FINAL JEE-MAIN EXAMINATION - APRIL, 2023
(Held On Wednesday 12 ${ }^{\text {th }}$ April, 2023)
TIME : 9: 00 AM to 12: 00 NOON

## MATHEMATICS

## SECTION-A

1. The number of five digit numbers, greater than 40000 and divisible by 5 , which can be formed using the digits $0,1,3,5,7$ and 9 without repetition, is equal to
(1) 120
(2) 132
(3) 72
(4) 96

Official Ans. by NTA (1)
Ans. (1)
$5 \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad 0$
$\begin{array}{lllll}7 & x & x & x & 0\end{array}$
Sol. 7 x $\quad \mathrm{x}$ x 5
9 x $\quad \mathrm{x}$ x 0
9 x $x$ x 5
So Required numbers $=5 \times{ }^{4} \mathrm{P}_{3}=120$
2. Let $\alpha, \beta$ be the roots of the quadratic equation $x^{2}+\sqrt{6} x+3=0$. Then $\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}$ is equal to
(1) 729
(2) 72
(3) 81
(4) 9

## Official Ans. by NTA (3)

Ans. (3)
Sol. $\alpha, \beta=\frac{-\sqrt{6} \pm \sqrt{6-12}}{2}=\frac{-\sqrt{6} \pm \sqrt{6} \text { i }}{2}$

$$
=\sqrt{3} e^{ \pm \frac{3 \pi i}{4}}
$$

Required expression
$=\frac{(\sqrt{3})^{23}\left(2 \cos \frac{69 \pi}{4}\right)+(\sqrt{3})^{14}\left(2 \cos \frac{42 \pi}{4}\right)}{(\sqrt{3})^{15}\left(2 \cos \frac{45 \pi}{4}\right)+(\sqrt{3})^{10}\left(2 \cos \frac{30 \pi}{4}\right)}$
$(\sqrt{3})^{8}=81$

## TEST PAPER WITH SOLUTION

3. Let $<a_{n}>$ be $a$ sequence such that
$a_{1}+a_{2}+\ldots+a_{n}=\frac{n^{2}+3 n}{(n+1)(n+2)}$. If
$28 \sum_{\mathrm{k}=1}^{10} \frac{1}{\mathrm{a}_{\mathrm{k}}}=\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \ldots \mathrm{p}_{\mathrm{m}}$, where $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots . . \mathrm{pm}$ are
the first m prime numbers, then m is equal to
(1) 7
(2) 6
(3) 5
(4) 8

## Official Ans. by NTA (2)

Ans. (2)
Sol. $\quad a_{n}=S_{n}-S_{n-1}=\frac{n^{2}+3 n}{(n+1)(n+2)}-\frac{(n-1)(n+2)}{n(n+1)}$

$$
\begin{aligned}
& \Rightarrow \mathrm{a}_{\mathrm{n}}=\frac{4}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)} \\
& \Rightarrow 28 \sum_{\mathrm{k}=1}^{10} \frac{1}{\mathrm{a}_{\mathrm{k}}}=28 \sum_{\mathrm{k}=1}^{10} \frac{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)}{4}
\end{aligned}
$$

$$
=\frac{7}{4} \sum_{\mathrm{k}=1}^{10}(\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)-(\mathrm{k}-1) \mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2))
$$

$$
=\frac{7}{4} \cdot 10 \cdot 11 \cdot 12 \cdot 13=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13
$$

So $m=6$
4. Let the lines $l_{1}: \frac{\mathrm{x}+5}{3}=\frac{\mathrm{y}+4}{1}=\frac{\mathrm{z}-\alpha}{-2}$ and $l_{2}: 3 \mathrm{x}+$ $2 y+z-2=0=x-3 y+2 z-13$ be coplanar. If the point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ on $l_{1}$ is nearest to the point $\mathrm{Q}(-$ $4,-3,2)$, then $|a|+|b|+|c|$ is equal to
(1) 12
(2) 14
(3) 10
(4) 8

Official Ans. by NTA (3)
Ans. (3)

Sol. $(3 x+2 y+z-2)+\mu(x-3 y+2 z-13)=0$
$3(3+\mu)+1 .(2-3 \mu)-2(1+2 \mu)=0$
$9-4 \mu=0$
$\mu=\frac{9}{4}$
$4(-15-8+\alpha-2)+9(-5+12+2 \alpha-13)=0$
$-100+4 \alpha-54+18 \alpha=0$
$\Rightarrow \alpha=7$
Let $\mathrm{P} \equiv(3 \lambda-5, \lambda-4,-2 \lambda+7)$
Direction ratio of $\mathrm{PQ}(3 \lambda-1, \lambda-1,-2 \lambda+5)$
But PQ $\perp \ell_{1}$
$\Rightarrow 3(3 \lambda-1)+1 .(\lambda-1)-2(-2 \lambda+5)=0$
$\Rightarrow \lambda=1$
$P(-2,-3,5) \Rightarrow|a|+|b|+|c|=10$
5. Let $\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$ and S be four points on the ellipse $9 x^{2}+4 y^{2}=36$. Let PQ and RS be mutually perpendicular and pass through the origin. If $\frac{1}{(P Q)^{2}}+\frac{1}{(R S)^{2}}=\frac{p}{q}$, where $p$ and $q$ are coprime, then $\mathrm{p}+\mathrm{q}$ is equal to
(1) 143
(2) 137
(3) 157
(4) 147

Official Ans. by NTA (3)
Ans. (3)
Sol. Let $\mathrm{R}(2 \cos \theta, 3 \sin \theta)$
as $\mathrm{OP} \perp \mathrm{OR}$
so $\frac{3 \sin \theta}{2 \cos \theta} \times \frac{\frac{6}{\sqrt{7}}}{\frac{2 \sqrt{3}}{\sqrt{7}}}=-1$
$\Rightarrow \tan \theta=\frac{-2}{3 \sqrt{3}}$
$\Rightarrow \mathrm{R}\left(\frac{-6 \sqrt{3}}{\sqrt{31}}, \frac{6}{\sqrt{31}}\right)$ or $\mathrm{R}\left(\frac{6 \sqrt{3}}{\sqrt{31}}, \frac{-6}{\sqrt{31}}\right)$
Now $=\frac{1}{(\mathrm{PQ})^{2}}+\frac{1}{(\mathrm{RS})^{2}}=\frac{1}{4}\left(\frac{1}{(\mathrm{OP})^{2}}+\frac{1}{(\mathrm{OR})^{2}}\right)$
$=\frac{1}{4}\left(\frac{1}{\frac{48}{7}}+\frac{1}{\frac{144}{31}}\right)=\frac{1}{4}\left(\frac{7}{48}+\frac{31}{144}\right)$
$=\frac{13}{144}$
$\Rightarrow \mathrm{p}+\mathrm{q}=157$
6. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three distinct real numbers, none equal to one. If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c \hat{k}$ are coplanar, then $\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}$ is equal to
(1) 1
(2) -1
(3) -2
(4) 2

Official Ans. by NTA (1)
Ans. (1)
Sol. $\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$
$\left|\begin{array}{lll}\mathrm{a} & 1-\mathrm{a} & 1-\mathrm{a} \\ 1 & \mathrm{~b}-1 & 0 \\ 1 & 0 & \mathrm{c}-1\end{array}\right|=0$
$a(b-1)(c-1)-(1-a)(c-1)+(1-a)(1-b)=0$
$a(1-b)(1-c)+(1-a)(1-c)+(1-a)(1-b)=0$
$\frac{a}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=0$
$\Rightarrow-1+\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=0$
$\Rightarrow \frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=1$
7. If the local maximum value of the function $f(x)=\left(\frac{\sqrt{3 e}}{2 \sin x}\right)^{\sin ^{2} x}, \quad x \in\left(0, \frac{\pi}{2}\right), \quad$ is $\frac{k}{e}$, then $\left(\frac{\mathrm{k}}{\mathrm{e}}\right)^{8}+\frac{\mathrm{k}^{8}}{\mathrm{e}^{5}}+\mathrm{k}^{8}$ is equal to
(1) $e^{5}+e^{6}+e^{11}$
(2) $e^{3}+e^{5}+e^{11}$
(3) $e^{3}+e^{6}+e^{11}$
(4) $e^{3}+e^{6}+e^{10}$

Official Ans. by NTA (3)
Ans. (3)

Sol. Let $\mathrm{y}=\left(\frac{\sqrt{3 \mathrm{e}}}{2 \sin \mathrm{x}}\right)^{\sin ^{2} \mathrm{x}}$
$\ln y=\sin ^{2} x \cdot \ln \left(\frac{\sqrt{3 e}}{2 \sin x}\right)$
$\frac{1}{y} y^{\prime}=\ln \left(\frac{\sqrt{3 e}}{2 \sin x}\right) 2 \sin x \cos x+\sin ^{2} x \frac{2 \sin x}{\sqrt{3 e}} \frac{\sqrt{3 e}}{2}(-\operatorname{cosec} x \cot x)$
$\frac{d y}{d x}=0 \Rightarrow \ln \left(\frac{\sqrt{3 e}}{2 \sin x}\right) 2 \sin x \cos x-\sin x \cos x=0$
$\Rightarrow \sin x \cos x\left[2 \ln \left(\frac{\sqrt{3 e}}{2 \sin x}\right)-1\right]=0$
$\Rightarrow \ln \left(\frac{3 e}{4 \sin ^{2} x}\right)=1 \Rightarrow \frac{3 e}{4 \sin ^{2} x}=e \Rightarrow \sin ^{2} x=\frac{3}{4}$
$\Rightarrow \sin x=\frac{\sqrt{3}}{2} \quad\left(\right.$ as $\left.x \in\left(0, \frac{\pi}{2}\right)\right)$
$\Rightarrow$ local max value $=\left(\frac{\sqrt{3 \mathrm{e}}}{\sqrt{3}}\right)^{3 / 4}=\mathrm{e}^{3 / 8}=\frac{\mathrm{k}}{\mathrm{e}}$
$\Rightarrow \mathrm{k}^{8}=\mathrm{e}^{11}$
$\Rightarrow\left(\frac{\mathrm{k}}{\mathrm{e}}\right)^{8}+\frac{\mathrm{k}^{8}}{\mathrm{e}^{5}}+\mathrm{k}^{8}=\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{11}$
8. Let $D$ be the domain of the function $f(x)=\sin ^{-1}$ $\left(\log _{3 x}\left(\frac{6+2 \log _{3} x}{-5 x}\right)\right)$. If the range of the function $\mathrm{g}: \mathrm{D} \rightarrow \mathrm{R}$ defined by $\mathrm{g}(\mathrm{x})=\mathrm{x}-[\mathrm{x}]$, ([x] is the greatest integer function), is ( $\alpha, \beta$ ), then $\alpha^{2}+\frac{5}{\beta}$ is equal to
(1) 46
(2) 135
(3) 136
(4) 45

## Official Ans. by NTA (2)

Ans. (Bonus)
Sol. $\frac{6+2 \log _{3} x}{-5 x}>0 \& x>0 \& x \neq \frac{1}{3}$
this gives $x \in\left(0, \frac{1}{27}\right)$.
$-1 \leq \log _{3 x}\left(\frac{6+2 \log _{3} x}{-5 x}\right) \leq 1$
$3 \mathrm{x} \leq \frac{6+2 \log _{3} \mathrm{x}}{-5 \mathrm{x}} \leq \frac{1}{3 \mathrm{x}}$

$15 x^{2}+6+2 \log _{3} x \geq 0 \quad 6+2 \log _{3} x+\frac{5}{3} \geq 0$
$x \in\left(0, \frac{1}{27}\right) \ldots$ (2) $\quad x \geq 3^{-\frac{23}{6}}$
from (1), (2) \& (3)
$\mathrm{x} \in\left[3^{-\frac{23}{6}}, \frac{1}{27}\right)$
$\therefore \alpha$ is small positive quantity
$\& \beta=\frac{1}{27}$
$\therefore \alpha^{2}+\frac{5}{\beta}$ is just greater than 135
Ans. (Bonus)
9. Let $y=y(x), y>0$, be a solution curve of the differential equation $\left(1+x^{2}\right) d y=y(x-y) d x$.
If $y(0)=1$ and $y(2 \sqrt{2})=\beta$, then
(1) $\mathrm{e}^{3 \mathrm{~B}^{-1}}=\mathrm{e}(3+2 \sqrt{2})$
(2) $\mathrm{e}^{\beta^{-1}}=\mathrm{e}^{-2}(5+\sqrt{2})$
(3) $\mathrm{e}^{\beta^{-1}}=\mathrm{e}^{-2}(3+2 \sqrt{2})$
(4) $e^{3 \beta^{-1}}=e(5+\sqrt{2})$

Official Ans. by NTA (1)

## Ans. (1)

Sol. $\quad\left(1+x^{2}\right) d y=y(x-y) d x$
$y(0)=1 . y(2 \sqrt{2})=\beta$
$\frac{d y}{d x}=\frac{y x-y^{2}}{1+x^{2}}$
$\frac{d y}{d x}+y\left(\frac{-x}{1+x^{2}}\right)=\left(\frac{-1}{1+x^{2}}\right) y^{2}$
$\frac{1}{\mathrm{y}^{2}} \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{1}{\mathrm{y}}\left(\frac{-\mathrm{x}}{1+\mathrm{x}^{2}}\right)=\frac{-1}{1+\mathrm{x}^{2}}$
put $\frac{1}{\mathrm{y}}=\mathrm{t}$ then $\frac{-1}{\mathrm{y}^{2}} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}$
$\frac{\mathrm{dt}}{\mathrm{dx}}+\mathrm{t} \frac{\mathrm{x}}{1+\mathrm{x}^{2}}=\frac{1}{1+\mathrm{x}^{2}}$
I.F $=\mathrm{e}^{\int \frac{\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}}=\mathrm{e}^{\frac{1}{2} \ln \left(1+\mathrm{x}^{2}\right)}=\sqrt{1+\mathrm{x}^{2}}$
$\mathrm{t} \sqrt{1+\mathrm{x}^{2}}=\int \frac{1}{\sqrt{1+\mathrm{x}^{2}}} \mathrm{dx}$
$\frac{\sqrt{1+x^{2}}}{y}=\ln \left(x+\sqrt{x^{2}+1}\right)+c$
$\mathrm{y}(0)=1 \quad \Rightarrow \mathrm{c}=1$
$\Rightarrow \sqrt{1+\mathrm{x}^{2}}=\mathrm{y} \ln \left(\mathrm{e}\left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)\right)$
$\beta=\frac{3}{\ln (\mathrm{e}(3+2 \sqrt{2}))} \Rightarrow \frac{3}{\beta}=\ln (\mathrm{e}(3+2 \sqrt{2}))$
$\mathrm{e}^{\frac{3}{\beta}}=\mathrm{e}(3+2 \sqrt{2})$
10. Among the two statements
(S1) : $(\mathrm{p} \Rightarrow \mathrm{q}) \wedge(\mathrm{q} \wedge(\sim \mathrm{q}))$ is a contradiction and
$(S 2):(p \wedge q) \vee((\sim p) \wedge q) \vee$
$(p \wedge(\sim q)) \vee((\sim p) \wedge(\sim q))$ is a tautology
(1) only (S2) is true
(2) only (S1) is true
(3) both are false.
(4) both are true

Official Ans. by NTA (4)

## Ans. (4)

Sol. $\quad S_{1}:(p \rightarrow q) \wedge(p \wedge(\sim q))$

| p | q | $\mathrm{p} \rightarrow \mathrm{q}$ | $\mathrm{p} \wedge(\sim \mathrm{q})$ | S 1 |
| :---: | :--- | :--- | :--- | :--- |
| T | T | T | F | F |
| T | F | F | T | F |
| F | T | T | F | F |
| F | F | T | F | F |

$\Rightarrow S_{1}$ is Contradiction
$\mathrm{S}_{2}$

| p | q | $\mathrm{p} \wedge \mathrm{q}$ | $(\sim \mathrm{p} \wedge \mathrm{q})$ | $(\mathrm{p} \wedge \sim \mathrm{q})$ | $(\sim \mathrm{p}) \wedge(\sim \mathrm{q})$ | $\mathrm{S}_{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T | T | T | F | F | F | T |
| T | F | F | F | T | F | T |
| F | T | F | T | F | F | T |
| F | F | F | F | F | T | T |

$\mathrm{S}_{2}$ is tautology
11. Let $\lambda \in \mathrm{Z}, \overrightarrow{\mathrm{a}}=\lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$. Let $\overrightarrow{\mathrm{c}}$ be a vector such that
$(\vec{a}+\vec{b}+\vec{c}) \times \vec{c}=\overrightarrow{0}, \vec{a} \cdot \vec{c}=-17$ and $\vec{b} \cdot \vec{c}=-20$. Then $|\overrightarrow{\mathrm{c}} \times(\lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})|^{2}$ is equal to
(1) 62
(2) 46
(3) 53
(4) 49

Official Ans. by NTA (2)
Ans. (2)
Sol. $(\vec{a}+\vec{b}+\vec{c}) \times \vec{c}=0$
$(\vec{a}+\vec{b}) \times \vec{c}=0$
$\overrightarrow{\mathrm{c}}=\alpha(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})=\alpha(\lambda+3) \hat{i}+\alpha \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{c}}=-20 \Rightarrow 3 \alpha(\lambda+3)+2 \alpha=-20$
$\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}=-17 \Rightarrow \alpha \lambda(\lambda+3)-\alpha=-17$
$\Rightarrow \alpha(3 \lambda+9+2)=-20$
$\alpha\left(\lambda^{2}+3 \lambda-1\right)=-17$
$17(3 \lambda+11)=20\left(\lambda^{2}+3 \lambda-1\right)$
$20 \lambda^{2}+9 \lambda-207=0$
$\lambda=3 \quad(\lambda \in Z)$
$\Rightarrow \alpha=-1 \quad \Rightarrow \overrightarrow{\mathrm{c}}=-(6 \hat{\mathrm{i}}+\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{c}} \times(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
$=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ -6 & 0 & -1 \\ 3 & 1 & 1\end{array}\right|=\hat{i}+3 \hat{j}-6 \hat{k}$
$|\vec{v}|^{2}=(-1)^{2}+3^{2}+6^{2}=46$
12. The sum, of the coefficients of the first 50 terms in the binomial expansion of $(1-x)^{100}$, is equal to
(1) $-{ }^{101} \mathrm{C}_{50}$
(2) ${ }^{99} \mathrm{C}_{49}$
(3) $-{ }^{99} \mathrm{C}_{49}$
(4) ${ }^{101} \mathrm{C}_{50}$

Official Ans. by NTA (3)
Ans. (3)

Sol. $(1-x)^{100}=C o-C_{1} x+C_{2} x^{2}-$
$\mathrm{C}_{3} \mathrm{x}^{3}+\ldots . \mathrm{C}_{99} \mathrm{X}^{99}+\mathrm{C}_{100} \mathrm{x}^{100}$
$\Rightarrow \mathrm{Co}-\mathrm{C}_{1}+\mathrm{C}_{2}-\mathrm{C}_{3}+\ldots . .-\mathrm{C}_{99}+\mathrm{C}_{100}=0$
$2\left(\mathrm{Co}-\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots \ldots-\mathrm{C}_{9}\right)+\mathrm{C}_{50}=0$
$\mathrm{C}_{0}-\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots . \mathrm{C}_{99}=-\frac{1}{2}{ }^{100} \mathrm{C}_{50}$
$-\frac{1}{2} \frac{100!}{50!50!}=-\frac{1}{2} \times \frac{100 \times 99!}{50!50!}=-{ }^{99} \mathrm{C}_{49}$
13. The area of the region enclosed by the curve $y=x^{3}$ and its tangent at the point $(-1,-1)$ is
(1) $\frac{27}{4}$
(2) $\frac{19}{4}$
(3) $\frac{23}{4}$
(4) $\frac{31}{4}$

Official Ans. by NTA (1)
Ans. (1)
Sol. equation of tangent: $y+1=3(x+1)$
i.e. $y=3 x+2$

Point of intersection with curve $(2,8)$
So Area $=\int_{-1}^{2}\left((3 x+2)-x^{3}\right) d x=\frac{27}{4}$
14. Let $\mathrm{A}=\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]$. If $\mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right] \mathrm{A}\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$, then the sum of all the elements of the matrix $\sum_{n=1}^{50} B^{n}$ is equal to
(1) 100
(2) 50
(3) 75
(4) 125

Official Ans. by NTA (1)
Ans. (1)

Sol. Let $\mathrm{C}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right], \mathrm{D}=\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$
$\mathrm{DC}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\mathrm{I}$
$B=C A D$
$\mathrm{B}^{\mathrm{n}}=\underbrace{(\mathrm{CAD})(\mathrm{CAD})(\mathrm{CAD}) \ldots(\mathrm{CAD})}_{\mathrm{n} \text {-times }}$
$\Rightarrow \mathrm{B}^{\mathrm{n}}=\mathrm{CA}^{\mathrm{n}} \mathrm{D}$
$\mathrm{A}^{2}=\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & \frac{2}{51} \\ 0 & 1\end{array}\right]$
$\mathrm{A}^{3}=\left[\begin{array}{cc}1 & \frac{3}{51} \\ 0 & 1\end{array}\right]$
similarly $A^{n}=\left[\begin{array}{cc}1 & \frac{n}{51} \\ 0 & 1\end{array}\right]$
$\mathrm{B}^{\mathrm{n}}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}1 & \frac{\mathrm{n}}{51} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{cc}1 & \frac{\mathrm{n}}{51}+2 \\ -1 & -\frac{\mathrm{n}}{51}-1\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{cc}\frac{\mathrm{n}}{51}+1 & \frac{\mathrm{n}}{51} \\ -\frac{\mathrm{n}}{51} & 1-\frac{\mathrm{n}}{51}\end{array}\right]$
$\sum_{\mathrm{n}=1}^{50} \mathrm{~B}^{\mathrm{n}}=\left[\begin{array}{cc}25+50 & 25 \\ -25 & -25+50\end{array}\right]=\left[\begin{array}{cc}75 & 25 \\ -25 & 25\end{array}\right]$
Sum of the elements $=100$
15. Let the plane $P: 4 x-y+z=10$ be rotated by an angle $\frac{\pi}{2}$ about its line of intersection with the plane $x+y-z=4$. If $\alpha$ is the distance of the point $(2,3,-4)$ from the new position of the plane $P$, then $35 \alpha$ is
(1) 90
(2) 85
(3) 105
(4) 126

Official Ans. by NTA (4)
Ans. (4)

Sol. Let equation in new position is
$(4 \mathrm{x}-\mathrm{y}+\mathrm{z}-10)+\lambda(\mathrm{x}+\mathrm{y}-\mathrm{z}-4)=0$
$4(4+\lambda)-1 .(-1+\lambda)+1 .(1-\lambda)=0$
$\Rightarrow \lambda=-9$
So equation in new position is
$-5 x-10 y+10 z+26=0$
$\Rightarrow \alpha=\frac{54}{15}$
16. If $\frac{1}{n+1}{ }^{n} C_{n}+\frac{1}{n}{ }^{n} C_{n-1}$
$+\ldots+\frac{1}{2}{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{0}=\frac{1023}{10}$ then n is equal to
(1) 6
(2) 9
(3) 8
(4) 7

## Official Ans. by NTA (2)

Ans. (2)
Sol. $\quad \sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}}{\mathrm{r}+1}=\frac{1}{\mathrm{n}+1} \sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}$
$=\frac{1}{\mathrm{n}+1}\left(2^{\mathrm{n}+1}-1\right)=\frac{1023}{10}$
$\mathrm{n}+1=10 \Rightarrow \mathrm{n}=9$
17. Let C be the circle in the complex plane with centre $\mathrm{z}_{0}=\frac{1}{2}(1+3 \mathrm{i})$ and radius $\mathrm{r}=1$. Let $\mathrm{z}_{1}=1+$ $i$ and the complex number $z_{2}$ be outside the circle C such that $\left|\mathrm{z}_{1}-\mathrm{z}_{0}\right|\left|\mathrm{z}_{2}-\mathrm{z}_{0}\right|=1$. If $\mathrm{z}_{0}, \mathrm{z}_{1}$ and $\mathrm{z}_{2}$ are collinear, then the smaller value of $\left|z_{2}\right|^{2}$ is equal to
(1) $\frac{13}{2}$
(2) $\frac{5}{2}$
(3) $\frac{3}{2}$
(4) $\frac{7}{2}$

Official Ans. by NTA (2)
Ans. (2)

Sol. $\left|z_{1}-z_{0}\right|=\left|\frac{1-\mathrm{i}}{2}\right|=\frac{1}{\sqrt{2}}$
$\Rightarrow\left|\mathrm{z}_{2}-\mathrm{z}_{\mathrm{o}}\right|=\sqrt{2}$; centre $\left(\frac{1}{2}, \frac{3}{2}\right)$
$\mathrm{Z}_{\mathrm{o}}\left(\frac{1}{2}, \frac{3}{2}\right)$ and $\mathrm{z}_{1}(1,1)$

$\tan \theta=-1 \Rightarrow \theta=135^{\circ}$
$\mathrm{z}_{2}\left(\frac{1}{2}+\sqrt{2} \cos 135^{\circ}, \frac{3}{2}+\sqrt{2} \sin 135^{\circ}\right)$
or
$\left(\frac{1}{2}-\sqrt{2} \cos 135^{\circ}, \frac{3}{2}-\sqrt{2} \sin 135^{\circ}\right)$
$\Rightarrow \mathrm{Z}_{2}\left(-\frac{1}{2}, \frac{5}{2}\right)$ or $\mathrm{z}_{2}\left(\frac{3}{2}, \frac{1}{2}\right)$
$\Rightarrow\left|\mathrm{z}_{2}\right|^{2}=\frac{26}{4}, \frac{5}{2}$
$\Rightarrow\left|\mathrm{z}_{2}\right|_{\text {min }}^{2}=\frac{5}{2}$
18. If the point $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ lies on the curve traced by the mid-points of the line segments of the lines $x$ $\cos \theta+\mathrm{y} \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ between the coordinates axes, then $\alpha$ is equal to
(1) 7
(2) -7
(3) $-7 \sqrt{3}$
(4) $7 \sqrt{3}$

Official Ans. by NTA (1)
Ans. (1)

Sol. $\operatorname{pt}\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$


$$
\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=7
$$

$x-$ intercept $=\frac{7}{\cos \theta}$
$y-$ intercept $=\frac{7}{\sin \theta}$
$\mathrm{A}:\left(\frac{7}{\cos \theta}, 0\right)$
$B:\left(0, \frac{7}{\sin \theta}\right)$

Locus of mid pt M: (h, k)
$\mathrm{h}=\frac{7}{2 \cos \theta}, \mathrm{k}=\frac{7}{2 \sin \theta}$
$\frac{7}{2 \sin \theta}=\frac{7 \sqrt{3}}{3} \Rightarrow \sin \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{\pi}{3}$
$\alpha=\frac{7}{2 \cos \theta}=7$
19. Two dice $A$ and $B$ are rolled, Let the numbers obtained on $A$ and $B$ be $\alpha$ and $\beta$ respectively. If the variance of $\alpha-\beta$ is $\frac{p}{q}$, where $p$ and $q$ are coprime, then the sum of the positive divisors of p is equal to
(1) 36
(2) 48
(3) 31
(4) 72

Official Ans. by NTA (2)
Ans. (2)

Sol.

| $\boldsymbol{\alpha}-\boldsymbol{\beta}$ | Case | $\mathbf{P}$ |
| :---: | :--- | :---: |
| 5 | $(6,1)$ | $1 / 36$ |
| 4 | $(6,2)(5,1)$ | $2 / 36$ |
| 3 | $(6,3)(5,2)(4,1)$ | $3 / 36$ |
| 2 | $(6,4)(5,3)(4,3)(3,1)$ | $4 / 36$ |
| 1 | $(6,5)(5,4)(4,3)(3,2)(2,1)$ | $5 / 36$ |
| 0 | $(6,6)(5,5) \ldots \ldots(1,1)$ | $6 / 36$ |
| -1 | ------- | $5 / 36$ |
| -2 | ----- | $4 / 36$ |
| -3 | $-\quad$ | $3 / 36$ |
| -4 | $(2,6)(1,5)$ | $2 / 36$ |
| -5 | $(1,6)$ | $1 / 36$ |

$\sum\left(x^{2}\right)=\sum \mathrm{x}^{2} \mathrm{P}(\mathrm{x})=2\left[\frac{25}{36}+\frac{32}{36}+\frac{27}{36}+\frac{16}{36}+\frac{5}{36}\right]$
$=\frac{105}{18}=\frac{35}{6}$
$\mu=\sum(\mathrm{x})=0$ as data is symmetric
$\sigma^{2}=\sum\left(\mathrm{x}^{2}\right)=\sum \mathrm{x}^{2} \mathrm{P}(\mathrm{x})=\frac{35}{6} \quad \mathrm{P}=35=5 \times 7$
Sum of divisors $=\left(5^{0}+5^{1}\right)\left(7^{0}+7^{1}\right)=6 \times 8=48$
20. In a triangle ABC , if $\cos \mathrm{A}+2 \cos \mathrm{~B}+\cos \mathrm{C}=2$ and the lengths of the sides opposite to the angles $A$ and $C$ are 3 and 7 respectively, then $\cos A-\cos$

C is equal to
(1) $\frac{3}{7}$
(2) $\frac{9}{7}$
(3) $\frac{10}{7}$
(4) $\frac{5}{7}$

Official Ans. by NTA (3)
Ans. (3)

Sol. $\quad \cos \mathrm{A}+\cos \mathrm{C}=2(1-\cos \mathrm{B})$
$2 \cos \frac{\mathrm{~A}+\mathrm{C}}{2} \cos \frac{\mathrm{~A}-\mathrm{C}}{2}=4 \sin ^{2} \mathrm{~B} / 2$
as $\cos \left(\frac{A+C}{2}\right)=\sin \frac{B}{2}$
so $\cos \frac{\mathrm{A}-\mathrm{C}}{2}=2 \sin \frac{\mathrm{~B}}{2}$
$2 \cos B / 2 \cos \frac{A-C}{2}=4 \sin B / 2 \cos B / 2$
$2 \sin \left(\frac{\mathrm{~A}+\mathrm{C}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{C}}{2}\right)=4 \sin \mathrm{~B} / 2 \cos \mathrm{~B} / 2$
$\operatorname{Sin} \mathrm{A}+\sin \mathrm{C}=2 \sin \mathrm{~B}$
$\mathrm{a}+\mathrm{c}=2 \mathrm{~b} \Rightarrow \mathrm{a}=3, \mathrm{c}=7, \mathrm{~b}=5$
$\cos \mathrm{A}-\cos \mathrm{C}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}-\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}$
$=\frac{25+49-9}{70}-\frac{9+25-49}{30}$
$=\frac{65}{70}+\frac{1}{2}=\frac{20}{14}=\frac{10}{7}$

## SECTION-B

21. A fair $\mathrm{n}(\mathrm{n}>1)$ faces die is rolled repeatedly until a number less than $n$ appears. If the mean of the number of tosses required is $\frac{n}{9}$, then $n$ is equal to
$\qquad$ .

Official Ans. by NTA (10.00)

## Ans. (10.00)

Sol. Mean $=1 . \frac{\mathrm{n}-1}{\mathrm{n}}+2 \frac{1}{\mathrm{n}}\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)+3\left(\frac{1}{\mathrm{n}}\right)^{2}\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)$ ...
$\frac{\mathrm{n}}{9}=\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)\left(1+2\left(\frac{1}{\mathrm{n}}\right)+3\left(\frac{1}{\mathrm{n}}\right)^{2} \ldots \ldots.\right)$
$\frac{\mathrm{n}}{9}=\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)\left(1-\frac{1}{\mathrm{n}}\right)^{-2}=\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right) \cdot \frac{\mathrm{n}^{2}}{(\mathrm{n}-1)^{2}}$
$\frac{\mathrm{n}}{9}=\frac{\mathrm{n}}{\mathrm{n}-1} \Rightarrow \mathrm{n}=10$
22. Let the digits $a, b, c$ be in A.P. Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in A.P. at least once. How many such numbers can be formed?

Official Ans. by NTA (1260)
Ans. (1260)
Sol. abc or cba
$---\frac{\mathrm{a}}{\mathrm{c}} \frac{\mathrm{b}}{\mathrm{b}} \frac{\mathrm{c}}{\mathrm{a}}---$
$\frac{{ }^{7} \mathrm{C}_{1} \times 2 \times 6!}{2!2!2!}=1260$
23. Let $[x]$ be the greatest integer $\leq x$. Then the number of points in the interval $(-2,1)$, where the function $f(x)=|[x]|+\sqrt{x-[x]}$ is discontinuous is $\qquad$ .

Official Ans. by NTA (2.00)
Ans. (2.00)
Sol. Need to check at doubtful points discont at $\mathrm{x} \in \mathrm{I}$ only

$$
\begin{aligned}
\text { at } \mathrm{x}=-1 & \Rightarrow \mathrm{f}\left(-1^{+}\right) \mathrm{y}+0=1 \\
& \Rightarrow \mathrm{f}\left(-1^{-}\right)=2+1=3 \\
\text { at } \mathrm{x}=0 & \Rightarrow \mathrm{f}\left(0^{+}\right)=0+0=0 \\
& \Rightarrow \mathrm{f}\left(0^{-}\right)=1+1=2 \\
\text { at } \mathrm{x}=1 & \Rightarrow \mathrm{f}\left(1^{+}\right)=1+0=1 \\
& \Rightarrow \mathrm{f}\left(1^{-}\right)=0+1=1
\end{aligned}
$$

discont. at two points
24. Let the plane $x+3 y-2 z+6=0$ meet the co-ordinate axes at the points $A, B, C$. If the orthocentre of the triangle ABC is $\left(\alpha, \beta, \frac{6}{7}\right)$, then $98(\alpha+\beta)^{2}$ is equal to $\qquad$ .

Official Ans. by NTA (288.00)
Ans. (288.00)

Sol. $\mathrm{A}(-6,0,0) \quad \mathrm{B}(0,-2,0) \quad \mathrm{C}=(0,0,3)$
$\overrightarrow{\mathrm{AB}}=6 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}, \quad \overrightarrow{\mathrm{BC}}=2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$,
$\overrightarrow{\mathrm{AC}}=6 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}$

$\overrightarrow{\mathrm{AH}} \cdot \overrightarrow{\mathrm{BC}}=0$
$\left(\alpha+6, \beta, \frac{6}{7}\right) \cdot(0,2,3)=0$
$\beta=\frac{-9}{7}$
$\overrightarrow{\mathrm{CH}} \cdot \overrightarrow{\mathrm{AB}}=0$
$\left(\alpha, \beta, \frac{-15}{7}\right) \cdot(6,-2,0)=0$
$6 \alpha-2 \beta=0$
$\alpha=\frac{-3}{7}$
$98(\alpha+\beta)^{2}=(98) \frac{(144)}{49}=288$
25. Let $I(x)=\int \sqrt{\frac{x+7}{x}} d x$ and $I(9)=12+7 \log _{e} 7$.

If I $(1)=\alpha+7 \log _{e}(1+2 \sqrt{2})$, then $\alpha^{4}$ is equal to $\qquad$ -.

Official Ans. by NTA (64.00)

## Ans. (64.00)

Sol. $\int \sqrt{\frac{x+7}{x}} d x$
Put $x=t^{2}$
$\mathrm{dx}=2 \mathrm{tdt}$
$\int 2 \sqrt{t^{2}+7} d t=2 \int \sqrt{t^{2}+\sqrt{7}^{2}} d t$
$\mathrm{I}(\mathrm{t})=2\left[\frac{\mathrm{t}}{2} \sqrt{\mathrm{t}^{2}+7}+\frac{7}{2} \ln \left|\mathrm{t}+\sqrt{\mathrm{t}^{2}+7}\right|\right]+\mathrm{C}$
$\mathrm{I}(\mathrm{x})=\sqrt{\mathrm{x}} \sqrt{\mathrm{x}+7}+7 \ln |\sqrt{\mathrm{x}}+\sqrt{\mathrm{x}+7}|+\mathrm{C}$
$\mathrm{I}(9)=12+7 \ln 7=12+7(\ln (3+4))+\mathrm{C}$
$\Rightarrow \mathrm{C}=0$
$I(x)=\sqrt{x} \sqrt{x+7}+7 \ln (\sqrt{x}+\sqrt{x+7})$
$I(1)=1 \sqrt{8}+7 \ln (1+\sqrt{8})$
$I(1)=\sqrt{8}+7 \ln (1+2 \sqrt{2})$
$\alpha=\sqrt{8}$
$\alpha^{4}=\left(8^{1 / 2}\right)^{4}$
$\alpha^{4}=8^{2}=64$
26. Let $D_{k}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$. If $\sum_{k=1}^{n}$
$D_{k}=96$, then $n$ is equal to
Official Ans. by NTA (6.00)
Ans. (6.00)
Sol. $D_{k}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{k}}=96 \Rightarrow
$$

$\left|\begin{array}{ccc}\sum_{\mathrm{k}=1}^{\mathrm{n}} 1 & \sum_{2 k} & \sum(2 \mathrm{k}-1) \\ \mathrm{n} & \mathrm{n}^{2}+\mathrm{n}+2 & \mathrm{n}^{2} \\ \mathrm{n} & \mathrm{n}^{2}+\mathrm{n} & \mathrm{n}^{2}+\mathrm{n}+2\end{array}\right|=96$
$\Rightarrow\left|\begin{array}{ccc}n & n^{2}+n & n^{2} \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|=96$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\left|\begin{array}{ccc}\mathrm{n} & \mathrm{n}^{2}+\mathrm{n} & \mathrm{n}^{2} \\ 0 & 2 & 0 \\ 0 & 0 & \mathrm{n}+2\end{array}\right|=96$
$\Rightarrow \mathrm{n}(2 \mathrm{n}+4)=96 \Rightarrow \mathrm{n}(\mathrm{n}+2)=48 \Rightarrow \mathrm{n}=6$
27. Let the positive numbers $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}$ and $\mathrm{a}_{5}$ be in a G.P. Let their mean and variance be $\frac{31}{10}$ and $\frac{m}{n}$ respectively, where $m$ and $n$ are co-prime. If the mean of their reciprocals is $\frac{31}{40}$ and $a_{3}+a_{4}+a_{5}=14$, then $m+n$ is equal to $\qquad$ .

Official Ans. by NTA (211)

Sol. Let $\frac{\mathrm{a}}{\mathrm{r}^{2}}, \frac{\mathrm{a}}{\mathrm{r}}, \mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$
Given $\frac{\mathrm{a}}{\mathrm{r}^{2}}+\frac{\mathrm{a}}{\mathrm{r}}+\mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}=5 \times \frac{31}{10}$
And $\frac{\mathrm{r}^{2}}{\mathrm{a}}+\frac{\mathrm{r}}{\mathrm{a}}+\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{ar}}+\frac{1}{\mathrm{ar}^{2}}=5 \times \frac{31}{40}$
(1) $\div(2) \mathrm{a}^{2}=4 \Rightarrow \mathrm{a}=2 \quad \therefore \mathrm{r}+\frac{1}{\mathrm{r}}=5 / 2 \quad(\mathrm{a} \neq-2)$
$\Rightarrow \mathrm{r}=2$
$\therefore$ Now $\frac{1}{2}, 1,2.4,8$
$\therefore \sigma^{2}=\frac{\sum_{x^{2}}}{N}-\left(\frac{\sum_{\mathrm{x}}}{\mathrm{N}}\right)^{2}$
$=\frac{186}{25}=\frac{\mathrm{M}}{\mathrm{N}} \Rightarrow 211=\mathrm{m}+\mathrm{n}$
28. The number of relations, on the set $\{1,2,3\}$ containing ( 1,2 ) and ( 2,3 ), which are reflexive and transitive but not symmetric, is $\qquad$
Official Ans. by NTA (4.00)
Ans. (3.00)

Sol. $A=\{1,2,3\}$
For Reflexive $(1,1)(2,2),(3,3) \in R$
For transitive : $(1,2)$ and $(2,3) \in R \Rightarrow(1,3) \in R$
Not symmetric : $(2,1)$ and $(3,2) \notin R$
$\mathrm{R}_{1}=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$
$\mathrm{R}_{2}=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)(2,1)\}$
$\mathrm{R}_{3}=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)(3,2)\}$
29. If $\int_{0}^{0.15}\left|100 x^{2}-1\right| d x=\frac{\mathrm{k}}{3000}$, then k is equal $-0.15$
to $\qquad$ .

## Official Ans. by NTA (575)

## Ans. (575)

Sol. $\int_{-0.15}^{0.15}\left|100 x^{2}-1\right| \mathrm{dx}=2 \int_{0}^{0.15}\left|100 \mathrm{x}^{2}-1\right| \mathrm{dx}$
Now $100 x^{2}-1=0 \Rightarrow x^{2}=\frac{1}{100} \Rightarrow x=0.1$
$I=2\left[\int_{0}^{0.1}\left(1-100 x^{2}\right) d x+\int_{0.1}^{0.15}\left(100 x^{2}-1\right) d x\right]$

$$
\begin{aligned}
\mathrm{I} & =2\left[\mathrm{x}-\frac{100}{3} \mathrm{x}^{3}\right]_{0}^{0.1}+2\left[\frac{100 \mathrm{x}^{3}}{3}-\mathrm{x}\right]_{0.1}^{0.15} \\
& =2\left[0.1-\frac{0.1}{3}\right]+2\left[\frac{0.3375}{3}-0.15-\frac{0.1}{3}+0.1\right] \\
& =2\left[0.2-\frac{0.2}{3}+0.1125-0.15\right] \\
& =2\left[\frac{5}{100}-\frac{2}{30}+\frac{1125}{10000}\right]=2\left(\frac{1500-2000+3375}{30000}\right) \\
& =\frac{575}{3000} \Rightarrow \mathrm{k}=575
\end{aligned}
$$

30. Two circles in the first quadrant of radii $r_{1}$ and $r_{2}$ touch the coordinate axes. Each of them cuts off an intercept of 2 units with the line $x+y=2$. Then $r_{1}^{2}+r_{2}^{2}-r_{1} r_{2}$ is equal to $\qquad$ .

Official Ans. by NTA (7.00)
Ans. (7.00)
Sol. Circle $(x-a)^{2}+(y-a)^{2}=a^{2}$
$x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$
intercept $=2$
$\Rightarrow 2 \sqrt{a^{2}-d^{2}}=2$


Where $\mathrm{d}=$ perpendicular distance of centre from line $\mathrm{x}+\mathrm{y}=2$
$\Rightarrow 2 \sqrt{a^{2}-\left(\frac{a+a-2}{\sqrt{2}}\right)^{2}}=2$
$\Rightarrow a^{2}-\frac{(2 a-2)^{2}}{2}=1 \Rightarrow 2 a^{2}-4 a^{2}+8 a-4=2$
$\Rightarrow 2 \mathrm{a}^{2}-8 \mathrm{a}+6=0 \Rightarrow \mathrm{a}^{2}-4 \mathrm{a}+3=0$
$\therefore \mathrm{r}_{1}+\mathrm{r}_{2}=4$ and $\mathrm{r}_{1} \mathrm{r}_{2}=3$
$\therefore \mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{r}_{1} \mathrm{r}_{2}=\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)^{2}-3 \mathrm{r}_{1} \mathrm{r}_{2}$
$=16-9=7$

