FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

MATHEMATICS

SECTION-A

61. The domain of $f(x)=\frac{\log _{(x+1)}(x-2)}{e^{2 \log _{c} x}-(2 x+3)}, x \in R$ is
(1) $\mathbb{R}-\{1-3\}$
(2) $(2, \infty)-\{3\}$
(3) $(-1, \infty)-\{3\}$
(4) $\mathbb{R}-\{3\}$

Official Ans. by NTA (2)
Ans. (2)
Sol. $\mathrm{x}-2>0 \Rightarrow \mathrm{x}>2$
$\mathrm{x}+1>0 \Rightarrow \mathrm{x}>-1$
$\mathrm{x}+1 \neq 1 \Rightarrow \mathrm{x} \neq 0$ and $\mathrm{x}>0$
Denominator
$x^{2}-2 x-3 \neq 0$
$(x-3)(x+1) \neq 0$
$x \neq-1,3$
So Ans $(2, \infty)-\{3\}$
62. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function such that $f(x)=\frac{x^{2}+2 x+1}{x^{2}+1}$. Then
(1) $f(x)$ is many-one in $(-\infty,-1)$
(2) $f(x)$ is many-one in $(1, \infty)$
(3) $f(x)$ is one-one in $[1, \infty)$ but not in $(-\infty, \infty)$
(4) $f(x)$ is one-one in $(-\infty, \infty)$

Official Ans. by NTA (3)
Ans. (3)

Sol.

$f(x)=\frac{(x+1)^{2}}{x^{2}+1}=1+\frac{2 x}{x^{2}+1}$
$f(x)=1+\frac{2}{x+\frac{1}{x}}$

TEST PAPER WITH SOLUTION

63. For two non-zero complex number z_{1} and z_{2}, if $\operatorname{Re}\left(z_{1} z_{2}\right)=0$ and $\operatorname{Re}\left(z_{1}+z_{2}\right)=0$, then which of the following are possible ?
(A) $\operatorname{Im}\left(\mathrm{z}_{1}\right)>0$ and $\operatorname{Im}\left(\mathrm{z}_{2}\right)>0$
(B) $\operatorname{Im}\left(\mathrm{z}_{1}\right)<0$ and $\operatorname{Im}\left(\mathrm{z}_{2}\right)>0$
(C) $\operatorname{Im}\left(\mathrm{z}_{1}\right)>0$ and $\operatorname{Im}\left(\mathrm{z}_{2}\right)<0$
(D) $\operatorname{Im}\left(\mathrm{Z}_{1}\right)<0$ and $\operatorname{Im}\left(\mathrm{Z}_{2}\right)<0$

Choose the correct answer from the options given below :
(1) B and D
(2) B and C
(3) A and B
(4) A and C

Official Ans. by NTA (2)
Ans. (2)

Sol. $\quad z_{1}=x_{1}+i y_{1}$
$\mathrm{z}_{2}=\mathrm{x}_{2}+\mathrm{iy} \mathrm{y}_{2}$
$\operatorname{Re}\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=\mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{y}_{1} \mathrm{y}_{2}=0$
$\operatorname{Re}\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right)=\mathrm{x}_{1}+\mathrm{x}_{2}=0$
$x_{1} \& x_{2}$ are of opposite sign
$y_{1} \& y_{2}$ are of opposite sign
64. Let $\lambda \neq 0$ be a real number. Let α, β be the roots of the equation $14 x^{2}-31 \mathrm{x}+3 \lambda=0$ and α, γ be the roots of the equation $35 x^{2}-53 x+4 \lambda=0$. Then $\frac{3 \alpha}{\beta}$ and $\frac{4 \alpha}{\gamma}$ are the roots of the equation :
(1) $7 x^{2}+245 x-250=0$
(2) $7 \mathrm{x}^{2}-245 \mathrm{x}+250=0$
(3) $49 x^{2}-245 x+250=0$
(4) $49 x^{2}+245 x+250=0$

Official Ans. by NTA (3)
Ans. (3)

Sol. $\quad 14 x^{2}-31 \mathrm{x}+3 \lambda=0$

$$
\begin{align*}
& \alpha+\beta=\frac{31}{14} \ldots .(1) \text { and } \alpha \beta=\frac{3 \lambda}{14} \tag{2}\\
& 35 x^{2}-53 x+4 \lambda=0 \\
& \alpha+\gamma=\frac{53}{35} \ldots .(3) \text { and } \alpha \gamma=\frac{4 \lambda}{35}
\end{align*}
$$

$\frac{(2)}{(4)} \Rightarrow \frac{\beta}{\gamma}=\frac{3 \times 35}{4 \times 14}=\frac{15}{8} \Rightarrow \beta=\frac{15}{8} \gamma$
$(1)-(3) \Rightarrow \beta-\gamma=\frac{31}{14}-\frac{53}{35}=\frac{155-106}{70}=\frac{7}{10}$
$\frac{15}{8} \gamma-\gamma=\frac{7}{10} \Rightarrow \gamma=\frac{4}{5}$
$\Rightarrow \beta=\frac{15}{8} \times \frac{4}{5}=\frac{3}{2}$
$\Rightarrow \alpha=\frac{31}{14}-\beta=\frac{31}{14}-\frac{3}{2}=\frac{5}{7}$
$\Rightarrow \lambda=\frac{14}{3} \alpha \beta=\frac{14}{3} \times \frac{5}{7} \times \frac{3}{2}=5$
so, sum of roots $\frac{3 \alpha}{\beta}+\frac{4 \alpha}{\gamma}=\left(\frac{3 \alpha \gamma+4 \alpha \beta}{\beta \gamma}\right)$

$$
\begin{aligned}
& =\frac{\left(3 \times \frac{4 \lambda}{35}+4 \times \frac{3 \lambda}{14}\right)}{\beta \gamma}=\frac{12 \lambda(14+35)}{14 \times 35 \beta \gamma} \\
& =\frac{49 \times 12 \times 5}{490 \times \frac{3}{2} \times \frac{4}{5}}=5
\end{aligned}
$$

Product of roots

$$
=\frac{3 \alpha}{\beta} \times \frac{4 \alpha}{\gamma}=\frac{12 \alpha^{2}}{\beta \gamma}=\frac{12 \times \frac{25}{49}}{\frac{3}{2} \times \frac{4}{5}}=\frac{250}{49}
$$

So, required equation is $x^{2}-5 x+\frac{250}{49}=0$
$\Rightarrow 49 \mathrm{x}^{2}-245 \mathrm{x}+250=0$
65. Consider the following system of questions

$$
\begin{aligned}
& \alpha x+2 y+z=1 \\
& 2 \alpha x+3 y+z=1 \\
& 3 x+\alpha y+2 z=\beta
\end{aligned}
$$

For some $\alpha, \beta \in \mathbb{R}$. Then which of the following is NOT correct.
(1) It has no solution if $\alpha=-1$ and $\beta \neq 2$
(2) It has no solution for $\alpha=-1$ and for all $\beta \in \mathbb{R}$
(3) It has no solution for $\alpha=3$ and for all $\beta \neq 2$
(4) It has a solution for all $\alpha \neq-1$ and $\beta=2$

Official Ans. by NTA (2)

Ans. (2)
Sol. $D=\left|\begin{array}{ccc}\alpha & 2 & 1 \\ 2 \alpha & 3 & 1 \\ 3 & \alpha & 2\end{array}\right|=0 \Rightarrow \alpha=-1,3$
$D_{x}=\left|\begin{array}{lll}2 & 1 & 1 \\ 3 & 1 & 1 \\ \alpha & 2 & \beta\end{array}\right|=0 \Rightarrow \beta=2$
$D_{y}=\left|\begin{array}{ccc}\alpha & 1 & 1 \\ 2 \alpha & 1 & 1 \\ 3 & 2 & \beta\end{array}\right|=0$
$D_{z}=\left|\begin{array}{ccc}\alpha & 2 & 1 \\ 2 \alpha & 3 & 1 \\ 3 & \alpha & \beta\end{array}\right|=0$
$\beta=2, \alpha=-1$
$\alpha=-1, \beta=2$ Infinite solution
66. Let α and β be real numbers. Consider a 3×3 matrix A such that $A^{2}=3 A+\alpha I$. If $A^{4}=21 A+\beta I$, then
(1) $\alpha=1$
(2) $\alpha=4$
(3) $\beta=8$
(4) $\beta=-8$

Official Ans. by NTA (4)
Ans. (4)

Sol. $\quad A^{2}=3 \mathrm{~A}+\alpha \mathrm{I}$
$A^{3}=3 A^{2}+\alpha A$
$\mathrm{A}^{3}=3(3 \mathrm{~A}+\alpha \mathrm{I})+\alpha \mathrm{A}$
$\mathrm{A}^{3}=9 \mathrm{~A}+\alpha \mathrm{A}+3 \alpha \mathrm{I}$
$A^{4}=(9+\alpha) A^{2}+3 \alpha A$
$=(9+\alpha)(3 \mathrm{~A}+\alpha \mathrm{I})+3 \alpha \mathrm{~A}$
$=\mathrm{A}(27+6 \alpha)+\alpha(9+\alpha)$
$\Rightarrow 27+6 \alpha=21 \Rightarrow \alpha=-1$
$\Rightarrow \beta=\alpha(9+\alpha)=-8$
67. Let $x=2$ be a root of the equation $x^{2}+p x+q=0$
and $f(x)=\left\{\begin{array}{cc}\frac{1-\cos \left(x^{2}-4 p x+q^{2}+8 q+16\right)}{(x-2 p)^{4}}, & x \neq 2 p \\ 0, & x=2 p\end{array}\right.$
Then $\lim _{x \rightarrow 2 p^{+}}[f(x)]$
where [.] denotes greatest integer function, is
(1) 2
(2) 1
(3) 0
(4) -1

Official Ans. by NTA (3)

Ans. (3)

Sol.

$\lim _{x \rightarrow 2 p^{+}}\left(\frac{1-\cos \left(x^{2}-4 p x+q^{2}+8 q+16\right)}{\left(x^{2}-4 p x+q^{2}+8 q+16\right)^{2}}\right)\left(\frac{\left(x^{2}-4 p x+q^{2}+8 q+16\right)^{2}}{(x-2 p)^{2}}\right)$
$\lim _{h \rightarrow 0} \frac{1}{2}\left(\frac{(2 p+h)^{2}-4 p(2 p+h)+q^{2}+82+16}{h^{2}}\right)^{2}=\frac{1}{2}$
Using L'Hospital's

$$
\lim _{x \rightarrow 2 \mathrm{p}^{+}}[f(x)]=0
$$

68. Let $f(x)=x+\frac{a}{\pi^{2}-4} \sin x+\frac{b}{\pi^{2}-4} \cos x$, $x \in \mathbb{R}$ be a function which satisfies $f(x)=x+\int_{0}^{\pi / 2} \sin (x+y) f(y) d y$. Then $(\mathrm{a}+\mathrm{b})$ is equal to
(1) $-\pi(\pi+2)$
(2) $-2 \pi(\pi+2)$
(3) $-2 \pi(\pi-2)$
(4) $-\pi(\pi-2)$

Official Ans. by NTA (2)

Sol. $f(x)=x+\int_{0}^{\pi / 2}(\sin x \cos y+\cos x \sin y) f(y) d y$
$f(x)=x+\int_{0}^{\pi / 2}((\cos y f(y) d y) \sin x+(\sin y f(y) d y) \cos x)$
On comparing with
$f(x)=x+\frac{a}{\pi^{2}-4} \sin x+\frac{b}{\pi^{2}-4} \cos x, x \in \mathbb{R}$ then
$\Rightarrow \frac{a}{\pi^{2}-4}=\int_{0}^{\pi / 2} \cos y f(y) d y$
$\Rightarrow \frac{b}{\pi^{2}-4}=\int_{0}^{\pi / 2} \sin y f(y) d y$
Add (2) and (3)

$$
\begin{align*}
& \frac{a+b}{\pi^{2}-4}=\int_{0}^{\pi / 2}(\sin y+\cos y) f(y) d y \ldots \tag{4}\\
& \frac{a+b}{\pi^{2}-4}=\int_{0}^{\pi / 2}(\sin y+\cos y) f\left(\frac{\pi}{2}-y\right) d y \tag{5}
\end{align*}
$$

Add (4) and (5)

$$
\begin{aligned}
& \begin{aligned}
\frac{2(a+b)}{\pi^{2}-4} & =\int_{0}^{\pi / 2}(\sin y+\cos y)\left(\frac{\pi}{2}+\frac{(a+b)}{\pi^{2}-4}(\sin y+\cos y)\right) d y \\
& =\pi+\frac{a+b}{\pi^{2}-4}\left(\frac{\pi}{2}+1\right) \\
(a+b) & =-2 \pi(\pi+2)
\end{aligned}
\end{aligned}
$$

69. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0,2 x \leq y \leq \sqrt{4-(x-1)^{2}}\right\}$ and $\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R} \times \mathbb{R}: 0 \leq \mathrm{y} \leq \min \left\{2 \mathrm{x}, \sqrt{4-(\mathrm{x}-1)^{2}}\right\}\right\}$ Then the ratio of the area of A to the area of B is
(1) $\frac{\pi-1}{\pi+1}$
(2) $\frac{\pi}{\pi-1}$
(3) $\frac{\pi}{\pi+1}$
(4) $\frac{\pi+1}{\pi-1}$

Official Ans. by NTA (1)

Ans. (1)

Ans. (2)

Sol. $y^{2}+(x-1)^{2}=4$

shaded portion $=$ circular (OABC)
$-\operatorname{Ar}(\triangle \mathrm{OAB})$
$=\frac{\pi(4)}{4}-\frac{1}{2}(2)(1)$
$\mathrm{A}=(\pi-1)$

Area $B=\operatorname{Ar}(\triangle A O B)+$ Area of arc of circle $(A B C)$
$=\frac{1}{2}(1)(2)+\frac{\pi(2)^{2}}{4}=\pi+1$
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{\pi-1}{\pi+1}$
70. Let Δ be the area of the region
$\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 21, y^{2} \leq 4 x, x \geq 1\right\}$. Then $\frac{1}{2}\left(\Delta-21 \sin ^{-1} \frac{2}{\sqrt{7}}\right)$ is equal to
(1) $2 \sqrt{3}-\frac{1}{3}$
(2) $\sqrt{3}-\frac{2}{3}$
(3) $2 \sqrt{3}-\frac{2}{3}$
(4) $\sqrt{3}-\frac{4}{3}$

Official Ans. by NTA (4)
Ans. (4)

Sol.

Area $2 \int_{1}^{3} 2 \sqrt{x} d x+2 \int_{3}^{\sqrt{21}} \sqrt{21-x^{2} d x}$
$\Delta=\frac{8}{3}(3 \sqrt{3}-1)+21 \sin ^{-1}\left(\frac{2}{\sqrt{7}}\right)-6 \sqrt{3}$
$\frac{1}{2}\left(\Delta-21 \sin ^{-1}\left(\frac{2}{\sqrt{7}}\right)\right)=\frac{2 \sqrt{3}-\frac{8}{3}}{2}$
$=\sqrt{3}-\frac{4}{3}$
71. A light ray emits from the origin making an angle 30° with the positive x-axis. After getting reflected by the line $x+y=1$, if this ray intersects x-axis at Q, then the abscissa of Q is
(1) $\frac{2}{(\sqrt{3}-1)}$
(2) $\frac{2}{3+\sqrt{3}}$
(3) $\frac{2}{3-\sqrt{3}}$
(4) $\frac{\sqrt{3}}{2(\sqrt{3}+1)}$

Official Ans. by NTA (2)
Ans. (2)
Sol. siupe of reflected ray $=\tan 60^{\circ}=\sqrt{3}$

Line $\mathrm{y}=\frac{\mathrm{x}}{\sqrt{3}}$ intersect $\mathrm{y}+\mathrm{x}=1$ at $\left(\frac{\sqrt{3}}{\sqrt{3}+1}, \frac{1}{\sqrt{3}+1}\right)$

Equation of reflected ray is
$y-\frac{1}{\sqrt{3}+1}=\sqrt{3}\left(x-\frac{\sqrt{3}}{\sqrt{3}+1}\right)$

Put $y=0 \Rightarrow x=\frac{2}{3+\sqrt{3}}$
72. Let B and C be the two points on the line $\mathrm{y}+\mathrm{x}=0$ such that B and C are symmetric with respect to the origin. Suppose A is a point on $\mathrm{y}-2 \mathrm{x}=2$ such that $\triangle \mathrm{ABC}$ is an equilateral triangle. Then, the area of the $\triangle \mathrm{ABC}$ is
(1) $3 \sqrt{3}$
(2) $2 \sqrt{3}$
(3) $\frac{8}{\sqrt{3}}$
(4) $\frac{10}{\sqrt{3}}$

Official Ans. by NTA (3)
Ans. (3)

Sol.

At A $x=y$
$Y-2 x=2$

$$
(-2,-2)
$$

Height from line $x+y=0$

$$
\mathrm{h}=\frac{4}{\sqrt{2}}
$$

Area of $\Delta=\frac{\sqrt{3}}{4} \quad \frac{\mathrm{~h}^{2}}{\sin ^{2} 60}=\frac{8}{\sqrt{3}}$
73. Let the tangents at the points $\mathrm{A}(4,-11)$ and $\mathrm{B}(8,-5)$ on the circle $x^{2}+y^{2}-3 x+10 y-15=0$, intersect at the point C . Then the radius of the circle, whose centre is C and the line joining A and B is its tangent, is equal to
(1) $\frac{3 \sqrt{3}}{4}$
(2) $2 \sqrt{13}$
(3) $\sqrt{13}$
(4) $\frac{2 \sqrt{13}}{3}$

Official Ans. by NTA (4)
Ans. (4)

Sol. Equation of tangent at $\mathrm{A}(4,-11)$ on circle is

$$
\begin{align*}
& \Rightarrow 4 x-11 y-3\left(\frac{x+4}{2}\right)+10\left(\frac{y-11}{2}\right)-15=0 \\
& \Rightarrow 5 x-12 y-152=0 \ldots . . \tag{1}
\end{align*}
$$

Equation of tangent at $\mathrm{B}(8,-5)$ on circle is

$$
\begin{aligned}
& \Rightarrow 8 x-5 y-3\left(\frac{x+8}{2}\right)+10\left(\frac{y-5}{2}\right)-15=0 \\
& \Rightarrow 13 x-104=0 \Rightarrow x=8
\end{aligned}
$$

$$
\text { put in }(1) \Rightarrow y=\frac{28}{3}
$$

$$
\mathrm{r}=\left|\frac{3.8+\frac{2.28}{3}-34}{\sqrt{13}}\right|=\frac{2 \sqrt{13}}{3}
$$

74. Let $[\mathrm{x}]$ denote the greatest integer $\leq \mathrm{x}$. Consider the function $f(x)=\max \left\{\mathrm{x}^{2}, 1+[\mathrm{x}]\right\}$. Then the value of the integral $\int_{0}^{2} f(x) d x$ is :
(1) $\frac{5+4 \sqrt{2}}{3}$
(2) $\frac{8+4 \sqrt{2}}{3}$
(3) $\frac{1+5 \sqrt{2}}{3}$
(4) $\frac{4+5 \sqrt{2}}{3}$

Official Ans. by NTA (1)

Ans. (1)

Sol.

$A=\int_{0}^{1} 1 \cdot d x+\int_{1}^{\sqrt{2}} 2 d x+\int_{\sqrt{2}}^{2} x^{2} d x$
$=1+2 \sqrt{2}-2+\frac{8}{3}-\frac{2 \sqrt{2}}{3}$
$=\frac{5}{3}+\frac{4 \sqrt{2}}{3}$
75. If the vectors $\vec{a}=\lambda \hat{i}+\mu \hat{j}+4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}+3 \hat{j}+\hat{k}$ are coplanar and the projection of \vec{a} on the vector \vec{b} is $\sqrt{54}$ units, then the sum of all possible values of $\lambda+\mu$ is equal to
(1) 0
(2) 6
(3) 24
(4) 18

Official Ans. by NTA (3)
Ans. (3)
Sol. $\left|\begin{array}{ccc}\lambda & \mu & 4 \\ -2 & 4 & -2 \\ 2 & 3 & 1\end{array}\right|=0$
$\lambda(10)-\mu(2)+4(-14)=0$
$10 \lambda-2 \mu=56$
$5 \lambda-\mu=28$
$\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}=\sqrt{54}$
$\frac{-2 \lambda+4 \mu-8}{\sqrt{24}}=\sqrt{54}$
$-2 \lambda+4 \mu-8=\sqrt{54 \times 24}$
By solving equation (1) \& (2)
$\Rightarrow \lambda+\mu=24$
76. Fifteen football players of a club-team are given 15 T-shirts with their names written on the backside. If the players pick up the T -shirts randomly, then the probability that at least 3 players pick the correct T-shirt is
(1) $\frac{5}{24}$
(2) $\frac{2}{15}$
(3) $\frac{1}{6}$
(4) $\frac{5}{36}$

Official Ans. by NTA (DROP)

Sol.

Required probability $=1-\frac{D_{(15)}+{ }^{15} C_{1} \cdot D_{(14)}+{ }^{15} C_{2} D_{(13)}}{15!}$
Taking $\mathrm{D}_{(15)}$ as $\frac{15!}{e}$
$\mathrm{D}_{(14)}$ as $\frac{14!}{e}$
$\mathrm{D}_{(13)}$ as $\frac{13!}{e}$
We get, $1-\left(\frac{\frac{15!}{e}+15 \cdot \frac{14!}{e}+\frac{15 \times 14}{2} \times \frac{13!}{e}}{15!}\right)$

$$
=1-\left(\frac{1}{e}+\frac{1}{e}+\frac{1}{2 e}\right)=1-\frac{5}{2 e} \approx .08
$$

77. Let $f(\theta)=3\left(\sin ^{4}\left(\frac{3 \pi}{2}-\theta\right)+\sin ^{4}(3 \pi+\theta)\right)-2\left(1-\sin ^{2} 2 \theta\right)$ and

$$
S=\left\{\theta \in[0, \pi]: f^{\prime}(\theta)=-\frac{\sqrt{3}}{2}\right\} . \text { If } 4 \beta=\sum_{\theta \in S} \theta
$$

then $f(\beta)$ is equal to
(1) $\frac{11}{8}$
(2) $\frac{5}{4}$
(3) $\frac{9}{8}$
(4) $\frac{3}{2}$

Official Ans. by NTA (2)
Ans. (2)

Sol.

$$
\begin{aligned}
& f(\theta)=3\left(\sin ^{4}\left(\frac{3 \pi}{2}-\theta\right)+\sin ^{4}(3 x+\theta)\right)-2\left(1-\sin ^{2} 2 \theta\right) \\
& S=\left\{\theta \in[0, \pi]: f^{\prime}(\theta)=-\frac{\sqrt{3}}{2}\right\} \\
& \Rightarrow f(\theta)=3\left(\cos ^{4} \theta+\sin ^{4} \theta\right)-2 \cos ^{2} 2 \theta
\end{aligned}
$$

$$
\Rightarrow f(\theta)=3\left(1-\frac{1}{2} \sin ^{2} 2 \theta\right)-2 \cos ^{2} 2 \theta
$$

$$
\Rightarrow \mathrm{f}(\theta)=3-\frac{3}{2} \sin ^{2} 2 \theta-2 \cos ^{2} \theta
$$

$$
=\frac{3}{2}-\frac{1}{2} \cos ^{2} 2 \theta=\frac{3}{2}-\frac{1}{2}\left(\frac{1+\cos 4 \theta}{2}\right)
$$

$$
f(\theta)=\frac{5}{4}-\frac{\cos 4 \theta}{4}
$$

$$
\mathrm{f}^{\prime}(\theta)=\sin 4 \theta
$$

$$
\Rightarrow f^{\prime}(\theta)=\sin 4 \theta=-\frac{\sqrt{3}}{2}
$$

$$
\Rightarrow 4 \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}
$$

$$
\Rightarrow \theta=\frac{\mathrm{n} \pi}{4}+(-1)^{\mathrm{n}} \frac{\pi}{12}
$$

$$
\begin{aligned}
& \Rightarrow \theta=\frac{\pi}{12},\left(\frac{\pi}{4}-\frac{\pi}{12}\right),\left(\frac{\pi}{2}+\frac{\pi}{12}\right),\left(\frac{3 \pi}{4}-\frac{\pi}{12}\right) \\
& \Rightarrow 4 \beta=\frac{\pi}{4}+\frac{\pi}{2}+\frac{3 \pi}{4}=\frac{3 \pi}{2} \\
& \Rightarrow \beta=\frac{3 \pi}{8} \Rightarrow f(\beta)=\frac{5}{4}-\frac{\cos \frac{3 \pi}{2}}{4}=\frac{5}{4}
\end{aligned}
$$

78. If p, q and r are three propositions, then which of the following combination of truth values of p, q and r makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?
(1) $p=T, q=F, r=T$
(2) $p=T, q=T, r=F$
(3) $p=F, q=T, r=F$
(4) $p=T, q=F, r=F$

Official Ans. by NTA (3)
Ans. (3)

Sol.

	p	q	r	$(\mathrm{p} \vee \mathrm{q}) \wedge((\sim \mathrm{p}) \vee \mathrm{r})$	$\sim \mathrm{q} \vee \mathrm{r}$
(1)	T	F	T	T	T
(2)	T	T	F	F	F
(3)	F	T	F	T	F
(4)	T	F	F	F	T

Option (3) $(p \vee q) \wedge(\sim q \vee r) \rightarrow(\sim p \vee r)$ will be False.
79. There rotten apples are mixed accidently with seven good apples and four apples are drawn one by one without replacement. Let the random variable X denote the number of rotten apples. If μ and σ^{2} represent mean and variance of X, respectively, then $10\left(\mu^{2}+\sigma^{2}\right)$ is equal to
(1) 20
(2) 250
(3) 25
(4) 30

Official Ans. by NTA (1)

Sol.

X	$P(x)$	$X P(X)$	$X^{2} P(X)$
0	$1 / 6$	0	0
1	$1 / 2$	$1 / 2$	$1 / 2$
2	$3 / 10$	$6 / 10$	$12 / 10$
3	$1 / 30$	$1 / 10$	$9 / 30$

$\sum \mathrm{xP}(\mathrm{x})=\frac{6}{2}=\mu$
$\sigma^{2}=\sum x^{2} P(x)-\mu^{2}$
$\sigma^{2}+\mu^{2}=0+\frac{1}{2}+\frac{12}{10}+\frac{9}{30}=2$

$$
10\left(\sigma^{2}+\mu^{2}\right)=20 \text { Ans. }
$$

80. Let $y=f(x)$ be the solution of the differential equation $y(x+1) d x-x^{2} d y=0, y(1)=e$. Then $\lim _{x \rightarrow 0^{+}} f(x)$ is equal to
(1) 0
(2) $\frac{1}{e}$
(3) e^{2}
(4) $\frac{1}{e^{2}}$

Official Ans. by NTA (1)
Ans. (1)
Sol. $\frac{x+1}{x^{2}} d x=\frac{d y}{y}$
$\ln x-\frac{1}{x}=\ln y+c$
(1, e)
$\mathrm{c}=-2$
$\ln x-\frac{1}{x}=\ln y-2$
$y=e^{\ln x}-\frac{1}{x}+2$
$\lim _{x \rightarrow 0^{+}} e^{\ln x-1}-\frac{1}{x}+2$
$=e^{-\infty}$
$=0$

Ans. (1)

SECTION-B

81. Let the co-ordinates of one vertex of $\triangle \mathrm{ABC}$ be $\mathrm{A}(0,2, \alpha)$ and the other two vertices lie on the line $\frac{x+\alpha}{5}=\frac{y-1}{2}=\frac{z+4}{3}$. For $\alpha \in \mathbb{Z}$, if the area of $\triangle A B C$ is 21 sq. units and the line segment $B C$ has length $2 \sqrt{21}$ units, then α^{2} is equal to \qquad -.

Official Ans. by NTA (9)
Ans. (9)
Sol. A. $\left(\mathrm{O}_{1} 2, \alpha\right)$

$$
\begin{aligned}
& \text { (- } \left.\alpha_{1} 1,-4\right) \\
& \left|\frac{1}{2} \cdot 2 \sqrt{21} \cdot\right| \begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\alpha & 1 & \alpha+4 \\
5 & 2 & 3
\end{array}\left|\frac{1}{\sqrt{25+4+9}}\right|=21 \sqrt{21} \\
& \sqrt{(2 \alpha+5)^{2}+(2 \alpha+20)^{2}+(2 \alpha-5)^{2}}=\sqrt{21} \sqrt{38} \\
& \Rightarrow 12 \alpha^{2}+80 \alpha+450=798 \\
& \Rightarrow 12 \alpha^{2}+80 \alpha-348=0 \\
& \Rightarrow \alpha=3 \Rightarrow \alpha^{2}=9
\end{aligned}
$$

82. Let the equation of the plane P containing the line $\mathrm{x}+10=\frac{8-\mathrm{y}}{2}=\mathrm{z}$ be $\mathrm{ax}+\mathrm{by}+3 \mathrm{z}=2(\mathrm{a}+\mathrm{b})$ and the distance of the plane P from the point $(1,27,7)$ be c. Then $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$ is equal to \qquad .

Official Ans. by NTA (355)

Ans. (355)

Sol. The line $\frac{x+10}{1}=\frac{y-8}{-2}=\frac{z}{1}$ have a point $(-10,8,0)$ with d. r. $(1,-2,1)$
\because the plane $\mathrm{ax}+\mathrm{by}+3 \mathrm{z}=2(\mathrm{a}+\mathrm{b})$
$\Rightarrow \mathrm{b}=2 \mathrm{a}$
\& dot product of d.r.'s is zero
$\therefore a-2 b+3=0$
$\therefore \mathrm{a}=1 \& \mathrm{~b}=2$
Distance from $(1,27,7)$ is
$c=\frac{1+54+21-6}{\sqrt{14}}=\frac{70}{\sqrt{14}}=5 \sqrt{14}$
$\therefore \mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=1+4+350$
$=355$
83. Suppose f is a function satisfying $f(x+y)=f(x)+f(y)$
for all $x, y \in \mathbb{N} \quad$ and $\quad f(1)=\frac{1}{5}$. If $\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then m is equal to \qquad -.

Official Ans. by NTA (10)
Ans. (10)
Sol. $\because f(1)=\frac{1}{5} \therefore f(2)=f(1)+f(1)=\frac{2}{5}$
$f(2)=\frac{2}{5} \quad f(3)=f(2)+f(1)=\frac{3}{5}$
$f(3)=\frac{3}{5}$
$\therefore \sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)}$
$=\frac{1}{5} \sum_{n=1}^{m}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)$
$=\frac{1}{5}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots .+\frac{1}{m+1}-\frac{1}{m+2}\right)$
$=\frac{1}{5}\left(\frac{1}{2}-\frac{1}{m+2}\right)=\frac{m}{10(m+2)}=\frac{1}{12}$
$\therefore m=10$
84. Let $a_{1}, a_{2}, a_{3}, \ldots$. be a GP of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24 , then $a_{1} a_{9}+a_{2} a_{4} a_{9}+a_{5}+a_{7}$ is equal to \qquad -.
Official Ans. by NTA (60)

Ans. (60)

Sol. $a_{4} \cdot a_{6}=9 \Rightarrow\left(a_{5}\right)^{2}=9 \Rightarrow a_{5}=3$
$\& \mathrm{a}_{5}+\mathrm{a}_{7}=24 \Rightarrow \mathrm{a}_{5}+\mathrm{a}_{5} \mathrm{r}^{2}=24 \Rightarrow\left(1+\mathrm{r}^{2}\right)=8 \Rightarrow \mathrm{r}=\sqrt{7}$
$\Rightarrow \mathrm{a}=\frac{3}{49}$
$\Rightarrow a_{1} a_{9}+a_{2} a_{4} a_{9}+a_{5}+a_{7}=9+27+3+21=60$
85. Let $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ be three non-zero non-coplanar vectors. Let the position vectors of four points A, $B, \quad C$ and D be $\vec{a}-\vec{b}+\vec{c}, \quad \lambda \vec{a}-3 \vec{b}+4 \vec{c}$, $-\vec{a}+2 \vec{b}-3 \vec{c}$ and $2 \vec{a}-4 \vec{b}+6 \vec{c}$ respectively. If $\overrightarrow{A B}$, $\overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AD}}$ are coplanar, then λ is :

Official Ans. by NTA (2)
Ans. (2)
Sol. $\overline{A B}=(\lambda-1) \bar{a}-2 \bar{b}+3 \bar{c}$
$\overline{A C}=2 \bar{a}+3 \bar{b}-4 \bar{c}$
$\overline{A D}=\bar{a}-3 \bar{b}+5 \bar{c}$
$\left|\begin{array}{ccc}\lambda-1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5\end{array}\right|=0$
$\Rightarrow(\lambda-1)(15-12)+2(-10+4)+3(6-3)=0$
$\Rightarrow(\lambda-1)=1 \Rightarrow \lambda=2$
86. If all the six digit numbers $x_{1} X_{2} x_{3} X_{4} X_{5} X_{6}$ with $0<\mathrm{x}_{1}<\mathrm{x}_{2}<\mathrm{x}_{3}<\mathrm{x}_{4}<\mathrm{x}_{5}<\mathrm{x}_{6}$ are arranged in the increasing order, then the sum of the digits in the $72^{\text {th }}$ number is \qquad .

Official Ans. by NTA (32)
Ans. (32)
Sol. \square

71 words
$245678 \rightarrow 72^{\text {th }}$ word
$2+4+5+6+7+8=32$
87. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function that satisfies the relation $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})-1, \forall \mathrm{x}$, $y \in \mathbb{R}$. If $f^{\prime}(0)=2$, then $|f(-2)|$ is equal to \qquad -

Official Ans. by NTA (3)
Ans. (3)

Sol. $f(x+y)=f(x)+f(y)-1$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=f^{\prime}(0)=2$
$f^{\prime}(x)=2 \Rightarrow d y=2 d x$
$y=2 x+C$
$\mathrm{x}=0, \mathrm{y}=1, \mathrm{c}=1$
$y=2 x+1$
$|f(-2)|=|-4+1|=|-3|=3$
88. If the co-efficient of x^{9} in $\left(\alpha x^{3}+\frac{1}{\beta x}\right)^{11}$ and the co-efficient of x^{-9} in $\left(\alpha x-\frac{1}{\beta x^{3}}\right)^{11}$ are equal, then $(\alpha \beta)^{2}$ is equal to \qquad .

Official Ans. by NTA (1)
Ans. (1)
Sol. Coefficient of x^{9} in $\left(\alpha x^{3}+\frac{1}{\beta x}\right)={ }^{11} C_{6} \cdot \frac{\alpha^{5}}{\beta^{6}}$
\because Both are equal

$$
\begin{aligned}
& \therefore \frac{11}{C_{6}} \cdot \frac{\alpha^{5}}{\beta^{6}}=-\frac{11}{C_{5}} \cdot \frac{\alpha^{6}}{\beta^{5}} \\
& \Rightarrow \frac{1}{\beta}=-\alpha \\
& \Rightarrow \alpha \beta=-1 \\
& \Rightarrow(\alpha \beta)^{2}=1
\end{aligned}
$$

89. Let the coefficients of three consecutive terms in the binomial expansion of $(1+2 x)^{n}$ be in the ratio $2: 5: 8$. Then the coefficient of the term, which is in the middle of these three terms, is \qquad .

Official Ans. by NTA (1120)
Ans. (1120)

Sol. $\quad t_{r+1}={ }^{n} C_{r}(2 x)^{r}$

$$
\begin{aligned}
& \Rightarrow \frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}(2)^{\mathrm{r}-1}}{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(2)^{\mathrm{r}}}=\frac{2}{5} \\
& \Rightarrow \frac{\frac{\mathrm{n}!}{(\mathrm{r}-1)!(\mathrm{n}-\mathrm{r}+1)!}}{\frac{\mathrm{n}!(2)}{\mathrm{r}!(\mathrm{n}-\mathrm{r})!}}=\frac{2}{5}
\end{aligned}
$$

$$
\Rightarrow \frac{r}{n-r+1}=\frac{4}{5} \Rightarrow 5 r=4 n-4 r+4
$$

$$
\Rightarrow 9 \mathrm{r}=4(\mathrm{n}+1)
$$

$$
\Rightarrow \frac{{ }^{n} C_{r}(2)^{r}}{{ }^{n} C_{r+1}(2)^{r+1}}=\frac{5}{8}
$$

$$
\Rightarrow \frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r+1)!(n-r-1)!}}=\frac{5}{4} \Rightarrow \frac{r+1}{n-r}=\frac{5}{4}
$$

$$
\begin{equation*}
\Rightarrow 4 r+4=5 n-5 r \Rightarrow 5 n-4=9 r \tag{2}
\end{equation*}
$$

From (1) and (2)
$\Rightarrow 4 \mathrm{n}+4=5 \mathrm{n}-4 \Rightarrow \mathrm{n}=8$
(1) $\Rightarrow \mathrm{r}=4$
so, coefficient of middle term is

$$
{ }^{8} \mathrm{C}_{4} 2^{4}=16 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=16 \times 70=1120
$$

90. Five digit numbers are formed using the digits 1,2 , 3, 5, 7 with repetitions and are written in descending order with serial numbers. For example, the number 77777 has serial number 1. Then the serial number of 35337 is \qquad -.

Official Ans. by NTA (1436)
Ans. (1436)

Sol. No of 5 digit numbers starting with digit 1
$=5 \times 5 \times 5 \times 5=625$
No of 5 digit numbers starting with digit 2
$=5 \times 5 \times 5 \times 5=625$
No of 5 digit numbers starting with 31
$=5 \times 5 \times 5=125$
No of 5 digit numbers starting with 32
$=5 \times 5 \times 5=125$
No of 5 digit numbers starting with 33
$=5 \times 5 \times 5=125$
No of 5 digit numbers starting with 351
$=5 \times 5=25$
No of 5 digit numbers starting with 352
$=5 \times 5=25$
No of 5 digit numbers starting with 3531
$=5$
No of 5 digit numbers starting with 3532
$=5$
Before 35337 will be 4 numbers,
So rank of 35337 will be 1690

So, in descending order serial number will be
$3125-1690+1=1436$

