Saral Final JEE

	Saral Final JEE-Main Exam January, 2023/01-02-2023/Morning Session		
FINAL JEE-MAIN EXAMINATION – JANUARY, 2023			
(Held On Wednesday 1 st February, 202	TIME : 9 : 00 AM to 12 : 00		
MATHEMATICS	TEST PAPER WITH SOLUTION		
SECTION-A 61. $\lim_{n \to \infty} \left(\frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{2n} \right) \text{ is equal to :}$ (1) 0 (2) $\log_e 2$ (3) $\log_e \left(\frac{3}{2} \right)$ (4) $\log_e \left(\frac{2}{3} \right)$ Official Ans. by NTA (2) Ans. (2) Sol. $\lim_{n \to \infty} \left(\frac{1}{1+n} + \dots + \frac{1}{n+n} \right) = \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{n+r}$ $= \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{n} \left(\frac{1}{1+\frac{r}{n}} \right)$	Sol. $np + npq = 5$, $np \cdot npq = 6$ $np (1 + q) = 5$, $n^2p^2q = 6$ $n^2p^2(1 + q)^2 = 25$, $n^2p^2q = 6$ $\frac{6}{q} (1 + q)^2 = 25$ $6q^2 + 12q + 6 = 25q$ $6q^2 - 13q + 6 = 0$ $6q^2 - 9q - 4q + 6 = 0$ (3q - 2) (2q - 3) = 0 $q = \frac{2}{3}, \frac{3}{2}, q = \frac{2}{3}$ is accepted $p = \frac{1}{3} \implies n \cdot \frac{1}{3} + n \cdot \frac{1}{3} \cdot \frac{2}{3} = 5$		
$= \int_{0}^{1} \frac{1}{1+x} dx = [\ell n(1+x)]_{0}^{1} = \ell n2$ 62. The negation of the expression $q \lor ((\sim q) \land p)$ equivalent to (1) $(\sim p) \land (\sim q)$ (2) $p \land (\sim q)$ (3) $(\sim p) \lor (\sim q)$ (4) $(\sim p) \lor q$ Official Ans. by NTA (1) Ans. (1) Sol. $\sim (q \lor ((\sim q) \land p))$ $= \sim q \land \sim ((\sim q) \land p)$ $= \sim q \land (q \lor \sim p)$ $= (\sim q \land q) \lor (\sim q \land \sim p)$ $= (\sim q \land q)$	So $6(n + p - q) = 6\left(9 + \frac{1}{3} - \frac{2}{3}\right) = 52$ 64. The sum to 10 terms of the series $\frac{1}{1 + 1^2 + 1^4} + \frac{2}{1 + 2^2 + 2^4} + \frac{3}{1 + 3^2 + 3^4} + \dots$ is:- (1) $\frac{59}{111}$ (2) $\frac{55}{111}$ (3) $\frac{56}{111}$ (4) $\frac{58}{111}$ Official Ans. by NTA (2) Ans. (2)		
$= (\sim q \land \sim p)$ 63. In a binomial distribution B(n, p), the sum ar product of the mean & variance are 5 and respectively, then find 6(n + p - q) is equal to :- (1) 51 (2) 52 (3) 53 (4) 50 Official Ans. by NTA (2) Ans. (2)	2(1 + 1 + 1)		

$$T_{3} = \frac{1}{2} \left[\frac{1}{7} - \frac{1}{13} \right]$$

:

$$T_{10} = \frac{1}{2} \left[\frac{1}{91} - \frac{1}{111} \right]$$

$$\Rightarrow \sum_{r=1}^{10} T_{r} = \frac{1}{2} \left[1 - \frac{1}{111} \right] = \frac{55}{111}$$

65. The value of

∛Saral

$$\frac{1}{1!50!} + \frac{1}{3!48!} + \frac{1}{5!46!} + \dots + \frac{1}{49!2!} + \frac{1}{51!1!}$$
 is
(1) $\frac{2^{50}}{50!}$ (2) $\frac{2^{50}}{51!}$
(3) $\frac{2^{51}}{51!}$ (4) $\frac{2^{51}}{50!}$

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$\sum_{r=1}^{26} \frac{1}{(2r-1)!(51-(2r-1))!} = \sum_{r=1}^{26} {}^{51}C_{(2r-1)} \frac{1}{51!}$$
$$= \frac{1}{51!} \{ {}^{51}C_1 + {}^{51}C_3 + \dots + {}^{51}C_{51} \} = \frac{1}{51!} (2^{50})$$

66. If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is (α , β), then the quadratic equation whose roots are α + 4 β and 4α + β , is

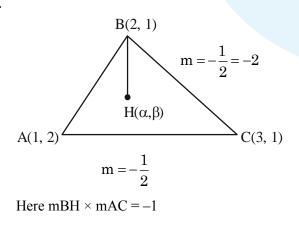
(1) $x^{2} - 19x + 90 = 0$ (2) $x^{2} - 18x + 80 = 0$ (3) $x^{2} - 22x + 120 = 0$

 $(4) x^2 - 20x + 99 = 0$

Official Ans. by NTA (4)

Ans. (4)

Sol.



$$\left(\frac{\beta-3}{\alpha-2}\right)\left(\frac{1}{-2}\right) = -1$$

$$\beta-3 = 2\alpha - 4$$

$$\beta = 2\alpha - 1$$

$$m_{AH} \times m_{BC} = -1$$

$$\Rightarrow \qquad \left(\frac{\beta-2}{\alpha-1}\right)(-2) = -1$$

$$\Rightarrow \qquad 2\beta - 4 = \alpha - 1$$

$$\Rightarrow \qquad 2\beta - 4 = \alpha - 1$$

$$\Rightarrow \qquad 2(2\alpha - 1) = \alpha + 3$$

$$\Rightarrow \qquad 3\alpha = 5$$

$$\alpha = \frac{5}{3}, \beta = \frac{7}{3} \Rightarrow H\left(\frac{5}{3}, \frac{7}{3}\right)$$

$$\alpha + 4\beta = \frac{5}{3} + \frac{28}{3} = \frac{33}{3} = 11$$

$$\beta + 4\alpha = \frac{7}{3} + \frac{20}{3} = \frac{27}{3} = 9$$

$$x^{2} - 20x + 99 = 0$$

- 67. For a triangle ABC, the value of cos2A + cos2B + cos2C is least. If its inradius is 3 and incentre is M, then which of the following is NOT correct?
 - (1) Perimeter of $\triangle ABC$ is $18\sqrt{3}$

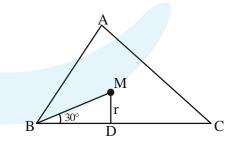
(2)
$$\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$$

(3) $\overrightarrow{\text{MA.MB}} = -18$

(4) area of
$$\triangle ABC$$
 is $\frac{27\sqrt{3}}{2}$

Official Ans. by NTA (4) Ans. (4)

Sol.



If $\cos 2A + \cos 2B + \cos 2C$ is minimum then $A = B = C = 60^{\circ}$ So $\triangle ABC$ is equilateral Now in-radias r = 3So in $\triangle MBD$ we have

Saral

$$Tan30^\circ = \frac{MD}{BD} = \frac{r}{a/2} = \frac{6}{a}$$
$$1/\sqrt{3} = \frac{1}{a} = a = 6\sqrt{3}$$

Perimeter of $\triangle ABC = 18\sqrt{3}$

Area of
$$\triangle ABC = \frac{\sqrt{3}}{4}a^2 = 27\sqrt{3}$$

68. The combined equation of the two lines ax + by + c = 0 and a'x + b'y + c' = 0 can be written as (ax + by + c) (a'x + b'y + c') = 0The equation of the angle bisectors of the lines represented by the equation $2x^2 + xy - 3y^2 = 0$ is (1) $3x^2 + 5xy + 2y^2 = 0$ (2) $x^2 - y^2 + 10xy = 0$ (3) $3x^2 + xy - 2y^2 = 0$ (4) $x^2 - y^2 - 10xy = 0$ Official Ans. by NTA (4) Ans. (4)

Sol.

Equation of the pair of angle bisector for the homogenous equation $ax^2 + 2hxy + by^2 = 0$ is given as

 $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$ Here a = 2, h = ½ & b = -3

Equation will become

$$\frac{x^2 - y^2}{2 - (-3)} = \frac{xy}{1/2}$$
$$x^2 - y^2 = 10xy$$
$$x^2 - y^2 - 10xy = 0$$

69. The shortest distance between the lines

 $\frac{x-5}{1} = \frac{y-2}{2} = \frac{z-4}{-3} \text{ and } \frac{x+3}{1} = \frac{y+5}{4} = \frac{z-1}{-5} \text{ is}$ (1) $7\sqrt{3}$ (2) $5\sqrt{3}$ (3) $6\sqrt{3}$ (4) $4\sqrt{3}$ Official Ans. by NTA (3)
Ans. (3)

Sol.

Shortest distance between two lines

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{a_2} = \frac{z - z_1}{a_3} \&$$

$$\frac{x - x_2}{b_1} = \frac{y - y_2}{b_2} = \frac{z - z_2}{b_3} \text{ is given as}$$

$$\begin{vmatrix} x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$\frac{\sqrt{(a_1 b_3 - a_3 b_2)^2 + (a_1 b_3 - a_3 b_1)^2 + (a_1 b_2 - a_2 b_1)^2}}{\sqrt{(a_1 b_3 - a_3 b_2)^2 + (-5 + 3)^2 + (4 - 2)^2}}$$

$$\begin{vmatrix} 5 - (3) & 2 - (-5) & 4 - 1 \\ 1 & 2 & -3 \\ 1 & 4 & -5 \end{vmatrix}$$

$$\frac{\sqrt{(-10 + 12)^2 + (-5 + 3)^2 + (4 - 2)^2}}{\sqrt{(-10 + 12)^2 + (-5 + 3)^2 + (4 - 2)^2}}$$

$$= \frac{|8(-10 + 12) - 7(-5 + 3) + 3(4 - 2)|}{\sqrt{4 + 4 + 4}}$$

$$= \frac{16 + 14 + 6}{\sqrt{12}} = \frac{36}{\sqrt{12}} = \frac{36}{2\sqrt{3}}$$

$$= \frac{18}{\sqrt{3}} = 6\sqrt{3}$$

70. Let S denote the set of all real values of λ such that the system of equations

 $\lambda x + y + z = 1$ $x + \lambda y + z = 1$ is inconsistent, then $\sum_{\lambda \in S} (|\lambda|^{2} + |\lambda|)$ is equal to
(1) 2
(2) 12
(3) 4
(4) 6
Official Ans. by NTA (4)
Ans. (4)

Find JEE-Main
Sol.
$$\begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$$

 $(\lambda + 2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$
 $(\lambda + 2)[1(\lambda^2 - 1) - 1(\lambda - 1) + (1 - \lambda)] = 0$
 $(\lambda + 2)[(\lambda^2 - 2\lambda + 1) = 0$
 $(\lambda + 2)[(\lambda^2 - 2\lambda + 1) = 0$
 $(\lambda + 2)(\lambda - 1)^2 = 0 \Rightarrow \lambda = -2, \lambda = 1$
at $\lambda = 1$ system has infinite solution, for
inconsistent $\lambda = -2$
so $\sum (|-2|^2 + |-2|) = 6$
71. Let
 $S = \left\{ x : x \in \mathbb{R} \text{ and } (\sqrt{3} + \sqrt{2})^{x^2 - 4} + (\sqrt{3} - \sqrt{2})^{x^2 - 4} = 10 \right\}$.
Then n (S) is equal to
(1) 2 (2) 4
(3) 6 (4) 0
Official Ans. by NTA (2)
Ans. (2)
Sol. Let $(\sqrt{3} + \sqrt{2})^{x^2 - 4} = t$
 $t + \frac{1}{t} = 10$
 $\Rightarrow t = 5 + 2\sqrt{6}, 5 - 2\sqrt{6}$
 $\Rightarrow (\sqrt{3} + \sqrt{2})^{x^2 - 4} = 5 + 2\sqrt{6}, 5 - 2\sqrt{6}$
 $\Rightarrow x^2 - 4 = 2, -2 \text{ or } x^2 = 6, 2$
 $\Rightarrow x = \pm\sqrt{2}, \pm\sqrt{6}$
72. Let S be the set of all solutions of the equation
 $\cos^{-1}(2x) - 2\cos^{-1}(\sqrt{1 - x^2}) = \pi, x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.
Then $\sum_{x \in S} 2\sin^{-1}(x^2 - 1)$ is equal to
(1) 0 (2) $\frac{-2\pi}{3}$
(3) $\pi - \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$ (4) $\pi - 2\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$
Official Ans. by NTA (2)
Ans. (1)

Sol.
$$\cos^{-1}(2x) = \pi + 2\cos^{-1}(\sqrt{1-x^2})$$

LHS = $[0, \pi]$
For equation to be meaningful
 $\cos^{-1}2x = \pi$ and $\cos^{-1}(\sqrt{1-x^2}) = 0$
 $x = \frac{-1}{2}$ and $x = 0$
which is not possible
 $\therefore x \in \phi$
Now $\Sigma(x) = 0$
 \therefore Sum over empty set is always 0
73. If the center and radius of the circle $\left|\frac{z-2}{z-3}\right| = 2$ are
respectively (α, β) and γ , then $3(\alpha + \beta + \gamma)$ is
equal to
(1) 11
(2) 9
(3) 10
(4) 12
Official Ans. by NTA (4)
Ans. (4)
Sol.
 $\sqrt{(x-2)^2 + y^2} = 2\sqrt{(x-3)^2 + y^2}$

$$\sqrt{(x-2)^{2} + y^{2}} = 2\sqrt{(x-3)^{2} + y^{2}}$$

$$= x^{2} + y^{2} - 4x + 4 = 4x^{2} + 4y^{2} - 24x + 36$$

$$= 3x^{2} + 3y^{2} - 20x + 32 = 0$$

$$= x^{2} + y^{2} - \frac{20}{3}x + \frac{32}{3} = 0$$

$$= (\alpha, \beta) = \left(\frac{10}{3}, 0\right)$$

$$\gamma = \sqrt{\frac{100}{9} - \frac{32}{3}} = \sqrt{\frac{4}{9}} = \frac{2}{3}$$

$$3(\alpha, \beta, \gamma) = 3\left(\frac{10}{3} + \frac{2}{3}\right)$$

$$= 12$$

74. If
$$y = y(x)$$
 is the solution curve of the differential
equation $\frac{dy}{dx} + y$ tan $x = x$ sec x , $0 \le x \le \frac{\pi}{3}$,
 $y(0) = 1$, then $y\left(\frac{\pi}{6}\right)$ is equal to

<mark>∛Saral</mark>

$$(1) \frac{\pi}{12} - \frac{\sqrt{3}}{2} \log_{e} \left(\frac{2}{e\sqrt{3}}\right)$$
$$(2) \frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_{e} \left(\frac{2\sqrt{3}}{e}\right)$$
$$(3) \frac{\pi}{12} - \frac{\sqrt{3}}{2} \log_{e} \left(\frac{2\sqrt{3}}{e}\right)$$
$$(4) \frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_{e} \left(\frac{2}{e\sqrt{3}}\right)$$

Official Ans. by NTA (1)

Ans. (1)

- **Sol.** Here $I.F. = \sec x$
 - Then solution of D.E :

 $y(\sec x) = x \tan x - \ln(\sec x) + c$

Given $y(0) = 1 \implies c = 1$

 \therefore y(sec x) = x tan x - ln(sec x) + 1

At
$$x = \frac{\pi}{6}$$
, $y = \frac{\pi}{12} + \frac{\sqrt{3}}{2} \ln \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}$

75. Let R be a relation on \mathbb{R} , given by $R = \{(a, b) : 3a - 3b + \sqrt{7} \text{ is an irrational}$ number}. Then R is (1) Reflexive but neither symmetric nor transitive

- (2) Reflexive and transitive but not symmetric
- (3) Reflexive and symmetric but not transitive

(4) An equivalence relation

Official Ans. by NTA (1)

Ans. (1)

Sol. Check for reflexivity:

As $3(a - a) + \sqrt{7} = \sqrt{7}$ which belongs to relation so relation is reflexive

Check for symmetric:

Take a =
$$\frac{\sqrt{7}}{3}$$
, $b = 0$

Now $(a, b) \in R$ but $(b, a) \notin R$

As $3(b-a) + \sqrt{7} = 0$ which is rational so relation is not symmetric.

Check for Transitivity:

Take (a, b) as $\left(\frac{\sqrt{7}}{3}, 1\right)$

& (b, c) as
$$\left(1, \frac{2\sqrt{7}}{3}\right)$$

So now $(a, b) \in R$ & $(b, c) \in R$ but $(a, c) \notin R$ which means relation is not transitive

76. Let the image of the point P(2, -1, 3) in the plane x + 2y - z = 0 be Q. Then the distance of the plane 3x + 2y + z + 29 = 0 from the point Q is

(1)
$$\frac{22\sqrt{2}}{7}$$

(2) $\frac{24\sqrt{2}}{7}$
(3) $2\sqrt{14}$
(4) $3\sqrt{14}$
Official Ans. by NTA (4)
Ans. (4)

Sol.

eq. of line PM
$$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-3}{-1} = \lambda$$

P(2 - 1 - 3)

any point on line = $(\lambda + 2, 2\lambda - 1, -\lambda + 3)$

for point 'm'
$$(\lambda + 2) + 2(2\lambda - 1) - (3 - \lambda) = 0$$

$$\lambda = \frac{1}{2}$$
Point m $\left(\frac{1}{2} + 2, 2 \times \frac{1}{2} - 1, \frac{-1}{2} + 3\right)$

1

$$=\left(\frac{5}{2},0,\frac{5}{2}\right)$$

For Image Q (α, β, γ)

$$\frac{\alpha+2}{2} = \frac{5}{2}, \frac{\beta-1}{2} = 0,$$
$$\frac{\gamma+3}{2} = \frac{5}{2}$$

$$d_{1}(3, 1, 2)$$

$$d = \left| \frac{3(3) + 2(1) + 2 + 29}{\sqrt{3^{2} + 2^{2} + 1^{2}}} \right|$$

$$d = \frac{42}{\sqrt{14}} = 3\sqrt{14}$$
77. Let $f(x) = \left| \begin{array}{c} 1 + \sin^{2}x & \cos^{2}x & \sin 2x \\ \sin^{2}x & 1 + \cos^{2}x & \sin 2x \\ \sin^{2}x & \cos^{2}x & 1 + \sin 2x \\ x \in \left[\frac{\pi}{6}, \frac{\pi}{3} \right]. \text{ If } \alpha \text{ a } \beta \text{ respectively are the maximum} \\ \text{and the minimum values of } f, \text{ then} \\ (1) \ \beta^{2} - 2\sqrt{\alpha} = \frac{19}{4} \\ (2) \ \beta^{2} + 2\sqrt{\alpha} = \frac{19}{4} \\ (3) \ \alpha^{2} - \beta^{2} = 4\sqrt{3} \\ (4) \ \alpha^{2} + \beta^{2} = \frac{9}{2} \\ \text{Official Ans. by NTA (1)} \\ \text{Ans. (1)} \\ \text{Sol.} \\ C_{1} \rightarrow C_{1} + C_{2} + C_{3} \\ f(x) = \left| \begin{array}{c} 2 + \sin 2x & \cos^{2}x & \sin 2x \\ 2 + \sin 2x & \cos^{2}x & \sin 2x \\ 1 + \cos^{2}x & \sin 2x \\ 2 + \sin 2x & \cos^{2}x & 1 + \sin 2x \\ \end{array} \right| \\ f(x) = (2 + \sin 2x) \left| \begin{array}{c} 1 & \cos^{2}x & \sin 2x \\ 1 & \cos^{2}x & 1 + \sin 2x \\ 1 & \cos^{2}x & 1 + \sin 2x \\ \end{array} \right| \\ R_{2} \rightarrow R_{2} - R_{1} \\ R_{3} \rightarrow R_{3} - R_{1} \\ f(x) = 2 + \sin 2x) (1) = 2 + \sin 2x \\ = \sin 2x \in \left[\frac{\sqrt{3}}{2}, 1 \right] \\ \text{Hence } 2 + \sin 2x = \left\{ 2 + \frac{\sqrt{3}}{2}, 3 \right\}$

Let $f(x)=2x + \tan^{-1}x$ and $g(x) = \log_{10}(\sqrt{1+x^{2}}+x)$, 78. $x \in [0, 3]$. Then (1) There exists $x \in [0,3]$ such that f'(x) < g'(x)(2) max f(x) > max g(x)(3) There exist $0 < x_1 < x_2 < 3$ such that f(x) < g(x), $\forall x \in (x_1, x_2)$ (4) min $f'(x) = 1 + \max g'(x)$ Official Ans. by NTA (2) Ans. (2) Sol. $f(x) = 2x + \tan^{-1}x \text{ and } g(x) = \ln(\sqrt{1 + x^2} + x)$ and $x \in [0, 3]$ $g'(x) = \frac{1}{\sqrt{1+x^2}}$ Now, $0 \le x \le 3$ $0 \le x^2 \le 9$ $1 \le 1 + x^2 \le 10$ So, $2 + \frac{1}{10} \le f'(x) \le 3$ $\frac{21}{10} \le f'(x) \le 3$ and $\frac{1}{\sqrt{10}} \le g'(x) \le 1$ option (4) is incorrect From above, $g'(x) < f'(x) \forall x \in [0, 3]$ Option (1) is incorrect. f' (x) & g' (x) both positive so f(x) & g(x) both are increasing $\max(f(x) \text{ at } x = 3 \text{ is } 6 + \tan^{-1} 3$ So, Max (g(x) at x= 3 is $\ln (3 + \sqrt{10})$ And $6 + \tan^{-1} 3 > \ln (3 + \sqrt{10})$ Option (2) is correct 79. The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two

Ans. (1)		
Official Ans. by NTA (1)		
(3) 1216	(4) 1456	
(1) 1072	(2) 1792	
observations is		

Saral

Sol.
$$\frac{1+3+5+a+b}{5} = 5$$
$$a+b=16.....(1)$$
$$\sigma^{2} = \frac{\sum x_{1}^{2}}{5} - \left(\frac{\sum x}{5}\right)^{2}$$
$$8 = \frac{1^{2}+3^{2}+5^{2}+a^{2}+b^{2}}{5} - 25$$
$$a^{2}+b^{2} = 130 \dots (2)$$
$$by (1), (2)$$
$$a = 7, b = 9$$
or a = 9, b = 7

80. The area enclosed by the closed curve C given by the differential equation $\frac{dy}{dx} + \frac{x+a}{y-2} = 0$, y(1) = 0

is 4π.

Let P and Q be the points of intersection of the curve C and the y-axis. If normals at P and Q on the curve C intersect x-axis at points R and S respectively, then the length of the line segment RS is

(2) $\frac{2\sqrt{3}}{3}$ (1) $2\sqrt{3}$ (4) $\frac{4\sqrt{3}}{2}$ (3)2Official Ans. by NTA (4) Ans. (4) **Sol.** $\frac{dy}{dx} + \frac{x+a}{y-2} = 0$ $\frac{dy}{dx} = \frac{x+a}{2-y}$ (2 - y) dy = (x + a) dx $2y\frac{-y}{2} = \frac{x^2}{2} + ax + c$ $a + c = -\frac{1}{2}$ as y (1) = 0 $X^2 + y^2 + 2ax - 4y - 1 - 2a = 0$ $\pi r^2 = 4 \pi$ $r^2 = 4$ $4 = \sqrt{a^2 + 4 + 1 + 2a}$ $(a+1)^2 = 0$

 $P, Q = \left(0, 2 \pm \sqrt{3}\right)$

Equation of normal at P, Q are $y - 2 = \sqrt{3} (x - 1)$

$$y-2 = -\sqrt{3} (x-1)$$
$$R = \left(1 - \frac{2}{\sqrt{3}}, 0\right)$$
$$S = \left(1 + \frac{2}{\sqrt{3}}, 0\right)$$
$$RS = \frac{4}{\sqrt{3}} = 4\frac{\sqrt{3}}{3}$$

SECTION-B

81. Let $a_1 = 8$, a_2 , a_3 , ..., a_n be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170, then the product of its middle two terms is

Official Ans. by NTA (754) Ans. (754)

- Sol. $a_1 + a_2 + a_3 + a_4 = 50$ $\Rightarrow 32 + 6d = 50$ $\Rightarrow d = 3$ and, $a_{n-3} + a_{n-2} + a_{n-1} + a_n = 170$ $\Rightarrow 32 + (4n - 10).3 = 170$ $\Rightarrow n = 14$ $a_7 = 26, a_8 = 29$ $\Rightarrow a_7.a_8 = 754$
- 82. A(2, 6, 2), B(-4, 0, λ), C(2, 3, -1) and D(4, 5, 0),
 |λ| ≤ 5 are the vertices of a quadrilateral ABCD. If its area is 18 square units, then 5 6λ is equal to

Official Ans. by NTA (11) Ans. (11)

Sol. A(2, 6, 2) B(-4, 0, λ), C(2, 3, -1) D(4, 5, 0)

Area =
$$\frac{1}{2} |\overrightarrow{BD} \times \overrightarrow{AC}| = 18$$

 $\overrightarrow{AC} \times \overrightarrow{BD} = \begin{vmatrix} \hat{i} & j & k \\ 0 & -3 & -3 \\ 8 & 5 & -\lambda \end{vmatrix}$

$$= (3\lambda + 15)\hat{i} - j(-24) + k(-24)$$

$$\overrightarrow{AC} \times \overrightarrow{BD} = (3\lambda + 15)\hat{i} + 24j - 24k$$

$$= \sqrt{(3\lambda + 15)^{2} + (24)^{2} + (24)^{2}} = 36$$

$$= \lambda^{2} + 10\lambda + 9 = 0$$

$$= \lambda = -1, -9$$

$$|\lambda| \le 5 \implies \lambda = -1$$

$$5 - 6\lambda = 5 - 6(-1) = 11$$

*****Saral

83. The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7 is _____.
Official Ans. by NTA (514)

Ans. (514)

- Sol. Divisible by $2 \rightarrow 450$ Divisible by $3 \rightarrow 300$ Divisible by $7 \rightarrow 128$ Divisible by $2 \& 7 \rightarrow 64$ Divisible by $3 \& 7 \rightarrow 43$ Divisible by $2 \& 3 \rightarrow 150$ Divisible by $2, 3 \& 7 \rightarrow 21$
- :. Total numbers = 450 + 300 150 64 43 + 21 = 514
- 84. The remainder when $19^{200} + 23^{200}$ is divided by 49, is ______. Official Ans. by NTA (29) Ans. (29) Sol. $(21+2)^{200} + (21-2)^{200}$ $\Rightarrow 2[^{100}C_021^{200} + 200C_2 21^{198} \cdot 2^2 + \dots + {}^{200}C_{198} + 21^2 \cdot 2^{198} + 2^{200}]$

 $\Rightarrow 2[49 I_1 + 2^{200}] = 49I_1 + 2^{201}$ Now, $2^{201} = (8)^{67} = (1+7)^{67} = 49I_2 + {}^{67}C_0 {}^{67}C_1$. 7 = $49I_2 + 470 = 49I_2 + 49 \times 9 + 29$

: Remainder is 29

85. If

$$\int_{0}^{1} (x^{21} + x^{14} + x^{7})(2x^{14} + 3x^{7} + 6)^{1/7} dx = \frac{1}{l} (11)^{m/7}$$

where l, m, $n \in \mathbb{N}$, m and n are coprime then l+m+n is equal to _____. Official Ans. by NTA (63)

Ans. (63)

Sol.
$$\int \left(x^{20} + x^{13} + x^6\right) \left(2x^{21} + 3x^{14} + 6x^7\right)^{1/7} dx$$

$$2x^{21} + 3x^{14} + 6x^7 = t$$

$$42(x^{20} + x^{13} + x^6) dx = dt$$

$$\frac{1}{42} \int_0^{11} \frac{1}{7} dt = \left(\frac{t^{\frac{8}{7}}}{\frac{8}{7}} \times \frac{1}{42}\right)^{11}$$

$$= \frac{1}{48} \left(t^{\frac{8}{7}}\right)_0^{11} = \frac{1}{48} (11)^{8/7}$$

$$l = 48, m = 8, n = 7$$

$$l + m + n = 63$$

86. If $f(x) = x^2 + g'(1)x + g''(2)$ and

$$g(x) = f(1)x^2 + xf'(x) + f'(x),$$

then the value of $f(4) - g(4)$ is equal to
Official Ans. by NTA (14)
Ans. (14)
Sol. $f(x) = x^2 + g'(1)x + g''(2)$

$$f'(x) = 2x + g'(1)$$

$$f'(x) = 2$$

$$g(x) = f(1)x^2 + x [2x + g'(1)] + 2$$

$$g'(x) = 2f(1) x + 4x + g'(1)$$

$$g''(x) = 2f(1) + 4$$

$$g''(x) = 0$$

$$2f(1) + 4 = 0$$

$$f(1) = -2$$

$$-2 = 1 + g'(1) = g'(1) = -3$$

So,
$$f'(x) = 2x - 3$$

$$f(x) = x^2 - 3x + c$$

$$c = 0$$

$$f(x) = x^2 - 3x + 2$$

$$f(4) - g(4) = 14$$

87. Let $\vec{v} = \alpha \hat{i} + 2j - 3k$, $\vec{w} = 2\alpha \hat{i} + j - k$, and \vec{u} be a vector such that $|\vec{u}| = \alpha > 0$. If the minimum value of the scalar triple product $[\vec{u}\vec{v}\vec{w}]$ is $-\alpha\sqrt{3401}$, and $|\vec{u}.\hat{i}|^2 = \frac{m}{n}$ where m and n are coprime natural numbers, then m + n is equal to _____.

<mark>∛</mark>Saral

Official Ans. by NTA (3501)
Allen Ans. (3501)
Sol.
$$\begin{bmatrix} \vec{u}\vec{v}\vec{w} \end{bmatrix} = \vec{u}.(\vec{v}\times\vec{w})$$

min. $(|u||\vec{v}\times\vec{w}|\cos\theta) = -\alpha\sqrt{3401}$
 $\Rightarrow \cos\theta = -1$
 $|u| = \alpha$ (Given)
 $|\vec{v}\times\vec{w}| = \sqrt{3401}$
 $\vec{v}\times\vec{w} = \begin{vmatrix} \hat{i} & j & k \\ \alpha & 2 & -3 \\ 2\alpha & 1 & -1 \end{vmatrix}$
 $\vec{v}\times\vec{w} = \hat{i} - 5\alpha j - 3\alpha k$
 $|\vec{v}\times\vec{w}| = \sqrt{1 + 25\alpha^2 + 9\alpha^2} = \sqrt{3401}$
 $34\alpha^2 = 3400$
 $\alpha^2 = 100$
 $\alpha = 10$ (as $\alpha > 0$)
So $\vec{u} = \lambda(\hat{i} - 5\alpha j - 3\alpha k)$
 $\vec{u} = \sqrt{\lambda^2 + 25\alpha^2\lambda^2 + 9\alpha^2\lambda}$
 $\alpha^2 = \lambda^2(1 + 25\alpha^2 + 9\alpha^2)$
 $100 = \lambda^2(1 + 34 \times 100)$
 $\lambda^2 = \frac{100}{3401} = \frac{m}{n}$

88. The number of words, with or without meaning, that can be formed using all the letters of the word ASSASSINATION so that the vowels occur together, is .

Official Ans. by NTA (50400) Ans. (50400)

Sol. Vowels : A,A,A,I,I,O Consonants : S,S,S,S,N,N,T

: Total number of ways in which vowels come

together

$$=\frac{\underline{|8|}}{\underline{|4|2}} \times \frac{\underline{|6|}}{\underline{|3|2|}} = 50400$$

89. Let A be the area bounded by the curve

$$y = x |x - 3|$$
, the x-axis and the ordinates $x = -1$
and $x = 2$. Then 12A is equal to _____.
Official Ans. by NTA (62)
Ans. (62)
Sol. $A = \int_{-1}^{0} (x^2 - 3x) dx + \int_{0}^{2} (3x - x^2) dx$
 $\Rightarrow A = \frac{x^3}{3} - \frac{3x^2}{2} \Big|_{-1}^{0} + \frac{3x^2}{2} - \frac{x^3}{3} \Big|_{0}^{2}$
 $\Rightarrow A = \frac{11}{6} + \frac{10}{3} = \frac{31}{6}$
 \therefore 12A = 62
90. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such
that $f'(x) + f(x) = \int_{0}^{2} f(t) dt$. If $f(0) = e^{-2}$, then
2f(0) - f(2) is equal to _____.
Official Ans. by NTA (1)
Ans. (1)
Sol. $\frac{dy}{dx} + y = k$
 $y \cdot e^x = k \cdot e^x + c$
 $f(0) = e^{-2}$
 $\Rightarrow c = e^{-2} - k$
 $\therefore y = k + (e^{-2} - k)e^{-x}$
now $k = \int_{0}^{2} (k + (e^{-2} - k)e^{-x}) dx$
 $\Rightarrow k = e^{-2} - 1$
 $\therefore y = (e^{-2} - 1) + e^{-x}$
 $f(2) = 2e^{-2} - 1, f(0) = e^{-2}$
 $2f(0) - f(2) = 1$