<mark>∛Saral</mark>

FINAL JEE-MAIN EXAMINATION – JANUARY, 2023

(Held On Tuesday 31st January, 2023)

TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

61. If the maximum distance of normal to the ellipse $\frac{x^2}{4} + \frac{y^2}{b^2} = 1$, b < 2, from the origin is 1, then the

eccentricity of the ellipse is:

(1)
$$\frac{1}{\sqrt{2}}$$
 (2) $\frac{\sqrt{3}}{2}$
(3) $\frac{1}{2}$ (4) $\frac{\sqrt{3}}{4}$

Official Ans. by NTA (2)

Ans. (2)

Sol. Equation of normal is

 $2x \sec\theta - by \csc\theta = 4 - b^2$

Distance from (0, 0) =
$$\frac{4 - b^2}{\sqrt{4\sec^2\theta + b^2\csc^2\theta}}$$

Distance is maximum if

 $4\sec^2\theta + b^2\csc^2\theta$ is minimum

$$\Rightarrow \tan^2 \theta = \frac{b}{2}$$
$$\Rightarrow \frac{4 - b^2}{\sqrt{4 \cdot \frac{b + 2}{2} + b^2 \cdot \frac{b + 2}{b}}} = 1$$
$$\Rightarrow 4 - b^2 = b + 2 \Rightarrow b = 1 \Rightarrow e = \frac{\sqrt{3}}{2}$$

62. For all $z \in C$ on the curve $C_1 : |z| = 4$, let the locus of the point $z + \frac{1}{z}$ be the curve C_2 . Then

- (1) the curves C_1 and C_2 intersect at 4 points
- (2) the curves C_1 lies inside C_2
- (3) the curves C_1 and C_2 intersect at 2 points
- (4) the curves C_2 lies inside C_1

Official Ans. by NTA (1)

Ans. (1)

TEST PAPER WITH SOLUTION

Sol. Let
$$w = z + \frac{1}{z} = 4e^{i\theta} + \frac{1}{4}e^{-i\theta}$$

$$\Rightarrow w = \frac{17}{4}\cos\theta + i\frac{15}{4}\sin\theta$$

So locus of w is ellipse
$$\frac{x^2}{\left(\frac{17}{4}\right)^2} + \frac{y^2}{\left(\frac{15}{4}\right)^2} = 1$$

Locus of z is circle $x^2 + y^2 = 16$ So intersect at 4 points

63. A wire of length 20 m is to be cut into two pieces. A piece of length ℓ_1 is bent to make a square of area A₁ and the other piece of length ℓ_2 is made into a circle of area A₂. If 2A₁ + 3A₂ is minimum then $(\pi \ell_1)$: ℓ_2 is equal to:

Sol. $\ell_1 + \ell_2 = 20 \Rightarrow \frac{d\ell_2}{d\ell_1} = -1$ $A_1 = \left(\frac{\ell_1}{4}\right)^2$ and $A_2 = \pi \left(\frac{\ell_2}{2\pi}\right)^2$ Let $S = 2A_1 + 3A_2 = \frac{\ell_1^2}{8} + \frac{3\ell_2^2}{4\pi}$ $\frac{ds}{d\ell} = 0 \Rightarrow \frac{2\ell_1}{8} + \frac{6\ell_2}{4\pi} \cdot \frac{d\ell_2}{d\ell_1} = 0$ $\Rightarrow \frac{\ell_1}{4} = \frac{6\ell_2}{4\pi} \Rightarrow \frac{\pi\ell_1}{\ell_2} = 6$

∛Saral

C C						
64.	For the system of linear equations x + y + z = 6 $\alpha x + \beta y + 7z = 3$ x + 2y + 3z = 14, which of the following is NOT true ? (1) If $\alpha = \beta = 7$, then the system has no solution (2) If $\alpha = \beta$ and $\alpha \neq 7$ then the system has a unique solution. (3) There is a unique point (α , β) on the line x + 2y + 18 = 0 for which the system has infinitely many solutions (4) For every point (α , β) \neq (7, 7) on the line x - 2y + 7 = 0, the system has infinitely many solutions. Official Ans. by NTA (4)	Sol.	$\overrightarrow{b_{1} \times b_{2}} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & 1 \\ 1 & 1 & -1 \end{vmatrix} = -\hat{i} - \hat{j} - 2\hat{k}$ $\overrightarrow{a_{2}} - \overrightarrow{a_{1}} = 6\hat{i} + (\lambda - 1)\hat{j} + (-\lambda - 4)\hat{k}$ $2\sqrt{6} = \left \frac{-6 - \lambda + 1 + 2\lambda + 8}{\sqrt{1 + 1 + 4}}\right $ $ \lambda + 3 = 12 \Longrightarrow \lambda = 9, -15$ $\alpha = -2k + 5, \ \gamma = k - \lambda \text{ where } k \in \mathbb{R}$ $\Rightarrow \alpha + 2\gamma = 5 - 2\lambda = -13, 35$ Let $y = f(x)$ represent a parabola with focus $\left(-\frac{1}{2}, 0\right) \text{ and directrix } y = -\frac{1}{2}.$ Then $S = \left\{x \in \mathbb{R} : \tan^{-1}\left(\sqrt{f(x)} + \sin^{-1}\left(\sqrt{f(x) + 1}\right)\right) = \frac{\pi}{2}\right\}:$			
Sol.	Ans. (4) By equation 1 and 3 $y + 2z = 8$ y = 8 - 2z		 (1) contains exactly two elements (2) contains exactly one element (3) is an infinite set 			
	And $x = -2 + z$ Now putting in equation 2 $\alpha(z-2) + \beta(-2z+8) + 7z = 3$ $\Rightarrow (x - 20 + 7) = -2x - 80 + 2$		(4) is an empty set Official Ans. by NTA (1) Ans. (1)			
	$\Rightarrow (\alpha - 2\beta + 7)z = 2\alpha - 8\beta + 3$ So equations have unique solution if $\alpha - 2\beta + 7 \neq 0$	Sol.	$\left(x + \frac{1}{2}\right)^2 = \left(y + \frac{1}{4}\right)$ $y = \left(x^2 + x\right)$			
	And equations have no solution if $\alpha - 2\beta + 7 = 0$ and $2\alpha - 8\beta + 3 \neq 0$		$\tan^{-1}\sqrt{x(x+1)} + \sin^{-1}\sqrt{x^2 + x + 1} = \frac{\pi}{2}$ $0 \le x^2 + x + 1 \le 1$			
65.	And equations have infinite solution if $\alpha - 2\beta + 7 = 0$ and $2\alpha - 8\beta + 3 = 0$ Let the shortest distance between the lines		$x^{2} + x \le 0 \qquad \dots \dots (1)$ Also $x^{2} + x \ge 0 \qquad \dots \dots (2)$ $\therefore x^{2} + x = 0 \Longrightarrow x = 0, -1$ S contains 2 element. $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$			
	L : $\frac{x-5}{-2} = \frac{y-\lambda}{0} = \frac{z+\lambda}{1}$, $\lambda \ge 0$ and L ₁ : $x + 1 = y - 1 = 4 - z$ be $2\sqrt{6}$. If (α, β, γ) lies on L, then which					
	of the following is NOT possible? (1) $\alpha + 2\gamma = 24$	67.	Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{pmatrix}$. Then the sum of the			
	(1) $\alpha + 2\gamma = 24$ (2) $2\alpha + \gamma = 7$ (3) $2\alpha - \gamma = 9$		diagonal elements of the matrix $(A + I)^{11}$ is equal to: (1) 6144 (2) 4094			
	$(3) 2\alpha - \gamma = 9$ $(4) \alpha - 2\gamma = 19$		(1) 6144 (2) 4094 (3) 4097 (4) 2050			
	(4) $\alpha = 2\gamma = 19$ Official Ans. by NTA (1)		Official Ans. by NTA (3)			
	Ans. (1)		Ans. (3)			

2

Saral

Sol.	$A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix}$						
	$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix} = \mathbf{A}$						
	$\Rightarrow A^3 = A^4 = \dots = A$						
	$(A + I)^{11} = {}^{11}C_0A^{11} + {}^{11}C_1A^{10} + \dots {}^{11}C_{10}A + {}^{11}C_{11}I$ $= ({}^{11}C_0 + {}^{11}C_1 + \dots {}^{11}C_{10})A + I$ $= (2{}^{11}-1)A + I = 2047A + I$						
	\therefore Sum of diagonal elements = 2047(1 + 4 - 3) + 3						
	= 4094 + 3 = 4097						
68.	Let R be a relation on N \times N defined by (a, b) R						
	(c, d) if and only if $ad(b - c) = bc(a - d)$. Then R is						
	(1) symmetric but neither reflexive nor transitive						

(2) transitive but neither reflexive nor symmetric

(3) reflexive and symmetric but not transitive

(4) symmetric and transitive but not reflexive

Official Ans. by NTA (1)

Ans. (1)

Sol. (a, b) R (c, d) \Rightarrow ad(b - c) = bc(a - d)

Symmetric:

$$(c, d) R (a, b) \Rightarrow cb(d-a) = da(c-b) \Rightarrow$$

Symmetric

Reflexive:

 $(a, b) R (a, b) \Rightarrow ab(b-a) \neq ba(a-b) \Rightarrow$

Not reflexive

Transitive: (2,3) R (3,2) and (3,2) R (5,30) but

 $((2,3),(5,30)) \notin R \implies$ Not transitive

69. Let

$$y = f(x) = \sin^{3} \left(\frac{\pi}{3} \left(\cos \left(\frac{\pi}{3\sqrt{2}} \left(-4x^{3} + 5x^{2} + 1 \right)^{\frac{3}{2}} \right) \right) \right)$$
. Then, at x = 1,
(1) $2y' + \sqrt{3}\pi^{2}y = 0$
(2) $2y' + 3\pi^{2}y = 0$
(3) $\sqrt{2}y' - 3\pi^{2}y = 0$
(4) $y' + 3\pi^{2}y = 0$
Official Ans. by NTA (2)
Ans. (2)
Sol. $y = \sin^{3}(\pi/3\cos g(x))$
 $g(x) = \frac{\pi}{3\sqrt{2}} \left(-4x^{3} + 5x^{2} + 1 \right)^{3/2}$
 $g(1) = 2\pi/3$
 $y' = 3\sin^{2} \left(\frac{\pi}{3} \cos g(x) \right) \times \cos \left(\frac{\pi}{3} \cos g(x) \right)$
 $\times \frac{\pi}{3} \left(-\sin g(x) \right) g'(x)$
 $y'(1) = 3\sin^{2} \left(-\frac{\pi}{6} \right) \cdot \cos \left(\frac{\pi}{6} \right) \cdot \frac{\pi}{3} \left(-\sin \frac{2\pi}{3} \right) g'(1)$
 $g'(x) = \frac{\pi}{3\sqrt{2}} \left(-4x^{3} + 5x^{2} + 1 \right)^{1/2} \left(-12x^{2} + 10x \right)$
 $g'(1) = \frac{\pi}{2\sqrt{2}} \left(\sqrt{2} \right) \left(-2 \right) = -\pi$
 $y'(1) = \frac{\pi}{4} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\pi}{\beta} \left(-\frac{\sqrt{3}}{2} \right) \left(-\pi \right) = \frac{3\pi^{2}}{16}$
 $y(1) = \sin^{3}(\pi/3\cos 2\pi/3) = -\frac{1}{8}$
 $2y'(1) + 3\pi^{2}y(1) = 0$

70. If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296, respectively, then the sum of common ratios of all such GPs is

(1) 7 (2) $\frac{9}{2}$

(3) 3 (4) 14

Official Ans. by NTA (1)

Sol. a, ar, ar^2 , ar^3 (a, r > 0) $a^4r^6 = 1296$ $a^2r^3 = 36$ $a = \frac{6}{r^{3/2}}$ $a + ar + ar^2 + ar^3 = 126$ $\frac{1}{r^{3/2}} + \frac{r}{r^{3/2}} + \frac{r^2}{r^{3/2}} + \frac{r^3}{r^{3/2}} = \frac{126}{6} = 21$ $(r^{-3/2} + r^{3/2}) + (r^{1/2} + r^{-1/2}) = 21$ $r^{1/2} + r^{-1/2} = A$ $r^{-3/2} + r^{3/2} + 3A = A^3$ $A^3 - 3A + A = 21$ $A^3 - 2A = 21$ A = 3 $\sqrt{r} + \frac{1}{\sqrt{r}} = 3$ $r + 1 = 3\sqrt{r}$ $r^{2} + 2r + 1 = 9r$ $r^2 - 7r + 1 = 0$

∛Saral

The number of real roots of the equation 71. $\sqrt{x^2 - 4x + 3} + \sqrt{x^2 - 9} = \sqrt{4x^2 - 14x + 6}$, is: (1) 0 (2)1(3)3(4) 2Official Ans. by NTA (2) Ans. (2) **Sol.** $\sqrt{(x-1)(x-3)} + \sqrt{(x-3)(x+3)}$ $=\sqrt{4\left(x-\frac{12}{4}\right)\left(x-\frac{2}{4}\right)}$ $\Rightarrow \sqrt{x-3} = 0 \Rightarrow x = 3$ which is in domain $\sqrt{x-1} + \sqrt{x+3} = \sqrt{4x-2}$ $2\sqrt{(x-1)(x+3)} = 2x-4$ $x^{2} + 2x - 3 = x^{2} - 4x + 4$ 6x = 7x = 7/6 (rejected)

differentiable 72. Let function f satisfy а $f(x) + \int_{t}^{x} \frac{f(t)}{t} dt = \sqrt{x+1}, x \ge 3$. Then 12f(8) is equal to: (1)34(2) 19 (3) 17(4) 1Official Ans. by NTA (3) Ans. (3) Differentiate w.r.t. x Sol. $f'(x) + \frac{f(x)}{x} = \frac{1}{2\sqrt{x+1}}$ $I.F. = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ $xf(x) = \int \frac{x}{2\sqrt{x+1}} dx$ $x + 1 = t^2$ $=\int \frac{t^2-1}{2t} 2t dt$ $xf(x) = \frac{t^3}{3} - t + c$ $xf(x) = \frac{(x+1)^{3/2}}{3} - \sqrt{x+1} + c$ Also putting x = 3 in given equation $f(3) + 0 = \sqrt{4}$ f(3) = 2

$$\Rightarrow C = 8 - \frac{8}{3} = \frac{16}{3}$$

$$f(x) = \frac{\frac{(x+1)^{3/2}}{3} - \sqrt{x+1} + \frac{16}{3}}{x}$$

$$f(8) = \frac{9 - 3 + \frac{16}{3}}{8} = \frac{34}{24}$$

$$\Rightarrow 12 \ f(8) = 17$$

73.	If the domain of the function $f(x) = \frac{[x]}{1 + x^2}$, where						
	[x] is greatest integer \leq x, is [2, 6), then its range is						
	$(1)\left(\frac{5}{26},\frac{2}{5}\right] - \left\{\frac{9}{29},\frac{27}{109},\frac{18}{89},\frac{9}{53}\right\}$						
	$(2)\left(\frac{5}{26},\frac{2}{5}\right]$						
	$(3)\left(\frac{5}{37},\frac{2}{5}\right] - \left\{\frac{9}{29},\frac{27}{109},\frac{18}{89},\frac{9}{53}\right\}$						
	$(4)\left(\frac{5}{37},\frac{2}{5}\right]$						
	Official Ans. by NTA (4)						

Sol.
$$f(x) = \frac{2}{1+x^2}$$
 $x \in [2,3)$
 $f(x) = \frac{3}{1+x^2}$ $x \in [3,4)$
 $f(x) = \frac{4}{1+x^2}$ $x \in [4,5)$
 $f(x) = \frac{5}{1+x^2}$ $x \in [5,6)$
 $2^{1/5}$ $x \in [5,6)$
 $1^{1/5}$ $x \in [5,6)$
 $2^{1/5}$ $x \in [5,6)$
 $2^{1/5}$ $x \in [5,6]$
 $1^{1/5}$ $x \in [5,6]$

74. Let
$$\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$$
, and \vec{b} and \vec{c} be two nonzero
vectors such that $|\vec{a} + \vec{b} + \vec{c}| = |\vec{a} + \vec{b} - \vec{c}|$ and
 $\vec{b}.\vec{c} = 0$. Consider the following two statement:
(A) $|\vec{a} + \lambda \vec{c}| \ge |\vec{a}|$ for all $\lambda \in \mathbb{R}$.
(B) \vec{a} and \vec{c} are always parallel
(1) only (B) is correct
(2) neither (A) nor (B) is correct
(3) only (A) is correct

(4) both (A) and (B) are correct.

Ans. (3)

Sol.
$$|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a} + \vec{b} - \vec{c}|^2$$

 $2\vec{a}.\vec{b} + 2\vec{b}.\vec{c} + 2\vec{c}.\vec{a} = 2\vec{a}.\vec{b} - 2\vec{b}.\vec{c} - 2\vec{c}.\vec{a}$
 $4\vec{a}.\vec{c} = 0$
B is incorrect
 $|\vec{a} + \lambda \vec{c}|^2 \ge |\vec{a}|^2$
 $\lambda^2 c^2 \ge 0$
True $\forall \lambda \in \mathbb{R}$ (A) is correct.
75. Let $\alpha \in (0, 1)$ and $\beta = \log_e(1 - \alpha)$. Let
 $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}, x \in (0, 1)$.
Then the integral $\int_0^{\alpha} \frac{t^{50}}{1 - t} dt$ is equal to
(1) $\beta - P_{50}(\alpha)$
(2) $-(\beta + P_{50}(\alpha))$
(3) $P_{50}(\alpha) - \beta$
(4) $\beta + P_{50}(\alpha)$

*****Saral

Official Ans. by NTA (2)

Ans. (2)

75.

Sol.
$$\int_{0}^{\alpha} \frac{t^{50} - 1 + 1}{1 - t} = -\int_{0}^{\alpha} \left(1 + t + \dots + t^{49} \right) + \int_{0}^{\alpha} \frac{1}{1 - t} dt$$
$$= -\left(\frac{\alpha^{50}}{50} + \frac{\alpha^{49}}{49} + \dots + \frac{\alpha^{1}}{1} \right) + \left(\frac{\ln(1 - f)}{-1} \right)_{0}^{\alpha}$$
$$= -P_{50}(\alpha) - \ln(1 - \alpha)^{\gamma}$$
$$= -P_{50}(\alpha) - \beta$$

If $\sin^{-1}\frac{\alpha}{17} + \cos^{-1}\frac{4}{5} - \tan^{-1}\frac{77}{36} = 0$, $0 < \alpha < 13$, 76.

then $\sin^{-1}(\sin \alpha) + \cos^{-1}(\cos \alpha)$ is equal to

 $(1) \pi$ (2) 16 (3) 0 (4) $16 - 5\pi$ Official Ans. by NTA (1)

Ans. (1)

Final JEE-Main
Sol.
$$\cos^{-1}\frac{4}{5} = \tan^{-1}\frac{3}{4}$$

 $\therefore \sin^{-1}\frac{\alpha}{17} = \tan^{-1}\frac{77}{36} - \tan^{-1}\frac{3}{4} = \tan^{-1}\left(\frac{\frac{77}{36} - \frac{3}{4}}{1 + \frac{77}{36} \cdot \frac{3}{4}}\right)$
 $\sin^{-1}\frac{\alpha}{17} = \tan^{-1}\frac{8}{15} = \sin^{-1}\frac{8}{17}$
 $\Rightarrow \frac{\alpha}{17} = \frac{8}{17} \Rightarrow \alpha = 8$
 $\therefore \sin^{-1}(\sin 8) + \cos^{-1}(\cos 8)$
 $= 3\pi - 8 + 8 - 2\pi$
 $= \pi$

77. Let a circle C_1 be obtained on rolling the circle $x^2 + y^2 - 4x - 6y + 11 = 0$ upwards 4 units on the tangent T to it at the point (3, 2). Let C_2 be the image of C_1 in T. Let A and B be the centers of circles C_1 and C_2 respectively, and M and N be respectively the feet of perpendiculars drawn from A and B on the x-axis. Then the area of the trapezium AMNB is :

(1)
$$2(2+\sqrt{2})$$

(2) $4(1+\sqrt{2})$

(3)
$$3 + 2\sqrt{2}$$

(4)
$$2(1+\sqrt{2})$$

Official Ans. by NTA (2)

Ans. (2)

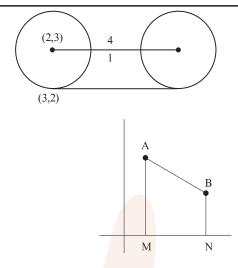
Sol.
$$C = (2, 3), r = \sqrt{2}$$

Centre of $G = A = 2 + 4 \frac{1}{\sqrt{2}},$
 $3 + \frac{4}{\sqrt{2}} = (2 + 2\sqrt{2}, 3 + 2\sqrt{2})$
 $A(2 + 2\sqrt{2}, 3 + 2\sqrt{2})$
 $B(4 + 2\sqrt{2}, 1 + 2\sqrt{2})$
 $r = (2 + 2\sqrt{2}), r = (2 + 2\sqrt{2})$

$$\frac{x - (2 + 2\sqrt{2})}{1} = \frac{y - (3 + 2\sqrt{2})}{-1} = 2$$

: area of trapezium:

$$\frac{1}{2} \left(4 + 4\sqrt{2} \right) 2 = 4 \left(1 + \sqrt{2} \right)$$



78. (S1)($p \Rightarrow q$) $\lor (p \land (\sim q))$ is a tautology

$$(S2)((\sim p) \Rightarrow (\sim q)) \land ((\sim p) \lor q)$$
 is a

Contradiction. Then

- (1) only (S2) is correct
- (2) both (S1) and (S2) are correct
- (3) both (S1) and (S2) are wrong
- (4) only (S1) is correct
- Official Ans. by NTA (4)

Ans. (4)

Sol.

р	q	p⇒q	~q	p∧~q	$(p \Rightarrow q) \lor (p \land \sim q)$
Т	Т	Т	F	F	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	F	Т
F	F	Т	Т	F	Т

~p	~q	~p ⇒~ q	~pvq	$((\sim p) \Rightarrow (\sim q)) \land (\sim p) \lor q)$
F	F	Т	Т	Т
F	Т	Т	F	F
Т	F	F	Т	F
Т	Т	Т	Т	Т

79. The value of
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{(2+3\sin x)}{\sin x(1+\cos x)} dx$$
 is equal to
(1) $\frac{7}{2} - \sqrt{3} - \log_{e} \sqrt{3}$
(2) $-2 + 3\sqrt{3} + \log_{e} \sqrt{3}$
(3) $\frac{10}{3} - \sqrt{3} + \log_{e} \sqrt{3}$
(4) $\frac{10}{3} - \sqrt{3} - \log_{e} \sqrt{3}$
Official Ans. by NTA (3)
Ans. (3)
Sol.
$$\int_{\pi/3}^{\pi/2} \frac{(2+3\sin x)}{\sin x(1+\cos x)} dx = 2 \int_{\pi/3}^{\pi/2} \frac{dx}{\sin x + \sin x \cos x} + 3$$

 $3 \int_{\pi/3}^{\pi/2} \frac{dx}{1+\cos x} = \int_{\pi/3}^{\pi/2} \frac{1-\cos x}{\sin^{2} x} dx$
 $= \int_{\pi/3}^{\pi/2} (\csc^{2} x - \cot x \csc x) dx$
 $= (\csc x - \cot x) \int_{\pi/3}^{\pi/2} = (1) - (\frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}}) = 1 - \frac{1}{\sqrt{3}}$
 $\int_{\pi/3}^{\pi/2} \frac{dx}{\sin x(1+\cos x)} = \int \frac{dx}{(2\tan x/2)(1+1-\tan^{2} \frac{x}{2})}$
 $= \int \frac{(1+\tan^{2} \frac{x}{2}) \sec^{2} \frac{x}{2} dx}{2\tan \frac{x}{2}2}$
 $\tan \frac{x}{2} = t$ $\sec \frac{x}{2} \frac{1}{2} dx = dt$
 $\frac{1}{2} \int (\frac{1+t^{2}}{t}) dt = \frac{1}{2} [t + \frac{t^{2}}{t^{2}}]_{\frac{1}{\sqrt{5}}}^{1}$
 $= \frac{1}{2} [(0 + \frac{1}{2}) - (t + \frac{1}{\sqrt{3}} + \frac{1}{6})] = (\frac{1}{3} + t + n\sqrt{3}) \frac{1}{2}$
 $= (\frac{1}{6} + \frac{1}{2} t + n\sqrt{3}) + 3(1 - \frac{1}{\sqrt{3}})$
 $2(\frac{1}{6} + \frac{1}{2} t + n\sqrt{3} + 3 - \sqrt{3} = \frac{10}{3} + t + n\sqrt{3} - \sqrt{3}$

80. A bag contains 6 balls. Two balls are drawn from it at random and both are found to be black. The probability that the bag contains at least 5 black balls is

57
27
37
4) 5/6

Official Ans. by NTA (1)

Ans. (1)
Sol.
$$\frac{{}^{5}C_{2} + {}^{6}C_{2}}{{}^{2}C_{2} + {}^{3}C_{2} + {}^{4}C_{2} + {}^{5}C_{2} + {}^{8}C_{2}} = \frac{10 + 15}{1 + 3 + 6 + 10 + 15}$$
$$= \frac{25}{35} = \frac{5}{7}$$
SECTION-B

81. Let 5 digit numbers be constructed using the digits 0, 2, 3, 4, 7, 9 with repetition allowed, and are arranged in ascending order with serial numbers. Then the serial number of the number 42923 is

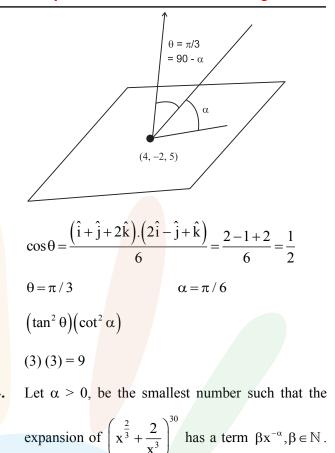
Official Ans. by NTA (2997)

Ans. (2997)
Sol.
$$2_{\frac{+}{6},$$

<mark>∛Saral</mark>

Final JEE-Main Exam January, 2023/31-01-2023/Morning Session

Let a_1, a_2, \ldots, a_n be in A.P. If $a_5 = 2a_7$ and 82. $a_{11} = 18$, then $12\left(\frac{1}{\sqrt{a_{12}}+\sqrt{a_{12}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\dots,\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to _____. Official Ans. by NTA (8) Ans. (8) Sol. $2a_7 = a_5$ (given) $2(a_1 + 6d) = a_1 + 4d$ $a_1 + 8d = 0$(1) $a_1 + 10d = 18$(2) 84. By (1) and (2) we get $a_1 = -72$, d = 9 $a_{18} = a_1 + 17d = -72 + 153 = 81$ $a_{10} = a_1 + 9d = 9$ $12\left(\frac{\sqrt{a_{11}} - \sqrt{a_{10}}}{d} + \frac{\sqrt{a_{12}} - \sqrt{a_{11}}}{d} + \dots + \frac{\sqrt{a_{18}} - \sqrt{a_{17}}}{d}\right)$ S $12\left(\frac{\sqrt{a_{18}} - \sqrt{a_{10}}}{d}\right) = \frac{12(9-3)}{9} = \frac{12 \times 6}{6} = 8$ Let θ be the angle between the planes 83. $P_1 = \vec{r} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 9$ and $P_2 = \vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 15$. Let L be the line that meets P_2 at the point (4, -2, 5) and makes an angle θ with the normal of P₂. If α is the angle between L and P₂ then $(\tan^2\theta)(\cot^2\alpha)$ is equal to . Official Ans. by NTA (9) Ans. (9)



Then α is equal to

Official Ans. by NTA (2)

Ans. (2)

Fol.
$$T_{r+1} = {}^{30}C_r (x^{2/3})^{30-r} (\frac{2}{x^3})^r$$

 $= {}^{30}C_r \cdot 2^r \cdot x^{\frac{60-11r}{3}}$
 $\frac{60-11r}{3} < 0 \implies 11r > 60 \implies r > \frac{60}{11} \implies r = 6$
 $T_7 = {}^{30}C_6 \cdot 2^6 x^{-2}$
We have also observed $\beta = {}^{30}C_6 (2)^6$ is a natural number.

 $\therefore \alpha = 2$

85. Let \vec{a} and \vec{b} be two vector such that $|\vec{a}| = \sqrt{14}$, $|\vec{b}| = \sqrt{6}$ and $|\vec{a} \times \vec{b}| = \sqrt{48}$. Then $(\vec{a}.\vec{b})^2$ is equal to

Official Ans. by NTA (36)

Ans. (36)

Sol.
$$|\vec{a}| = \sqrt{14}$$
, $|\vec{b}| = \sqrt{6}$ $|\vec{a} \times \vec{b}| = \sqrt{48}$
 $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = |\vec{a}|^2 \times |\vec{b}|^2$
 $\Rightarrow (\vec{a} \cdot \vec{b})^2 = 84 - 48 = 36$

86. Let the line $L: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{1}$ intersect the plane 2x + y + 3z = 16 at the point P. Let the point Q be the foot of perpendicular from the point R(1, -1, -3) on the line L. If α is the area of triangle PQR. then α^2 is equal to _____.

Official Ans. by NTA (180)

Ans. (180)

Sol. Any point on L(
$$(2\lambda+1), (-\lambda-1), (\lambda+3)$$
)

$$2(2\lambda+1)+(-\lambda-1)+3(\lambda+3)=16$$

 $6\lambda + 10 = 16 \Longrightarrow \lambda = 1$

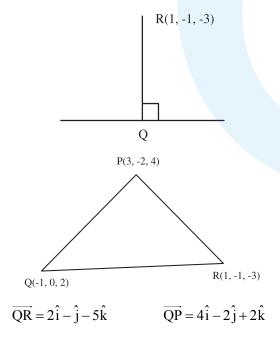
:
$$P = (3, -2, 4)$$

DR of QR =
$$\langle 2\lambda, -\lambda, \lambda + 6 \rangle$$

DR of L = $\langle 2, -1, 1 \rangle$

 $4\lambda + \lambda + \lambda + 6 = 0$ $6\lambda + 6 = 0 \Longrightarrow \lambda = -1$

$$Q = (-1, 0, 2)$$



$$\overrightarrow{QR} \times \overrightarrow{QP} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & -5 \\ 4 & -2 & 2 \end{vmatrix} = -12\hat{i} - 24\hat{j}$$
$$\alpha = \frac{1}{2} \times \sqrt{144 + 576} \Rightarrow \alpha^2 = \frac{720}{2} = 180$$

87. The remainder on dividing
$$5^{99}$$
 by 11 is _____

Official Ans. by NTA (9)

Sol.
$$5^{99} = 5^4 \cdot 5^{95}$$

 $= 625[5^5]^{19}$
 $= 625[3125]^{19}$
 $= 625[3124+1]^{19}$
 $= 625[11k \times 19 + 1]$
 $= 625 \times 11k \times 19 + 625$
 $= 11 k_1 + 616 + 9$
 $= 11(k_2) + 9$
Remainder = 9

88. If the variance of the frequency distribution

Xi	2	3	4	5	6	7	8
Frequency f _i	3	6	16	α	9	5	6

Official Ans. by NTA (5)

Sol.

$$\sigma_{x}^{2} = \sigma_{d}^{2} = \frac{\sum f_{i} d_{i}^{2}}{\sum f_{i}} - \left(\frac{\sum f_{i} d_{i}}{\sum f_{i}}\right)^{2}$$

$$=\frac{150}{45+\alpha} - 0 = 3$$
$$\Rightarrow 150 = 135 + 3\alpha$$
$$\Rightarrow 3\alpha = 15 \Rightarrow \alpha = 5$$

 $89. \quad \text{Let for } x \in \mathbb{R}$

$$f(x) = \frac{x + |x|}{2}$$
 and $g(x) = \begin{cases} x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$

Then area bounded by the curve y = (fog)(x) and the lines y = 0, 2y - x = 15 is equal to _____.

Official Ans. by NTA (72)

Ans. (72)

- **Sol.** $f(x) = \frac{x+|x|}{2} = \begin{bmatrix} x & x \ge 0\\ 0 & x < 0 \end{bmatrix}$ $g(x) = \begin{bmatrix} x^2 & x \ge 0 \\ x & x < 0 \end{bmatrix}$ $fog(x) = f[g(x)] = \begin{bmatrix} g(x) & g(x) \ge 0 \\ 0 & g(x) < 0 \end{bmatrix}$ $fog(x) = \begin{bmatrix} x^2 & x \ge 0 \\ 0 & x < 0 \end{bmatrix}$ 2y - x = 15 $A = \int_{-\infty}^{3} \left(\frac{x+15}{2} - x^{2} \right) dx + \frac{1}{2} \times \frac{15}{2} \times 15$ $\frac{x^2}{4} + \frac{15x}{2} - \frac{x^3}{3} \Big|_{a}^{3} + \frac{225}{4}$ $=\frac{9}{4}+\frac{45}{2}-9+\frac{225}{4}=\frac{99-36+225}{4}$ $=\frac{288}{4}=72$ (3, 9) (0, 15/2)(-15, 0)
- Number of 4-digit numbers that are less than or 90. equal to 2800 and either divisible by 3 or by 11, is equal to _____. Official Ans. by NTA (710) Ans. (710) Sol. 1000 - 2799Divisible by 3 1002 + (n-1)3 = 2799n = **600** Divisible by 11 $1 - 2799 \rightarrow \boxed{\frac{2799}{11}} = [254] = 254$ $1 - 999 = \boxed{\frac{999}{11}} = 90$ 1000 - 2799 = 254 - 90 = 164Divisible by 33 $1-2799 \rightarrow \left\lceil \frac{2799}{33} \right\rceil = 84$ $1-999 \rightarrow \left\lceil \frac{999}{33} \right\rceil = 30$ $1000 - 2799 \rightarrow 54$ \therefore n(3) + n(11) - n(33) 600 + 164 - 54 = 710