FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

(Held On Sunday 29th January, 2023)

TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

- **61.** The statement $B \Rightarrow ((\sim A) \lor B)$ is equivalent to :
 - $(1) B \Longrightarrow (A \Longrightarrow B)$
 - $(2) A \Longrightarrow (A \Leftrightarrow B)$
 - $(3) A \Longrightarrow ((\sim A) \Longrightarrow B)$
 - $(4) B \Longrightarrow ((\sim A) \Longrightarrow B)$

Official Ans. by NTA (1,3,4)

Ans. (1 or 3 or 4)

Sol.

А	В	~A	$\sim A \lor B$	$B \Longrightarrow ((\sim A) \lor B)$
Т	Т	F	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

$A \Rightarrow B$	$\sim A \Rightarrow B$	$\begin{array}{c} B \Rightarrow \\ (A \Rightarrow B) \end{array}$	$A \Rightarrow$ $((\sim A) \Rightarrow B)$	$\begin{array}{c} B \Rightarrow \\ ((\sim A) \Rightarrow B) \end{array}$	
Т	Т	Т	Т	Т	
F	Т	Т	Т	Т	
Т	Т	Т	Т	Т	
Т	F	Т	Т	Т	

62. Shortest distance between the lines

 $\frac{x-1}{2} = \frac{y+8}{-7} = \frac{z-4}{5} \text{ and } \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-6}{-3} \text{ is}$ (1) $2\sqrt{3}$ (2) $4\sqrt{3}$ (3) $3\sqrt{3}$ (4) $5\sqrt{3}$ Official Ans. by NTA (2)
Ans. (2)

Sol.
$$\frac{x-1}{2} = \frac{y+8}{-7} = \frac{z-4}{5}$$
 $\vec{a} = \hat{i} - 8\hat{j} + 4\hat{k}$
 $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-6}{-3}$ $\vec{b} = \hat{i} + 2\hat{j} + 6\hat{k}$
 $\vec{p} = 2\hat{i} - 7\hat{j} + 5\hat{k}, \vec{q} = 2\hat{i} + \hat{j} - 3\hat{k}$
 $\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{vmatrix}$
 $= \hat{i}(16) - \hat{j}(-16) + \hat{k}(16)$
 $= 16(\hat{i} + \hat{j} + \hat{k})$
 $d = \begin{vmatrix} (a-b) \cdot (\vec{p} \times \vec{q}) \\ |\vec{p} \times \vec{q}| \end{vmatrix} = \begin{vmatrix} (-10\hat{j} - 2\hat{k}) \cdot 16(\hat{i} + \hat{j} + \hat{k}) \\ 16\sqrt{3} \end{vmatrix}$
 $= \begin{vmatrix} -12 \\ \sqrt{3} \end{vmatrix} = 4\sqrt{3}$
63. If $\vec{a} = \hat{i} + 2\hat{k}, \vec{b} = \hat{i} + \hat{j} + \hat{k}, \vec{c} = 7\hat{i} - 3\hat{k} + 4\hat{k}, \vec{r} \times \vec{b} + \vec{b} \times \vec{c} = \vec{0} \text{ and } \vec{r} . \vec{a} = 0 \text{ then } \vec{r} . \vec{c} \text{ is equal to }:$
(1) 34 (2) 12
(3) 36 (4) 30
Official Ans. by NTA (1)
Ans. (1)
Sol. $\vec{r} \times \vec{b} - \vec{c} \times \vec{b} = 0$
 $\Rightarrow (\vec{r} - \vec{c}) \times \vec{b} = 0$
 $\Rightarrow (\vec{r} - \vec{c}) \times \vec{b} = 0$
 $\Rightarrow (\vec{c} + \lambda \vec{b}) \cdot \vec{a} = 0$
 $\Rightarrow \hat{c} \cdot \vec{a} + \lambda \vec{b} \cdot \vec{a} = 0$
 $\Rightarrow \lambda = \frac{-\vec{c} \cdot \vec{a}}{\vec{b} \cdot \vec{a}}$
Now $\vec{r} \cdot \vec{c} = (\vec{c} + \lambda \vec{b}) \cdot \vec{c}$
 $= (\vec{c} - \frac{\vec{c} \cdot \vec{a}}{\vec{b} \cdot \vec{a}}) \cdot \vec{c}$
 $= |\vec{c}| - (\frac{\vec{c} \cdot \vec{a}}{\vec{b} \cdot \vec{a}}) \cdot \vec{c}$
 $= |\vec{c}| - (\frac{\vec{c} \cdot \vec{a}}{\vec{b} \cdot \vec{a}})$

= 74 - 40 = 34

64.	Let $S = \{w_1, w_2,\}$ be the sample space associated
	to a random experiment. Let $P(w_n) = \frac{P(w_{n-1})}{2}, n \ge 2$.
	Let $A = \{2k+3\ell; k, \ell \in \mathbb{N}\}$ and $B = \{w_n; n \in A\}$.
	Then P(B) is equal to
	(1) $\frac{3}{32}$ (2) $\frac{3}{64}$
	(3) $\frac{1}{16}$ (4) $\frac{1}{32}$
	Official Ans. by NTA (2)
	Ans. (2)
Sol.	Let $P(w_1) = \lambda$ then $P(w_2) = \frac{\lambda}{2} \dots P(w_n) = \frac{\lambda}{2^{n-1}}$
	As $\sum_{k=1}^{\infty} P(w_k) = 1 \implies \frac{\lambda}{1 - \frac{1}{2}} = 1 \implies \lambda = \frac{1}{2}$
	So, $P(w_n) = \frac{1}{2^n}$
	$A = \{2k + 3\ell; k, \ell \in \mathbb{N}\} = \{5, 7, 8, 9, 10 \dots\}$
	$\mathbf{B} = \left\{ \mathbf{w}_{n} : n \in \mathbf{A} \right\}$
	$\mathbf{B} = \{\mathbf{w}_5, \mathbf{w}_7, \mathbf{w}_8, \mathbf{w}_9, \mathbf{w}_{10}, \mathbf{w}_{11}, \ldots \}$
	$A = \mathbb{N} - \{1, 2, 3, 4, 6\}$
	$\therefore P(B) = 1 - [P(w_1) + P(w_2) + P(w_3) + P(w_4) + P(w_6)]$
	$=1 - \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{64}\right]$
	$=1 - \frac{32 + 16 + 8 + 4 + 1}{64} = \frac{3}{64}$
65.	The value of the integral $\int_{1}^{2} \left(\frac{t^{4}+1}{t^{6}+1}\right) dt$ is :
	(1) $\tan^{-1}\frac{1}{2} + \frac{1}{3}\tan^{-1}8 - \frac{\pi}{3}$
	(2) $\tan^{-1} 2 - \frac{1}{3} \tan^{-1} 8 + \frac{\pi}{3}$
	(3) $\tan^{-1} 2 + \frac{1}{3} \tan^{-1} 8 - \frac{\pi}{3}$
	(4) $\tan^{-1}\frac{1}{2} - \frac{1}{3}\tan^{-1}8 + \frac{\pi}{3}$
	Official Ans. by NTA (3)
	Ans. (3)

Sol.
$$I = \int_{1}^{2} \left(\frac{t^{4} + 1}{t^{6} + 1}\right) dt$$
$$= \int_{1}^{2} \frac{\left(t^{4} + 1 - t^{2}\right) + t^{2}}{\left(t^{2} + 1\right)\left(t^{4} - t^{2} + 1\right)} dt$$
$$= \int_{1}^{2} \left(\frac{1}{t^{2} + 1} + \frac{t^{2}}{t^{6} + 1}\right) dt$$
$$= \int_{1}^{2} \left(\frac{1}{t^{2} + 1} + \frac{1}{3}\frac{3t^{2}}{(t^{3})^{2} + 1}\right) dt$$
$$= \tan^{-1}(t) + \frac{1}{3}\tan^{-1}(t^{3}) \Big|_{1}^{2}$$
$$= (\tan^{-1}(2) - \tan^{-1}(1)) + \frac{1}{3}(\tan^{-1}(2^{3}) - \tan^{-1}(1^{3}))$$
$$= \tan^{-1}(2) + \frac{1}{3}\tan^{-1}(8) - \frac{\pi}{3}$$

66. Let K be the sum of the coefficients of the odd powers of x in the expansion of $(1+x)^{99}$. Let a be

the middle term in the expansion of
$$\left(2+\frac{1}{\sqrt{2}}\right)^{200}$$
. If

 $\frac{{}^{200}C_{99}K}{a} = \frac{2^{\ell}m}{n}, \text{ where m and n are odd numbers,}$

then the ordered pair (ℓ, n) is equal to :

 (1) (50, 51)
 (2) (51, 99)
 (3) (50, 101)
 (4) (51, 101)
 Official Ans. by NTA (3) Ans. (3)

In the expansion of Sol. $(1+x)^{99} = C_0 + C_1 x + C_2 x^2 + \dots + C_{99} x^{99}$ $K = C_1 + C_3 + \dots + C_{00} = 2^{98}$ a \Rightarrow Middle in the expansion of $\left(2 + \frac{1}{\sqrt{2}}\right)^{200}$ $T_{\frac{200}{2}+1} = {}^{200}C_{100}(2)^{100}\left(\frac{1}{\sqrt{2}}\right)^{100}$ $= {}^{200}C_{100} .2^{50}$ So, $\frac{{}^{200}C_{99} \times 2^{98}}{{}^{200}C_{100} \times 2^{50}} = \frac{100}{101} \times 2^{48}$ So, $\frac{25}{101} \times 2^{50} = \frac{m}{n} 2^{\ell}$ \therefore m, n are odd so (ℓ, n) become (50, 101) Ans. Let f and g be twice differentiable functions on R 67. such that f''(x) = g''(x) + 6xf'(1) = 4g'(1) - 3 = 9f(2)=3g(2)=12Then which of the following is NOT true? (1) g(-2) - f(-2) = 20(2) If -1 < x < 2, then |f(x) - g(x)| < 8(3) $|f'(x) - g'(x)| < 6 \Rightarrow -1 < x < 1|$ (4) There exists $x_0 \in \left(1, \frac{3}{2}\right)$ such that $f(x_0) = g(x_0)$ Official Ans. by NTA (2) Ans. (2) f''(x) = g''(x) + 6xSol. ...(1) f'(1) = 4g'(1) - 3 = 9...(2) f(2)=3g(2)=12...(3) By integrating (1) $f'(x) = g'(x) + 6\frac{x^2}{2} + C$ At x = 1. f'(1) = g'(1) + 3 + C \Rightarrow 9 = 4 + 3 + C \Rightarrow C = 3

:. $f'(x) = g'(x) + 3x^2 + 3$ Again by integrating, $f(x)=g(x)+\frac{3x^3}{2}+3x+D$ At x = 2, f(2)=g(2)+8+3(2)+D \Rightarrow 12 = 4 + 8 + 6 + D \Rightarrow D = -6 So, $f(x) = g(x) + x^3 + 3x - 6$ \Rightarrow f(x)-g(x)=x³+3x-6 At x = -2, \Rightarrow g(-2)-f(-2)=20 (Option (1) is true) Now, for -1 < x, 2 $h(x) = f(x) - g(x) = x^3 + 3x - 6$ \Rightarrow h'(x) = $3x^2 + 3$ $\Rightarrow h(x)^{\uparrow}$ So, h(-1) < h(x) < h(2) $\Rightarrow -10 < h(x) < 8$ \Rightarrow |h(x)| < 10(option (2) is NOT true) Now, $h'(x) = f'(x) - g'(x) = 3x^2 + 3$ If $|\mathbf{h'}(\mathbf{x})| < 6 \implies |3\mathbf{x}^2 + 3| < 6$ $\Rightarrow 3x^2 + 3 < 6$ $\Rightarrow x^2 < 1$ $\Rightarrow -1 < x < 1$ (option (3) is True) If $x \in (-1, 1) |f'(x) - g'(x)| \le 6$ option (3) is true and now to solve f(x) - g(x) = 0 $\Rightarrow x^3 + 3x - 6 = 0$ $h(x) = x^3 + 3x - 6$ here, h(1)=-ve and h $\left(\frac{3}{2}\right)$ =+ve So there exists $x_0 \in \left(1, \frac{3}{2}\right)$ such that $f(x_0) = g(x_0)$ (option (4) is true)

*****Saral

 $|\cos x - \sin x| \le y \le \sin x$

Intersection point of $\cos x - \sin x = \sin x$

Sol.

68. The set of all values of
$$t \in \mathbb{R}$$
, for which the matrix

$$\begin{bmatrix} e^{t} & e^{-t}(\sin t - 2\cos t) & e^{-t}(-2\sin t - \cos t) \\ e^{t} & e^{-t}(2\sin t + \cos t) & e^{-t}(\sin t - 2\cos t) \\ e^{t} & e^{-t}\cos t & e^{-t}\sin t \end{bmatrix}$$
invertible, is
(1) $\left\{ (2k+1)\frac{\pi}{2}, k \in \mathbb{Z} \right\}$ (2) $\left\{ k\pi + \frac{\pi}{4}, k \in \mathbb{Z} \right\}$
(3) $\left\{ k\pi, k \in \mathbb{Z} \right\}$ (4) \mathbb{R}
Official Ans. by NTA (4)
Ans. (4)
Sol. If its invertible, then determinant value $\neq 0$
So,
 $\begin{bmatrix} e^{t} & e^{-t}(\sin t - 2\cos t) & e^{-t}(-2\sin t - \cos t) \\ e^{t} & e^{-t}(2\sin t + \cos t) & e^{-t}(\sin t - 2\cos t) \\ e^{t} & e^{-t}\cos t & e^{-t}\sin t \end{bmatrix} \neq 0$
 $e^{t} \cdot e^{-t} \cdot e^{-t} \begin{bmatrix} 1 \sin t - 2\cos t & -2\sin t - \cos t \\ 1 & 2\sin t + \cos t & \sin t - 2\cos t \\ 1 & \cos t & \sin t \end{bmatrix} \neq 0$
Applying, $R_1 \rightarrow R_1 - R_2$ then $R_2 \rightarrow R_2 - R_3$
We get
 $e^{-t} \begin{bmatrix} 0 & -\sin t - \cos t & -3\sin t + \cos t \\ 0 & 2\sin t & -2\cos t \\ 1 & \cos t & \sin t \end{bmatrix} \neq 0$
By expanding we have,
 $e^{-t} \times 1(2\sin t\cos t + 6\cos^2 t + 6\sin^2 t - 2\sin t\cos t) \neq 0$
 $\Rightarrow e^{-t} \times 6 \neq 0$
for $\forall t \in \mathbb{R}$
69. The area of the region
 $A = \left\{ (x, y): |\cos x - \sin x| \le y \le \sin x, 0 \le x \le \frac{\pi}{2} \right\}$
(1) $1 - \frac{3}{\sqrt{2}} + \frac{4}{\sqrt{5}}$ (2) $\sqrt{5} + 2\sqrt{2} - 4.5$

$$\Rightarrow \tan x = \frac{1}{2}$$

Let $\psi = \tan^{-1} \frac{1}{2}$
So, $\tan \psi = \frac{1}{2}$, $\sin \psi = \frac{1}{\sqrt{5}}$, $\cos \psi = \frac{2}{\sqrt{5}}$

$$\int_{0}^{|\cos x - \sin x|} \sin x + \int_{0}^{|\cos x - \sin x|} \sin x + \int_{0}^{|\sin x - (\cos x - \sin x)|} dx$$

$$= \int_{0}^{\pi/4} (\sin x - (\cos x - \sin x)) dx + \int_{\pi/4}^{\pi/2} (\sin x - (\sin x - \cos x)) dx$$

$$= \int_{0}^{\pi/4} (2\sin x - \cos x) dx + \int_{\pi/4}^{\pi/2} \cos x dx$$

$$= [-2\cos x - \sin x]_{\psi}^{\pi/4} + [\sin x]_{\pi/4}^{\pi/2}$$

$$= -\sqrt{2} - \frac{1}{\sqrt{2}} + 2\cos \psi + \sin \psi + (1 - \frac{1}{\sqrt{2}})$$

$$= -\sqrt{2} - \frac{1}{\sqrt{2}} + 2(\frac{2}{\sqrt{5}}) + (\frac{1}{\sqrt{5}}) + 1 - \frac{1}{\sqrt{2}}$$

$$= \sqrt{5} - 2\sqrt{2} + 1$$

70. The set of all values of λ for which the equation $\cos^2 2x - 2\sin^4 x - 2\cos^2 x = \lambda$

(1)
$$[-2, -1]$$
 (2) $\left[-2, -\frac{3}{2}\right]$
(3) $\left[-1, -\frac{1}{2}\right]$ (4) $\left[-\frac{3}{2}, -1\right]$

Official Ans. by NTA (4)

Ans. (4)

Official Ans. by NTA (4)

(4) $\sqrt{5} - 2\sqrt{2} + 1$

Ans. (4)

(3) $\frac{3}{\sqrt{5}} - \frac{3}{\sqrt{2}} + 1$

<mark>∛Saral</mark>

Sol.
$$\lambda = \cos^2 2x - 2\sin^4 x - 2\cos^2 x$$

convert all in to $\cos x$.
 $\lambda = (2\cos^2 x - 1)^2 - 2(1 - \cos^2 x)^2 - 2\cos^2 x$
 $= 4\cos^4 x - 4\cos^2 x + 1 - 2(1 - 2\cos^2 x + \cos^4 x) - 2\cos^2 x$
 $= 2\cos^4 x - 2\cos^2 x + 1 - 2$
 $= 2\cos^4 x - 2\cos^2 x - 1$
 $= 2\left[\cos^4 x - \cos^2 x - \frac{1}{2}\right]$
 $= 2\left[\left(\cos^2 x - \frac{1}{2}\right)^2 - \frac{3}{4}\right]$
 $\lambda_{max} = 2\left[\frac{1}{4} - \frac{3}{4}\right] = 2 \times \left(-\frac{2}{4}\right) = -1 \text{ (max Value)}$
 $\lambda_{min} = 2\left[0 - \frac{3}{4}\right] = -\frac{3}{2} \text{ (Minimum Value)}$
So, Range $= \left[-\frac{3}{2}, -1\right]$

71. The letters of the word OUGHT are written in all possible ways and these words are arranged as in a dictionary, in a series. Then the serial number of the word TOUGH is :

(1) 89	(2) 84			
(3) 86	(4) 79			
Official Ans. by NTA (1)				
Ans. (1)				

Sol. Lets arrange the letters of OUGHT in alphabetical order.

G, H, O, T, U

Words starting with

72. The plane 2x - y + z = 4 intersects the line segment joining the points A(a, -2, 4) and B(2, b, -3) at the point C in the ratio 2 : 1 and the distance of the point C from the origin is $\sqrt{5}$. If ab < 0 and P is the point (a – b, b, 2b –a) then CP² is equal to :

(1)
$$\frac{17}{3}$$
 (2) $\frac{16}{3}$
(3) $\frac{73}{3}$ (4) $\frac{97}{3}$

Official Ans. <mark>by NTA</mark> (1)

Ans. (1)

Sol. A(a, -2, 4), B(2, b, -3)
AC : CB = 2 : 1

$$\Rightarrow C = \left(\frac{a+4}{3}, \frac{2b-2}{3}, \frac{-2}{3}\right)$$

C lies on $2x - y + 2 = 4$

$$\Rightarrow \frac{2a+8}{3} - \frac{2b-2}{3} - \frac{2}{3} = 4$$

$$\Rightarrow a-b=2...(1)$$

Also OC = $\sqrt{5}$

$$\Rightarrow \left(\frac{a+4}{3}\right)^2 + \left(\frac{2b-2}{3}\right)^2 + \frac{4}{9} = 5 \dots (2)$$

Solving, (1) and (2)

$$(b+6)^2 + (2b-2)^2 = 41$$

 $\Rightarrow 5b^2 + 4b - 1 = 0$
 $\Rightarrow b = -1 \text{ or } \frac{1}{2}$

$$rac{1}{r}$$

$$a = 1$$
 or $\frac{1}{5}$

But
$$ab < 0 \Rightarrow (a, b) = (1, -1)$$

$$C = \left(\frac{5}{3}, \frac{-4}{3}, \frac{-2}{3}\right), P = (2, -1, -3)$$
$$CP^{2} = \frac{1}{9} + \frac{1}{9} + \frac{49}{9} = \frac{51}{9} = \frac{17}{3}$$

73. Let $\vec{a} = 4\hat{i} + 3\hat{j}$ and $\vec{b} = 3\hat{i} - 4\hat{j} + 5\hat{k}$ and \vec{c} is a vector such that $\vec{c} \cdot (\vec{a} \times \vec{b}) + 25 = 0$, $\vec{c} \cdot (\hat{i} + \hat{j} + \hat{k}) = 4$ and projection of \vec{c} on \vec{a} is 1, then the projection of \vec{c} on \vec{b} equals :

$$(1)\frac{5}{\sqrt{2}}$$
$$(2)\frac{1}{5}$$
$$(3)\frac{1}{\sqrt{2}}$$

$$(4) \ \frac{3}{\sqrt{2}}$$

Official Ans. by NTA (1)

Ans. (1)

- **Sol.** $\vec{a} \times \vec{b} = 15\hat{i} 20\hat{j} 25\hat{k}$
 - Let $\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$ $\Rightarrow 15x - 20y - 25z + 25 = 0$ $\Rightarrow 3x - 4y - 5z = -5$ Also x + y + z = 4and $\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|} = 1 \Rightarrow 4x + 3y = 5$ $\Rightarrow \vec{c} = 2\hat{i} - \hat{j} + 3\hat{k}$ Projection of \vec{c} or $\vec{b} = \frac{25}{5\sqrt{2}} = \frac{5}{\sqrt{2}}$

74. If the lines
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+3}{1}$$
 and $\frac{x-a}{2} = \frac{y+2}{3} = \frac{z-3}{1}$ intersects at the point P, then the distance of the point P from the plane $z = a$ is :
(1)16 (2) 28 (3)10 (4) 22 Official Ans. by NTA (2)

Ans. (2)

Sol.	Point on $L_1 \equiv (\lambda + 1, 2\lambda + 2, \lambda - 3)$ Point on $L_2 \equiv (2\mu + a, 3\mu - 2, \mu + 3)$				
	$\lambda - 3 = \mu + 3 \qquad \Rightarrow \lambda = \mu + 6 \qquad \dots (1)$ $2\lambda + 2 = 3\mu - 2 \qquad \Rightarrow 2\lambda = 3\mu - 4 \qquad \dots (2)$				
	Solving, (1) and (2)				
	$\Rightarrow \qquad \lambda = 22 \& \mu = 16$ $\Rightarrow \qquad P \equiv (23, 46, 19)$				
	\Rightarrow a = -9				
	Distance of P from $z = -9$ is 28				
75.	The value of the integral $\int_{1/2}^{2} \frac{\tan^{-1} x}{x} dx$ is equal to				
	(1) $\pi \log_e 2$ (2) $\frac{1}{2} \log_e 2$				
	(3) $\frac{\pi}{4}\log_{e} 2$ (4) $\frac{\pi}{2}\log_{e} 2$				
	Official An <mark>s. by NT</mark> A (4) Ans. <mark>(4)</mark>				
Sol.	$I = \int_{1/2}^{2} \frac{\tan^{-1} x}{x} dx \qquad \dots \dots (i)$				
	Put $x = \frac{1}{t}$ $dx = -\frac{1}{t^2}dt$				
	$I = -\int_{2}^{1/2} \frac{\tan^{-1} \frac{1}{t}}{\frac{1}{t}} \cdot \frac{1}{t^{2}} dt = -\int_{2}^{1/2} \frac{\tan^{-1} \frac{1}{t}}{t} dt$				
	$\frac{J}{2} = \frac{1}{t} + t^2 + \frac{J}{2} + t$				
	$I = \int_{1/2}^{2} \frac{\cot^{-1} t}{t} dt = \int_{1/2}^{2} \frac{\cot^{-1} x}{x} dx \dots \dots (ii)$				
	Add both equation				
	$2I = \int_{1/2}^{2} \frac{\tan^{-1} x + \cot^{-1} x}{x} dx = \frac{\pi}{2} \int_{1/2}^{2} \frac{dx}{x} = \frac{\pi}{2} (\ell n 2)_{1/2}^{2}$				
	$=\frac{\pi}{2}\left(\ell n2 - \ell n\frac{1}{2}\right) = \pi\ell n2$				
	$I = \frac{\pi}{2} \ell n 2$				
76.	If the tangent at a point P on the parabola $y^2 = 3x$ is parallel to the line $x + 2y = 1$ and the tangents at				
	the points Q and R on the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ are				
	perpendicular to the line $x - y = 2$, then the area of				

perpendicular to the line x - y = 2, then the area of the triangle PQR is:

(1)
$$\frac{9}{\sqrt{5}}$$
 (2) $5\sqrt{3}$

(3)
$$\frac{3}{2}\sqrt{5}$$
 (4) $3\sqrt{5}$

Official Ans. by NTA (4) Ans. (4)

<u>*Saral</u>

Sol. $y^2 = 3x$ Tangent P(x₁, y₁) is parallel to x + 2y = 1Then slope at $P = -\frac{1}{2}$ $2y \frac{dy}{dx} = 3$ $\Rightarrow \frac{dy}{dx} = \frac{3}{2y} = -\frac{1}{2}$ $\Rightarrow y_1 = -3$ Coordinates of P(3, -3) Similarly Q $\left(\frac{4}{\sqrt{3}}, \frac{1}{\sqrt{5}}\right)$, $R\left(-\frac{4}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$ Area of Δ PQR $= \frac{1}{2} \begin{vmatrix} 3 & -3 & 1 \\ \frac{4}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 1 \\ -\frac{4}{\sqrt{5}} & -\frac{1}{\sqrt{5}} & 1 \end{vmatrix}$ $= \frac{1}{2} \begin{bmatrix} 3\left(\frac{2}{\sqrt{5}}\right) + 3\left(\frac{8}{\sqrt{5}}\right) + 0 \end{bmatrix} = \frac{30}{2\sqrt{5}} = 3\sqrt{5}$

77. Let y = y(x) be the solution of the differential equation $x \log_e x \frac{dy}{dx} + y = x^2 \log_e x$, (x > 1). If y(2) = 2, then y(e) is equal to $(1) \frac{4 + e^2}{4}$ $(2) \frac{1 + e^2}{4}$ $(3) \frac{2 + e^2}{2}$ $(4) \frac{1 + e^2}{2}$ Official Ans. by NTA (1)

Sol.
$$x \log_e x \frac{dy}{dx} + y = x^2 \log_e x, (x > 1).$$

$$\implies \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x\ln x} = x$$

Linear differential equation

$$I.F. = e^{\int \frac{1}{x \ln x} dx} = \left| \ln x \right|$$

:. Solution of differential equation

$$y|\ln x| = \int x |\ln x| dx$$
$$= |\ln x| \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} dx$$
$$\Rightarrow y|\ln x| = |\ln x| \left(\frac{x^2}{2}\right) - \frac{x^2}{4} + c$$

For constant

$$y(2) = 2 \implies c = 1$$

So, $y(x) = \frac{x^2}{2} - \frac{x^2}{4|\ln x|} + \frac{1}{|\ln x|}$
Hence, $y(e) = \frac{e^2}{2} - \frac{e^2}{4} + 1 = 1 + \frac{e^2}{4}$

- **78.** The number of 3 digit numbers, that are divisible by either 3 or 4 but not divisible by 48, is
 - (1) 472(2) 432(3) 507(4) 400

Official Ans. by NTA (2)

Ans. (2)

Sol. Total 3 digit number = 900

Divisible by 3 = 300 (Using $\frac{900}{3} = 300$)

Divisible by 4 = 225 (Using $\frac{900}{4} = 225$)

Divisible by 3 & 4 = 108,

(Using
$$\frac{900}{12} = 75$$
)

Number divisible by either 3 or 4 = 300 + 2250 - 75 = 450We have to remove divisible by 48, 144, 192,, 18 terms Required number of numbers = 450 - 18 = 432

*<u>Saral</u>

Sol.

79. Let R be a relation defined on N as a R b is 2a + 3b is a multiple of 5, a, b ∈ N. Then R is
(1) not reflexive
(2) transitive but not symmetric

- (3) symmetric but not transitive
- (4) an equivalence relation

Official Ans. by NTA (4)

Ans. (4)

Sol. a R a \Rightarrow 5a is multiple it 5

So reflexive

 $a \ R \ b \Longrightarrow 2a + 3b = 5\alpha$,

Now b R a

$$2b + 3a = 2b + \left(\frac{5\alpha - 3b}{2}\right) \cdot 3$$
$$= \frac{15}{2}\alpha - \frac{5}{2}b = \frac{5}{2}(3\alpha - b)$$
$$= \frac{5}{2}(2a + 2b - 2\alpha)$$
$$= 5(a + b - \alpha)$$

Hence symmetric

a R b		\Rightarrow	2a + 3b	= 5	α.	
b R c		\Rightarrow	2b + 3c	= 5	β	
Now			2a + 5b	+ 3	$\mathbf{c}=5(\alpha+\beta$)
$\Rightarrow 2a$	ı + 5b	+ 3c	$= 5(\alpha +$	β)		
$\Rightarrow 2a$	a + 3c	= 5(0	$\alpha + \beta - b$)		
\Rightarrow a	R c					
Hence relation is equivalence relation.						

80. Consider a function $f: \mathbb{N} \to \mathbb{R}$, satisfying $f(1) + 2f(2) + 3f(3) + ... + xf(x) = x(x + 1) f(x); x \ge 2$ with f(1)=1. Then $\frac{1}{f(2022)} + \frac{1}{f(2028)}$ is equal to (1) 8200 (2) 8000 (3) 8400 (4) 8100 Official Ans. by NTA (4) Ans. (4)

Given for
$$x \ge 2$$

 $f(1) + 2f(2) + \dots + xf(x) = x(x + 1) f(x)$
replace x by x + 1
 $\Rightarrow x(x + 1) f(x) + (x + 1) f(x + 1)$
 $= (x + 1) (x + 2) f(x + 1)$
 $\Rightarrow \frac{x}{f(x + 1)} + \frac{1}{f(x)} = \frac{(x + 2)}{f(x)}$
 $\Rightarrow x f(x) = (x + 1) f(x + 1) = \frac{1}{2}, x \ge 2$
 $f(2) = \frac{1}{4}, f(3) = \frac{1}{6}$
Now $f(2022) = \frac{1}{4044}$
 $f(2028) = \frac{1}{4056}$
So, $\frac{1}{f(2022)} + \frac{1}{f(2028)} = 4044 + 4056 = 8100$

SECTION-B

81. The total number of 4-digit numbers whose greatest common divisor with 54 is 2, is _____.

Official Ans. by NTA (3000)

Ans. (3000)

Sol. N should be divisible by 2 but not by 3
N = (Numbers divisible by 2) – (Numbers divisible by 6)

$$N = \frac{9000}{2} - \frac{9000}{6} = 4500 - 1500 = 3000$$

82. A triangle is formed by the tangents at the point (2, 2) on the curves $y^2 = 2x$ and $x^2 + y^2 = 4x$, and the line x + y + 2 = 0. If r is the radius of its circumcircle, then r^2 is equal to _____.

Official Ans. by NTA (10)

Ans. (10)

<u>_⊎Saral</u>

Sol.
$$S_1: y^2 = 2x$$
 $S_2: x^2 + y^2 = 4x$
P(2,2) is common point on $S_1 \& S_2$
 T_1 is tangent to S_1 at $P \Rightarrow T_1: y.2 = x + 2$
 $\Rightarrow T_1: x - 2y + 2 = 0$
 T_2 is tangent to S_2 at $P \Rightarrow T_2: x.2 + y.2 = 2(x+2)$
 $\Rightarrow T_2: y = 2$
& $L_3: x + y + 2 = 0$ is third line
 $P(2,2)$
 $Q(-2,0)$ $L_3: x + y + 2 = 0$ rectance
 $Q(-2,0)$ $L_3: x + y + 2 = 0$ rectance
 $Q(-2,0)$ $L_3: x + y + 2 = 0$ rectance
 $Q(-2,0)$ $Q(-2,0$

Official Ans. by NTA (11)

Ans. (11)

Sol. The given line is polar or $P(2, \beta)$ w.r.t. given circle

$$x^2 + y^2 - 4x - 6y - 3 = 0$$

Chord or contact

$$\alpha x + \beta y - 2(x + \alpha) - 3(y + \beta) - 3 = 0$$

$$\Rightarrow (\alpha - 2)x + (\beta - 3)y - (2\alpha + 3\beta + 3) = 0 \dots (i)$$

: But the equation of chord of contact is given

as : x + y - 3 = 0 (ii)

comparing the coefficients

$$\frac{\alpha-2}{1} = \frac{\beta-3}{1} = -\left(\frac{2\alpha+3\beta+3}{-3}\right)$$

On solving $\alpha = -6$

 $\beta = -5$

Now $4\alpha - 7\beta = 11$

84. Let $a_1 = b_1 = 1$ and $a_n = a_{n-1} + (n-1)$, $b_n = b_{n-1} + b_{n-$

$$a_{n-1}, \ \forall \ n \ge 2.$$
 If $S = \sum_{n=1}^{10} \frac{b_n}{2^n}$ and $T = \sum_{n=1}^{8} \frac{n}{2^{n-1}}$, then

 $2^{7}(2S - T)$ is equal to _____

Official Ans. by NTA (461)

Ans. (461) Sol. As, $S = \frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_9}{2^9} + \frac{b_{10}}{2^{10}}$ $\Rightarrow \frac{S}{2} = \frac{b_1}{2^2} + \frac{b_2}{2^3} + \dots + \frac{b_9}{2^{10}} + \frac{b_{10}}{2^{11}}$ subtracting $\Rightarrow \frac{S}{2} = \frac{b_1}{2} + \left(\frac{a_1}{2^2} + \frac{a_2}{2^3} + \frac{a_9}{2^{10}}\right) - \frac{b_{10}}{2^{11}}$ $\Rightarrow S = b_1 - \frac{b_{10}}{2^{10}} + \left(\frac{a_1}{2} + \frac{a_2}{2^2} + \frac{a_9}{2^3}\right)$ $\Rightarrow \frac{S}{2} = \frac{b_1}{2} - \frac{b_{10}}{2^{11}} + \left(\frac{a_1}{2^2} + \frac{a_2}{2^3} + \frac{a_9}{2^{10}}\right)$ subtracting

Final JEE-Main Exam January, 2023/29-01-2023/Evening Session

$$\Rightarrow \frac{S}{2} = \frac{b_1}{2} - \frac{b_{10}}{2^{11}} + \left(\frac{a_1}{2} - \frac{a_9}{2^{10}}\right) + \left(\frac{1}{2^2} + \frac{2}{2^3} + \dots + \frac{8}{2^9}\right)$$

$$\Rightarrow \frac{S}{2} = \frac{a_1 + b_1}{2} - \frac{(b_{10} + 2a_9)}{2^{11}} + \frac{T}{4}$$

$$\Rightarrow 2S = 2(a_1 + b_1) - \frac{(b_{10} + 2a_9)}{2^9} + T$$

$$\Rightarrow 2^7 (2S - T) = 2^8 (a_1 + b_1) - \frac{(b_{10} + 2a_9)}{4}$$

Given $a_n - a_{n-1} = n - 1$,

$$\therefore \quad a_2 - a_1 = 1$$

 $a_3 - a_2 = 2$

$$\vdots$$

 $a_9 - a_8 = 8$
 $a_{9} - a_1 = 1 + 2 + \dots + 8 = 36$
 $\Rightarrow \quad a_9 = 37 (a_1 = 1)$
Also, $b_n - b_{n-1} = a_{n-1}$
 $\therefore \quad b_{10} - b_1 = a_1 + a_2 + \dots + a_9$
 $= 1 + 2 + 4 + 7 + 11 + 16 + 22 + 29 + 37$
 $\Rightarrow \quad b_{10} = 130 (As b_1 = 1)$
 $\therefore \quad 2^7 (2S - T) = 2^8 (1 + 1) - (130 + 2 \times 37)$
 $2^9 - \frac{204}{4} = 461$
If the equation of the normal to the curve
 $y = \frac{x - a}{(x + b)(x - 2)}$ at the point (1, -3) is $x - 4y = 13$, then the value of $a + b$ is equal to

then the value of a + b is equal to _____

Official Ans. by NTA (4)

Ans. (4)

85.

 $y = \frac{x-a}{(x+b)(x-2)}$

At point (1, −3),

$$-3 = \frac{1-9}{(1+b)(1-2)}$$

$$\Rightarrow 1-a = 3(1+b) \qquad \dots (1)$$

Now, $y = \frac{x-a}{(x+b)(x-2)}$

$$\Rightarrow \frac{dy}{dx} = \frac{(x+b)(x-2) \times (1) - (x-a)(2x+b-2)}{(x+b)^2(x-2)^2}$$
At (1, -3) slope of normal is $\frac{1}{4}$ hence $\frac{dy}{dx} = -4$,
So, $-4 = \frac{(1+b)(-1) - (1-a)b}{(1+b)^2(-1)^2}$
Using equation (1)
 $\Rightarrow -4 = \frac{(1+b)(-1) - 3(b+1)b}{(1+b)^2}$
 $\Rightarrow -4 = \frac{(-1) - 3b}{(1+b)} (b \neq -1)$
 $\Rightarrow b = -3$
So, $a = 7$
Hence, $a + b = 7 - 3 = 4$
86. Let A be a symmetric matrix such that $|A| = 2$ and
 $\begin{bmatrix} 2 & 1\\ 3 & \frac{3}{2} \end{bmatrix} A = \begin{bmatrix} 1 & 2\\ \alpha & \beta \end{bmatrix}$. If the sum of the diagonal
elements of A is s, then $\frac{\beta s}{\alpha^2}$ is equal to _____.
Official Ans. by NTA (5)
Ans. (5)
Sol. $\begin{bmatrix} 2 & 1\\ 3 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} a & b\\ b & c \end{bmatrix} = \begin{bmatrix} 1 & 2\\ \alpha & \beta \end{bmatrix}$
Now $ac - b^2 = 2$ and $2a + b = 1$
and $2b + c = 2$
solving all these above equations we get
 $\frac{1-b}{2} \times (\frac{2-2b}{1}) - b^2 = 2$
 $\Rightarrow (1-b)^2 - b^2 = 2$
 $\Rightarrow 1 - 2b = 2$
 $\Rightarrow b = -\frac{1}{2}$ and $a = \frac{3}{4}$ and $c = 3$
Hence $\alpha = 3a + \frac{3b}{2} = \frac{9}{4} - \frac{3}{4} = \frac{3}{2}$
and $\beta = 3b + \frac{3c}{2} = -\frac{3}{2} + \frac{9}{2} = 3$
also $s = a + c = \frac{15}{4}$
 $\therefore \frac{\beta s}{\alpha^2} = \frac{3 \times 15}{4 \times \frac{9}{4}} = 5$

87. Let $\{a_k\}$ and $\{b_k\}$, $k \in \mathbb{N}$, be two G.P.s with common ratio r_1 and r_2 respectively such that $a_1 = b_1 = 4$ and $r_1 < r_2$. Let $c_k = a_k + b_k$, $k \in \mathbb{N}$. If $c_2 = 5$ and $c_3 = \frac{13}{4}$ then $\sum_{k=1}^{\infty} c_k - (12a_6 + 8b_4)$ is

equal to _____.

Official Ans. by NTA (9)

Ans. (9)

Sol. Given that

$$c_{k} = a_{k} + b_{k} \text{ and } a_{1} = b_{1} = 4$$

also $a_{2} = 4r_{1}$ $a_{3} = 4r_{1}^{2}$
 $b_{2} = 4r_{2}$ $b_{3} = 4r_{2}^{2}$
Now $c_{2} = a_{2} + b_{2} = 5$ and $c_{3} = a_{3} + b_{3} = \frac{13}{4}$
 $\Rightarrow r_{1} + r_{2} = \frac{5}{4}$ and $r_{1}^{2} + r_{2}^{2} = \frac{13}{16}$
Hence $r_{1}r_{2} = \frac{3}{8}$ which gives $r_{1} = \frac{1}{2}$ & $r_{2} = \frac{3}{4}$
 $\sum_{k=1}^{\infty} c_{k} - (12a_{6} + 8b_{4})$
 $= \frac{4}{1 - r_{1}} + \frac{4}{1 - r_{2}} - (\frac{48}{32} + \frac{27}{2})$
 $= 24 - 15 = 9$

88. Let X = {11, 12, 13,, 40, 41} and Y = {61, 62, 63,, 90, 91} be the two sets of observations. If \overline{x} and \overline{y} are their respective means and σ^2 is the variance of all the observations in X \cup Y, then $|\overline{x} + \overline{y} - \sigma^2|$ is equal to _____.

Official Ans. by NTA (603)

Ans. (603)

Sol.
$$\overline{\mathbf{x}} = \frac{\sum_{i=11}^{41} i}{31} = \frac{11+41}{2} = 26$$
 (31 elements)

$$\overline{y} = \frac{\sum_{j=61}^{91} j}{31} = \frac{61+91}{2} = 76$$
 (31 elements)

Combined mean, $\mu = \frac{31 \times 26 + 31 \times 76}{31 + 31}$

$$=\frac{26+76}{2}=51$$

∛Saral

$$\sigma^{2} = \frac{1}{62} \times \left(\sum_{i=1}^{31} (\mathbf{x}_{i} - \boldsymbol{\mu})^{2} + \sum_{i=1}^{31} (\mathbf{y}_{i} - \boldsymbol{\mu})^{2} \right) = 705$$

Since, $x_i \in X$ are in A.P. with 31 elements & common difference 1, same is $y_i \in y$, when written in increasing order.

$$\therefore \sum_{i=1}^{31} (x_i - \mu)^2 = \sum_{i=1}^{31} (y_i - \mu)^2$$
$$= 10^2 + 11^2 + \dots + 40^2$$
$$= \frac{40 \times 41 \times 81}{6} - \frac{9 \times 10 \times 19}{6} = 21855$$
$$\therefore |\overline{x} + \overline{y} - \sigma^2| = |26 + 76 - 705| = 603$$

89. Let
$$\alpha = 8 - 14i$$
, $A = \left\{ z \in \mathbb{C} : \frac{\alpha z - \overline{\alpha} \overline{z}}{z^2 - (\overline{z})^2 - 112i} = 1 \right\}$

and
$$B = \{z \in \mathbb{C} : |z+3i| = 4\}.$$

Then
$$\sum_{z \in A \cap B} (\operatorname{Re} z - \operatorname{Im} z)$$
 is equal to _____.

Official Ans. by NTA (14)

Sol.
$$\alpha = 8 - 14i$$

 $z = x + iy$
 $az = (8x + 14y) + i(-14x + 8y)$

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Saral Final JEE-Main E	Exam	January,
Ŭ	$z + \overline{z} = 2x$ $z - \overline{z} = 2iy$		and
	Set A: $\frac{2i(-14x+8y)}{i(4xy-112)} = 1$		So we ca
	(x-4)(y+7) = 0		$\alpha_4 = -\sqrt{2}$
	x = 4 or $y = -7$		Hence
	Set B: $x^2 + (y + 3)^2 = 16$		$\alpha_1 \alpha_2 - \alpha_2$
	when $x = 4$ $y = -3$		
	when $y = -7$ $x = 0$		
	$\therefore A \cap B = \{4 - 3i, 0 - 7i\}$		
	So, $\sum_{z \in A \cap B} (\text{Re } z - \text{Im } z) = 4 - (-3) + (0 - (-7)) = 14$		
90.	Let $\alpha_1, \alpha_2,, \alpha_7$ be the roots of the equation $x^7 +$		
	$3x^5 - 13x^3 - 15x = 0$ and $ \alpha_1  \ge  \alpha_2  \ge \ldots \ge  \alpha_7 $ .		
	Then $\alpha_1 \alpha_2 - \alpha_3 \alpha_4 + \alpha_5 \alpha_6$ is equal to		
	Official Ans. by NTA (9)		
	Ans. (9)		
Sol.	Given equation can be rearranged as		
	$x(x^6 + 3x^4 - 13x^2 - 15) = 0$		
	clearly $x = 0$ is one of the root and other part can		
	be observed by replacing $x^2 = t$ from which we		
	have $t^3 + 3t^2 - 13t - 15 = 0$		
	$\Rightarrow \qquad (t-3)(t^2+6t+5)=0$		
	So, $t = 3, t = -1, t = -5$		
	Now we are getting $x^2 = 3$ , $x^2 = -1$ , $x^2 = -5$		
	$\Rightarrow x = \pm \sqrt{3}, x = \pm i, x = \pm \sqrt{5}i$		
	From the given condition $ \alpha_1  \ge  \alpha_2  \ge \ldots \ge  \alpha_7 $		
	We can clearly say that $ \alpha_7  = 0$ and		
	and $ \alpha_6  = \sqrt{5} =  \alpha_5 $		

nuary, 2023/29-01-2023/Evening Session ind  $|\alpha_4| = \sqrt{3} = |\alpha_3|$  and  $|\alpha_2| = 1 = |\alpha_1|$ to we can have,  $\alpha_1 = \sqrt{5}$  i,  $\alpha_2 = -\sqrt{5}$  i,  $\alpha_3 = \sqrt{3}$  i,  $a_4 = -\sqrt{3}$ ,  $\alpha_5 = i$ ,  $\alpha_6 = -i$ ence  $a_1 \alpha_2 - \alpha_3 \alpha_4 + \alpha_5 \alpha_6$ = 1 - (-3) + 5 = 9