

FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

 H_{B}

(Held On Monday 30th January, 2023)

TIME: 9:00 AM to 12:00 NOON

CHEMSITRY

SECTION-A

- **31.** Which of the following compounds would give the following set of qualitative analysis?
 - (i) Fehling's Test: Positive
 - (ii) Na fusion extract upon treatment with sodium nitroprusside gives a blood red colour but not

$$(2)$$
 $\left(\begin{array}{c} N \\ O \end{array}\right)$ CHC

$$(3) \left[\bigvee_{S}^{N} - CHC \right]$$

$$(4) \overbrace{\bigcup_{S}^{N}}_{\text{CHO}}$$

Official Ans. by NTA (4)

Ans. (4)

- Sol. Aromatic aldehydes do not give Fehling's test..

 Both nitrogen and sulfur must be present to obtain blood red colour

 Sodium nitroprusside gives blood red colour with S & N.
- **32.** What is the correct order of acidity of the protons marked A–D in the given compounds?

$$\begin{array}{c} H_{D} CO_{2}H_{C} \\ \hline \\ H_{B} \end{array}$$

- (1) $H_C > H_D > H_B > H_A$
- (2) $H_C > H_D > H_A > H_B$
- $(3) H_D > H_C > H_B > H_A$
- (4) $H_C > H_A > H_D > H_B$

Official Ans. by NTA (2) Ans. (2)

Sol. acidity of an acid depends upon the stability of its conjugate base

TEST PAPER WITH SOLUTION

$$H_D$$
 CO_2
 H_A
 H_B
 CO_2H_C
 H_B
 CO_2H_C
 H_A
 CO_2H_C
 H_A

33. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Ketoses give Seliwanoff's test faster than Aldoses.

Reason (R): Ketoses undergo β -elimination followed by formation of furfural.

In the light of the above statements, choose the correct answer from the options given below:

- (1) (A) is false but (R) is true
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

Official Ans. by NTA (3)

Ans. (3)

Sol. Seliwanoff's test is a differentiating test for Ketose and aldose. This test relies on the principle that the keto hexose are more rapidly dehydrated to form 5-hydroxy methyl furfural when heated in acidic medium which on condensation with resorcinol, Cherry red or brown red coloured complex is formed rapidly indicating a positive test.

- **34.** In the extraction of copper, its sulphide ore is heated in a reverberatory furnace after mixing with silica to:
 - (1) separate CuO as CuSiO₃
 - (2) remove calcium as CaSiO₃
 - (3) decrease the temperature needed for roasting of Cu₂S
 - (4) remove FeO as FeSiO₃

Official Ans. by NTA (4)

Ans. (4)

Sol. The copper ore contains iron, it is mixed with silica before heating in reverberatory furnace. FeO slags off as FeSiO₃.

$$FeO + SiO_2 \longrightarrow FeSiO_3$$

- **35.** Amongst the following compounds, which one is an antacid?
 - (1) Ranitidine
- (2) Meprobamate
- (3) Terfenadine
- (4) Brompheniramine

Official Ans. by NTA (1)

Ans. (1)

- Sol. 1. Ranitidine: Antacid
 - 2. Meprobamate: Tranquilizer
 - 3. Terfenadine: Antihistamine
 - 4. Brompheniramine: Antihistamine
- **36.** The major products 'A' and 'B', respectively, are

$${}^{\mathsf{CH}_{3}} \\ \mathsf{'A'} \xleftarrow{\overset{\mathsf{Cold}}{\mathsf{H}_{2}\mathsf{SO}_{4}}} \mathsf{H}_{3}\mathsf{C} - \mathsf{C} = \mathsf{CH}_{2} \xrightarrow{\overset{\mathsf{H}_{2}\mathsf{SO}_{4}}{\mathsf{80}^{\circ}\,\mathsf{C}}} \mathsf{'B'}$$

$$(1) \, H_{3}C - \overset{CH_{3}}{\overset{}{\overset{}{\text{CH}_{3}}}} \, \overset{CH_{3}}{\overset{}{\overset{}{\text{CH}_{3}}}} \, \overset{CH_{3}}{\overset{}{\overset{}{\text{CH}_{3}}}} \\ \overset{C}{\text{OSO}_{3}}H \, \overset{C}{\overset{}{\text{CH}_{3}}} \, \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} \\ \overset{C}{\text{CH}_{3}} \, \overset{C}{\text{CH}_{3}} \, \overset{C}{\text{CH}_{3}} \\ \overset{C}{$$

$$(4) H_{3}C - \overset{CH_{3}}{\overset{}{\overset{}{\text{CH}_{3}}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} \\ \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} \\ \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} \\ \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} \\ \overset{CH_{3}}{\overset{}{\text{CH}_{3}}} & \overset{CH_{3}}{$$

Official Ans. by NTA (1)

Ans. (1)

Sol.

$$\begin{array}{c} CH_{3} \\ H_{3}C - C = CH_{2} \xrightarrow{H_{2}SO_{4} \atop 80^{\circ}C} CH_{3} - C = CH - C - CH_{3} \\ H^{\oplus} \\ CH_{3} \\ CH$$

37. Benzyl isocyanide can be obtained by :

$$(B) \overbrace{ \begin{array}{c} \text{CH}_2\text{NH}_2 \\ \hline \text{Aq. KOH} \end{array} }^{\text{CHCl}_3}$$

(C)
$$CH_{\overline{2}}$$
 NHCH₃ CHCl₃ Aq. KOH

Choose the correct answer from the options given below:

- (1) A and D
- (2) Only B
- (3) A and B
- (4) B and C

Official Ans. by NTA (3)

Ans. (3)

Sol.

$$CH_2$$
-NHCH₃

$$\xrightarrow{CHCl_3}$$
 No reaction

$$CH_2OTs$$
 KCN
 CH_2-CN

38. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): In expensive scientific instruments, silica gel is kept in watch-glasses or in semipermeable membrane bags.

Reason (R): Silica gel adsorbs moisture from air via adsorption, thus protects the instrument from water corrosion (rusting) and / or prevents malfunctioning. In the light of the above statements, choose the correct answer from the options given below:

- (1) (A) is false but (R) is true
- (2) (A) is true but (R) is false
- (3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

Official Ans. by NTA (3)

Ans. (3)

Sol. Silica gel prevents water corrosion (rusting) and instrument malfunction by adsorbing moisture from the air.

39. Match List I with List II

	List I	List II	
A	Cl CH ₃	I	Fitting
	$+CH_3Cl \xrightarrow{Na}$		reaction
В	Cl 	II	Wurtz
	$+2Na \rightarrow \langle \rangle $		Fitting
			reaction
С	$N_2^{\dagger}Cl^{-}$ Cl	III	Finkelstein
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		reaction
D	$C_2H_5Cl + NaI \rightarrow C_2H_5I +$	IV	Sandmeyer
	NaCl		reaction

- (1) A II, B I, C III, D IV
- (2) A III, B II, C IV, D I
- (3) A IV, B II, C III, D I
- (4) A II, B I, C IV, D III

Official Ans. by NTA (4)

Ans. (4)

Sol.

	LIST-I	LIST-II
A.	$ \begin{array}{c} Cl \\ CH_3 \end{array} $ $ \begin{array}{c} CH_3 \end{array} $	Wurtz- fitting reaction
В.	Cl + 2Na → (○) - (○)	Fitting reaction
C.	$ \begin{array}{c} N_2^+Cl^- & Cl \\ & \downarrow \\ Cu_2Cl_2 & \downarrow \\ & \downarrow \\ +N_2 \end{array} $	Sandmeyer reaction
D.	$C_2H_5Cl + NaI \rightarrow C_2H_5I + NaCl$	Finkelstein reaction

- **40.** Caprolactam when heated at high temperature in presence of water, gives
 - (1) Teflon
- (2) Dacron
- (3) Nylon 6, 6
- (4) Nylon 6

Official Ans. by NTA (4)

Ans. (4)

Sol.
$$N-H \xrightarrow{H_2O,\Delta} C-(CH_2)_5-NH-$$

Caprolactam Nylon -6

- The alkaline earth metal sulphate(s) which are readily soluble in water is/are:
 - (A) BeSO₄
 - (B) MgSO₄
 - (C) CaSO₄
 - (D) SrSO₄
 - (E) BaSO₄

Choose the **correct** answer from the options given below:

- (1) A only
- (2) B only
- (3) A and B
- (4) B and C

Official Ans. by NTA (3)

Ans. (3)

- **Sol.** Due to high hydration energy Be²⁺ and Mg²⁺, BeSO₄ and MgSO₄ are readily soluble in water.
- Which of the following is correct order of ligand 42. field strength?
 - (1) CO < en < NH₃ < $C_2O_4^{2-}$ < S^{2-}
 - (2) $S^{2-} < C_2 O_4^{2-} < NH_2 < en < CO$
 - (3) $NH_3 < en < CO < S^{2-} < C_2O_4^{2-}$
 - (4) $S^{2-} < NH_3 < en < CO < C_2O_4^{2-}$

Official Ans. by NTA (2)

Ans. (2)

The increasing order of field strength of ligands (according to spectrochemical series)

$$S^{2-} < C_2 O_4^{2-} < NH_3 < en < CO$$

- Formation of photochemical smog involves the 43. following reaction in which A, B and C are respectively.
 - (i) $NO_2 \xrightarrow{hv} A + B$
 - (ii) $B+O_2 \rightarrow C$
 - (iii) $A + C \rightarrow NO_2 + O_3$

Choose the correct answer from the options given below:

- $(1) O, NO & NO_3^-$
- $(2) O, N_2O \& NO$
- $(3) N, O_2 & O_3$
- (4) NO,O&O₃

Official Ans. by NTA (4)

Sol.
$$NO_{2g} \xrightarrow{hv} NO_{g} + O_{g}$$
(A)

$$O_g + O_{2g} \rightleftharpoons O_{3g}$$
(B) (C)

$$\underset{(A)}{NO_g} + \underset{(C)}{O_{3g}} \longrightarrow NO_{2g} + O_{2g}$$

- 44. During the qualitative analysis of SO₃²⁻ using dilute H₂SO₄,SO₂ gas is evolved which turns $K_2Cr_2O_7$ solution (acidified with dilute H_2SO_4):
 - (1) Black
- (2) Red
- (3) Green
- (4) Blue

Official Ans. by NTA (3)

Ans. (3)

Sol.
$$Cr_2O_7^{2-} + SO_3^{2-} \xrightarrow{H^+} Cr^{3+} + SO_4^{2-}$$

- 45. To inhibit the growth of tumours, identify the compounds used from the following:
 - (A) EDTA
 - (B) Coordination Compounds of Pt
 - (C) D Penicillamine
 - (D) Cis Platin

Choose the correct answer from the option given below:

- (1) B and D Only
- (2) C and D Only
- (3) A and B Only
- (4) A and C Only

Official Ans. by NTA (1)

Ans. (1)

- Cis Platin is used in chemotherapy to inhibits the Sol. growth of tumors. (cis[Pt(NH₃)₂Cl₂])
- 46. In the wet tests for identification of various cations by precipitation, which transition element cation doesn't belong to group IV in qualitative inorganic analysis?
 - (1) Fe^{3+}
 - (2) Zn^{2+}
 - (3) Co^{2+}
 - (4) Ni^{2+}

Official Ans. by NTA (1)

Sol.
$$Zn^{2+}$$
, Co^{2+} , $Ni^{2+} = IV^{th}$ Group

$$Fe^{3+} = III^{rd} Group$$

47. Match List I with List II

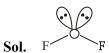
	LIST-I		LIST-II		
(molecules/ions)		(No. of lone pairs of e on central atom)			
(A)	IF ₇	I.	Three		
(B)	ICl ₄	II.	One		
(C)	XeF ₆	III.	Two		
(D)	XeF ₂	IV.	Zero		

Choose the **correct** answer from the options given below:

- (1) A II, B III, C IV, D I
- (2) A IV, B III, C II, D I
- (3) A II, B I, C IV, D III
- (4) A IV, B I, C II, D III

Official Ans. by NTA (2)

Ans. (2)


- **Sol.** IF₇ zero lone pair
 - ICl₄ two lone pair
 - XeF₆ one lone pair
 - XeF₂ three lone pair
- **48.** For OF₂ molecule consider the following:
 - (A) Number of lone pairs on oxygen is 2.
 - (B) FOF angle is less than 104.5°.
 - (C) Oxidation state of O is -2.
 - (D) Molecule is bent 'V' shaped.
 - (E) Molecular geometry is linear.

Correct options are:

- (1) C, D, E only
- (2) B, E, A only
- (3) A, C, D only
- (4) A, B, D only

Official Ans. by NTA (4)

Ans. (4)

- Two lone pair one oxygen
- Molecule is 'v' shaped
- Bond angle is less than 104.5°(102°)
- $O \cdot S \cdot of 'O' is + 2$

- **49.** Lithium aluminium hydride can be prepared from the reaction of
 - (1) LiCl and Al₂H₆
 - (2) LiH and Al₂Cl₆
 - (3) LiCl, Al and H₂
 - (4) LiH and Al(OH)

Official Ans. by NTA (2)

Ans. (2)

- Sol. $8LiH + Al_2Cl_6 \longrightarrow 2LiAlH_4 + 6LiCl$
- 50. Match List I with List II

LIST-I		LIST-II		
(Atomi <mark>c num</mark> ber)		(Block of periodic		
				table)
(A)	37		I.	p-block
(B)	78		II.	d-block
(C)	52		III.	f–block
(D)	65		IV.	s-block

Choose the **correct** answer from the options given below:

- (1) A II, B IV, C I, D III
- (2) A I, B III, C IV, D II
- (3) A IV, B III, C II, D I
- (4) A IV, B II, C I, D III

Official Ans. by NTA (4)

Ans. (4)

Sol.

Atomic number	Block
37 (K)	s-block
78 (Pt)	d-block
52 (Te)	p-block
65 (Tb)	f-block

SECTION-B

51. Consider the cell

$$Pt_{(s)}|H_2(g,1atm)|H^+(aq,1M)||Fe^{3+}(aq),Fe^{2+}(aq)|Pt(s)$$

When the potential of the cell is 0.712 V at 298 K, the ratio $\lceil Fe^{2+} \rceil / \lceil Fe^{3+} \rceil$ is _____.

(Nearest integer)

Given:
$$Fe^{3+} + e^{-} = Fe^{2+}, E^{\circ}Fe^{3+}, Fe^{2+} | Pt = 0.771$$

$$\frac{2.303RT}{F} = 0.06V$$

Official Ans. by NTA (10)

Ans. (10)

Sol

$$Pt_{(s)}|H_2(g,1atm)|H^+(aq,1M)||Fe^{3+}(aq),Fe^{2+}(aq)|Pt(s)$$

at anode $H_2 \longrightarrow 2H^+ + 2e^-$

At cathode
$$Fe_{aq}^{3+} + e^{-} \longrightarrow Fe_{aq}^{2+}$$

$$E^{\circ} = E^{\circ}_{H_2|H^+} + E^{\circ}_{Fe^{3+}|Fe^{2+}} = 0.771V$$

$$E = E^{\circ} - \frac{0.06}{1} \log \frac{Fe^{2+}}{Fe^{3+}}$$

$$0.712 = (0+0.771) - \frac{0.06}{1} \log \frac{\text{Fe}^{2+}}{\text{Fe}^{3+}}$$

$$\log \frac{\text{Fe}^{2+}}{\text{Fe}^{3+}} = \frac{0.059}{0.06} \approx 1$$

$$\frac{Fe^{2+}}{Fe^{3+}} = 10$$

52. A 300 mL bottle of soft drink has 0.2 M CO₂ dissolved in it. Assuming CO₂ behaves as an ideal gas, the volume of the dissolved CO₂ at STP is mL. (Nearest integer)

Given: At STP, molar volume of an ideal gas is 22.7 L mol⁻¹

Official Ans. by NTA (1362)

Ans. (1362 ml)

Sol. Mole of
$$CO_2 = 0.2 \text{ M} \times (300 \times 10^{-3}) \text{ L}$$

= 0.06 Mole

Volume of 0.06 mole CO₂ at S.T.P

$$= 0.06 \times 22.7$$

$$= 1.362 L$$

53. A solution containing 2 g of a non-volatile solute in 20 g of water boils at 373.52 K. The molecular mass of the solute is _____ g mol⁻¹. (Nearest integer)

Given, water boils at 373 K, K_b for water = $0.52 \, \text{K kg mol}^{-1}$

Official Ans. by NTA (100g)

Ans. (100g)

Sol.
$$\Delta T_b = 373.52 - 373$$

$$= 0.52$$

$$\Delta T_b = Kb \cdot m$$

$$0.52 = 0.52 \times \frac{2}{\text{Molar Mass}} \times \frac{1}{20 \times 10^{-3}}$$

Molar Mass = 100g/mol

54. If compound A reacts with B following first order kinetics with rate constant 2.011×10⁻³ s⁻¹. The time taken by A (in seconds) to reduce from 7 g to 2 g will be ______. (Nearest Integer)

$$[\log 5 = 0.698, \log 7 = 0.845, \log 2 = 0.301]$$

Official Ans. by NTA (623)

Ans. (623)

Sol.
$$A + B \rightarrow P$$

$$t = 0 7g$$
$$t = t 2g$$

$$t = \frac{2.303}{K} \log \frac{\left[A\right]_0}{\left[A\right]_t}$$

$$= \frac{2 \cdot 303}{2 \cdot 011 \times 10^{-3}} \log \frac{7}{2}$$

$$= \frac{2 \cdot 303 \times 0.544}{2 \cdot 011 \times 10^{-3}}$$

$$=622.989$$

≈623

55. The energy of one mole of photons of radiation of frequency $2 \times 10^{12} \, \text{Hz}$ in $J \, \text{mol}^{-1}$ is _____. (Nearest integer)

(Given: $h = 6.626 \times 10^{-34} \text{ Js}$

 $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Official Ans. by NTA (798)

Ans. (798)

Sol. For one photon E = hv For one mole photon,

$$E = 6.023 \times 10^{23} \times 6.626 \times 10^{-34} \times 2 \times 10^{12}$$

= 798.16 J
 \approx 798 J

56. The number of electrons involved in the reduction of permanganate to manganese dioxide in acidic medium is

Official Ans. by NTA (3)

Ans. (3)

Sol.
$$\stackrel{+7}{\text{Mn}} O_4^- + 4H^+ + 3e^- \longrightarrow \stackrel{+4}{\text{Mn}} O_2 + 2H_2O$$

57. When 2 litre of ideal gas expands isothermally into vacuum to a total volume of 6 litre, the change in internal energy is ______ J. (Nearest integer)

Official Ans. by NTA (0)

Ans. (0)

- **Sol.** For ideal gas U = f(T) and for isothermal process, $\Delta U = 0$
- **58.** 600 mL of 0.01M HCl is mixed with 400 mL of 0.01 M H_2SO_4 . The pH of the mixture is 10^{-2} . (Nearest integer)

[Given $\log 2 = 0.30$, $\log 3 = 0.48$

 $\log 5 = 0.69$ $\log 7 = 0.84$

log 11 = 1.04

Official Ans. by NTA (186)

Ans. (186)

Sol. Total milimoles of H⁺ =
$$(600 \times 0.01) + (400 \times 0.01 \times 2)$$

= 1 4
$$[H^+] = \frac{14}{1000} = 14 \times 10^{-3}$$
pH = 3 - log 14
= 1.86
= 186 × 10⁻²

- 59. A trisubstituted compound 'A', $C_{10}H_{12}O_2$ gives neutral FeCl₃ test positive. Treatment of compound 'A' with NaOH and CH_3Br gives $C_{11}H_{14}O_2$, with hydroiodic acid gives methyl iodide and with hot conc. NaOH gives a compound B, $C_{10}H_{12}O_2$. Compound 'A' also decolorises alkaline $KMnO_4$. The number of π bond/s present in the compound 'A' is _____.
- 59 Official Ans. by NTA (4)

Ans. (4)

OH $CH = O + C_3H_7$ (Both group can be present) $(C_{10}H_{12}Q_2)$ (or)

 $(C_{10}H_{12} O_2)$ OH $CH = O + C_3H_7$ OH CH_3I OCH_3 OCH_3 OCH_3 $CH_2OH + C = C - CH_3$ OCH_3 $CH_2OH + C = C - CH_3$

60. Some amount of dichloromethane (CH_2Cl_2) is added to 671.141 mL of chloroform $(CHCl_3)$ to prepare 2.6×10^{-3} M solution of $CH_2Cl_2(DCM)$. The concentration of DCM is _____ ppm (by mass).

Given: Atomic mass : C = 12; H : 1; Cl = 35.5 density of $CHCl_3 = 1.49 \, g \, cm^{-3}$

Official Ans. by NTA (221)

Ans. (148)

Sol. Molarity = $\frac{\text{mole}}{\text{volume}}$

$$2.6 \times 10^{-3} = \frac{x/85}{0.67141}$$
$$x = 0.148 \text{ g}$$

conc. Fo DCM in ppm =
$$\frac{0.148}{1.49 \times 671.141} \times 10^6$$

= 148 ppm