nonspontaneous process dG > 0

- ∴ A Wrong
 - B Correct
 - C Correct
 - D Wrong

84. Mass of Urea (NH₂CONH₂) required to be dissolved in 1000 g of water to reduce the vapour pressure of water by 25% is.....g. (Nearest integer)

Given: Molar mass of N. C. O and H are 14. 12. 16 and 1 2 mol⁻¹ respectively.

Official Ans. by NTA (1111)

Ans. (1111)

Sol.
$$\frac{P^0 - P_s}{P_s} = \frac{n_{solute}}{n_{solvent}} = \frac{\frac{x}{60}}{\frac{1000}{18}} = \frac{P^0 - 0.75P^0}{0.75P^0}$$

$$\Rightarrow x = \frac{10000}{9} = 1111 \, gm$$

Ans: 1111

85. The value of log K for the reaction A≒ B at 298 K is (Nearest integer)

Given: $\Delta H^0 = -54.07 \text{ kJ mol}^{-1}$

$$\Delta S^{\circ} = 10 \text{ JK}^{-1} \text{ mol}^{-1}$$

 $(Take 2.303 \times 8.314 \times 298 = 5705)$

Official Ans. by NTA (10)

Ans. (10)

Sol.
$$\Delta G^0 = \Delta H^0 - T\Delta S$$

$$\Rightarrow \Delta G^0 = (-54070 - 10 \times 298)$$

Also, $\Delta G^0 = (-2.303 \text{ RT log K})$

$$\Rightarrow (-54070 - 10 \times 298)$$

$$= (-2.303 \times 8.134 \times 298 \log K)$$

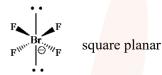
 $\Rightarrow \log K = 10$ Ans: 10

86. The number of species from the following which have square pyramidal structure is

PF₅, BrF₄⁻, IF₅; BrF₅, XeOF₄, ICl₄⁻

Official Ans. by NTA (3)

Ans. (3)

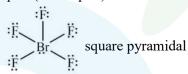

Sol. PF_5 sp^3d (0 lone pair)

Trigonal bipyramidal

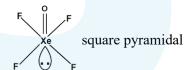


 BrF_4^- ,

sp³d² (2 lone pair)



 IF_5 sp^3d^2 (1 lone pair)


BrF5

sp³d² (1 lone pair)

XeOF₄

sp³d² (1 lone pair)

ICl₄

sp³d² (2 lone pair)

87. Number of ambidentate ligands in a representative metal complex $[M(en)(SCN)_4]$ is

[en = ethylenediamine]

Official Ans. by NTA (4)

Ans. (4)

Sol. $[M(en)(SCN)_4]$

$$S = C = N^-$$

Ambidentate ligand means two ligand site, so ambidentate ligand is SCN⁻.

Ans: 4

For the adsorption of hydrogen on platinum, the 88. activation energy is 30 kJ mol⁻¹ and for the adsorption of hydrogen on nickel, the activation energy is 41.4 kJ mol⁻¹. The logarithm of the ratio of the rates of chemisorption on equal areas of the metals at 300 K is (Nearest integer)

Given: $\ln 10 = 2.3$ $R = 8.3 \text{ JK}^{-1} \text{ mol}^{-1}$

Official Ans. by NTA (2)

Ans. (2)

 $\textbf{Sol.} \quad K = Ae^{-\frac{E_a}{RT}}$

$$\boldsymbol{K}_{1} = \boldsymbol{A}\boldsymbol{e}^{-\frac{\left(\boldsymbol{E}_{a}\right)_{1}}{RT}}$$

$$\boldsymbol{K}_2 = \boldsymbol{A}\boldsymbol{e}^{-\frac{\left(\boldsymbol{E}_a\right)_2}{RT}}$$

$$\frac{K_{_{2}}}{K_{_{1}}}=e^{\frac{\left(E_{_{a}}\right)_{_{1}}-\left(E_{_{a}}\right)_{_{2}}}{RT}}$$

$$log \frac{K_2}{K_1} = \frac{(E_a)_1 - (E_a)_2}{2.3 RT}$$

$$=\frac{(41.4-30)\times1000}{2.3\times8.3\times300}=1.99$$

Ans: 2

89. If 5 moles of BaCl2 is mixed with 2 moles of Na₃PO₄, the maximum number of moles of Ba₃(PO₄)₂ formed is.....

(Nearest integer)

Official Ans. by NTA (1)

Ans. (1)

 $3BaCl_2 + 2Na_3PO_4 \rightarrow Ba_3 (PO_4)_2 + 6NaCl$ Sol.

Na₃PO₄ is limiting reagent.

2 mole Na₃PO₄ gives 1 mole of Ba₃(PO₄)₂

Ans: 1

90. In ammonium-phosphomolybdate, the oxidation state of Mo is +.....

Official Ans. by NTA (6)

Ans. (6)

Sol. (NH₄)₃ PO₄.12MoO₃

Let X = oxidation state of Mo in MoO₃

$$X + (-2) \times 3 = 0$$

$$X = +6$$

Ans: 6