∛Saral **FINAL JEE-MAIN EXAMINATION - JANUARY, 2023** (Held On Wednesday 25th January, 2023) TIME: 9:00 AM to 12:00 NOON **TEST PAPER WITH SOLUTION** MATHEMATICS **SECTION-A** $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{a} \cdot (\vec{b} \times (\vec{c} \times \vec{d}))$ 61. Let M be the maximum value of the product of two $= \vec{a} \cdot ((\vec{b} \cdot \vec{d})\vec{c} - (\vec{b} \cdot \vec{c})\vec{d})$ positive integers when their sum is 66. Let the $= (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) = \frac{1}{4}$ sample space $S = \left\{ x \in \mathbb{Z} : x(66 - x) \ge \frac{5}{9}M \right\}$ and **63**. Let y = y(x) be the solution curve of the $A = \{x \in S : x \text{ is a multiple of } 3\}.$ the event differential equation $\frac{dy}{dx} = \frac{y}{x}(1 + xy^2(1 + \log_e x)),$ Then P(A) is equal to (1) $\frac{15}{44}$ $(2)\frac{1}{2}$ x > 0, y(1) = 3. Then $\frac{y^2(x)}{q}$ is equal to : (4) $\frac{7}{22}$ $(3) \frac{1}{5}$ (1) $\frac{x^2}{5-2x^3(2+\log_2 x^3)}$ Official Ans. by NTA (2) (2) $\frac{x^2}{2x^3(2+\log x^3)-3}$ Ans. (2) $M = 33 \times 33$ Sol. (3) $\frac{x^2}{3x^3(1+\log_2 x^2)-2}$ $x(66-x) \ge \frac{5}{9} \times 33 \times 33$ $11 \le x \le 55$ (4) $\frac{x^2}{7-3x^3(2+\log_2 x^2)}$ A : {12, 15, 18, 54} $P(A) = \frac{15}{45} = \frac{1}{2}$ Official Ans. by NTA (1) Ans. (1) Let \vec{a} , \vec{b} and \vec{c} be three non zero vectors such that 62. **Sol.** $\frac{dy}{dx} - \frac{y}{x} = y^3(1 + \log_e x)$ $\vec{b} \cdot \vec{c} = 0$ and $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} - \vec{c}}{2}$. If \vec{d} be a vector $\frac{1}{v^3}\frac{dy}{dx} - \frac{1}{xv^2} = 1 + \log_e x$ such that $\vec{b} \cdot \vec{d} = \vec{a} \cdot \vec{b}$, then $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$ is equal to Let $-\frac{1}{v^2} = t \Rightarrow \frac{2}{v^3} \frac{dy}{dx} = \frac{dt}{dx}$ (1) $\frac{3}{4}$ $(2)\frac{1}{2}$ $\therefore \frac{dt}{dx} + \frac{2t}{x} = 2(1 + \log_e x)$ $(4) \frac{1}{4}$ $(3) - \frac{1}{4}$ $IF = e^{\int \frac{2}{x} dx} = x^2$ Official Ans. by NTA (4) $\frac{-x^2}{x^2} = \frac{2}{3} \left((1 + \log_e x) x^3 - \frac{x^3}{3} \right) + C$ Ans. (4) **Sol.** $(\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \frac{\vec{b} - \vec{c}}{2}$ y(1) = 3 $\frac{y^2}{9} = \frac{x^2}{5 - 2x^3(2 + \log_a x^3)}$ $\vec{a} \cdot \vec{c} = \frac{1}{2}, \ \vec{a} \cdot \vec{b} = \frac{1}{2}$ $\therefore \vec{b} \cdot \vec{d} = \frac{1}{2}$ OR

$xdy = ydx + xy^3(1 + \log_e x)dx$
$\frac{xdy - ydx}{y^3} = x(1 + \log_e x)dx$
$-\frac{x}{y}d\left(\frac{x}{y}\right) = x^2(1+\log_e x)dx$
$-\left(\frac{x}{y}\right)^2 = 2\int x^2(1+\log_e x)dx$

64. The value of

***Saral**

$$\lim_{n \to \infty} \frac{1 + 2 - 3 + 4 + 5 - 6 + \dots + (3n - 2) + (3n - 1) - 3n}{\sqrt{2n^4 + 4n + 3} - \sqrt{n^4 + 5n + 4}}$$

is :

(1) $\frac{\sqrt{2}+1}{2}$ (2) $3(\sqrt{2}+1)$ (3) $\frac{3}{2}(\sqrt{2}+1)$ (4) $\frac{3}{2\sqrt{2}}$

Official Ans. by NTA (3) Ans. (3) Sol. $\lim_{n \to \infty} \frac{0+3+6+9+\dots n \text{ terms}}{\sqrt{2n^4}+4n+3} - \sqrt{n^4}+5n+4}$ $\lim_{n \to \infty} \frac{3n(n-1)}{2(\sqrt{2n^4}+4n+3} - \sqrt{n^4}+5n+4)}$ $= \frac{3}{2(\sqrt{2}-1)} = \frac{3}{2}(\sqrt{2}+1)$

65. The points of intersection of the line ax + by = 0, $(a \neq b)$ and the circle $x^2 + y^2 - 2x = 0$ are $A(\alpha, 0)$ and $B(1,\beta)$. The image of the circle with AB as a diameter in the line x + y + 2 = 0 is :

(1)
$$x^{2} + y^{2} + 5x + 5y + 12 = 0$$

(2) $x^{2} + y^{2} + 3x + 5y + 8 = 0$
(3) $x^{2} + y^{2} + 3x + 3y + 4 = 0$
(4) $x^{2} + y^{2} - 5x - 5y + 12 = 0$
Official Ans. by NTA (1)
Ans. (1)

- Sol. Only possibility $\alpha = 0$, $\beta = 1$ \therefore equation of circle $x^2 + y^2 - x - y = 0$ Image of circle in x + y + 2 = 0 is $x^2 + y^2 + 5x + 5y + 12 = 0$
- 66. The mean and variance of the marks obtained by the students in a test are 10 and 4 respectively. Later, the marks of one of the students is increased from 8 to 12. If the new mean of the marks is 10.2. then their new variance is equal to :
 - (1) 4.04
 (2) 4.08
 (3) 3.96
 - (4) 3.92
 - Official Ans. by NTA (3)

Ans. (3)

Sol.
$$\sum_{i=1}^{n} x_{i} = 10n$$

$$\sum_{i=1}^{n} x_{i} - 8 + 12 = (10.2)n \qquad \therefore n = 20$$
Now
$$\frac{\sum_{i=1}^{20} x_{i}^{2}}{20} - (10)^{2} = 4 \Rightarrow \sum_{i=1}^{20} x_{i}^{2} = 2080$$

$$\sum_{i=1}^{20} x_{i}^{2} - 8^{2} + 12^{2}$$

$$= 108 - 104.04 = 3.96$$
67. Let
$$y(x) = (1 + x)(1 + x^{2})(1 + x^{4})(1 + x^{8})(1 + x^{16}).$$
Then y'-y'' at x = -1 is equal to
(1) 976 (2) 464
(3) 496 (4) 944
Official Ans. by NTA (3)
Ans. (3)
Sol.
$$y = \frac{1 - x^{32}}{1 - x} \Rightarrow y - xy = 1 - x^{32}$$

$$y' - xy' - y = -32x^{31}$$

$$y'' - xy'' - y' = -(32)(31)x^{30}$$
at x = -1 \Rightarrow y' - y'' = 496

A line L_3 having direction ratios 1, -1, -2, intersects L1 and L2 at the points P and Q respectively. Then the length of line segment PQ is

3

Let x = 2 be a local minima of the function $f(x) = 2x^4 - 18x^2 + 8x + 12$, $x \in (-4, 4)$. If M is

local maximum value of the function f in (-4, 4),

 $f(x) = \left(x^2 - 2x - \frac{9}{2}\right)\left(2x^2 + 4x - 1\right) + 24x + 7.5$

68.	The vector $\vec{a} = -\hat{i} + 2\hat{j} + \hat{k}$ is rotated through a	70.	Consider the lines L_1 and L_2	given by	
	right angle, passing through the y-axis in its way		$L_1: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z-2}{2}$		
	and the resulting vector is \vec{b} . Then the projection				
	of $3\vec{a} + \sqrt{2}\vec{b}$ on $\vec{c} = 5\hat{i} + 4\hat{j} + 3\hat{k}$ is		$L_2: \frac{x-2}{1} = \frac{y-2}{2} = \frac{z-3}{3}$		
	(1) $3\sqrt{2}$ (2) 1		A line L_3 having direction	on ratios 1,	
	(3) $\sqrt{6}$ (4) $2\sqrt{3}$		intersects L_1 and L_2 at		
	Official Ans. by NTA (1)		respectively. Then the length	h of line segme	
	Ans. (1)		(1) 2√6		
Sol.	$\vec{b} = \lambda \vec{a} \times (\vec{a} \times \hat{j})$		(2) $3\sqrt{2}$		
	$\Rightarrow \vec{b} = \lambda(-2\hat{i} - 2\hat{j} + 2\hat{k})$		(3) $4\sqrt{3}$		
	$ \vec{\mathbf{h}} = \vec{\mathbf{z}} \qquad \cdot \vec{6} - \vec{12} \ge 2 - \pm \frac{1}{2}$		(4) 4		
	$\left \vec{\mathbf{b}} \right = \left \vec{\mathbf{a}} \right \qquad \therefore \sqrt{6} = \sqrt{12} \left \lambda \right \Longrightarrow \lambda = \pm \frac{1}{\sqrt{2}}$		Official Ans. <mark>by NTA</mark> (1)		
	$\left(\lambda = \frac{1}{\sqrt{2}}$ rejected $\because \vec{b}$ makes acute angle with y axis		Ans. (1)		
	× V2	Sol.	Let $P = (2\lambda + 1, \lambda + 3, 2\lambda + 1, \lambda + 2, 2\lambda + 1, \lambda + 2, 2\lambda + 1, \lambda + 3, \lambda + 3, \lambda + 1, \lambda + 3, \lambda + 3, \lambda + 1, \lambda + 3, \lambda + 3, \lambda + 1, \lambda + 3, \lambda +$		
	$\vec{\mathbf{b}} = -\sqrt{2}(-\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}})$		Let $Q = (\mu + 2, 2\mu + 2, 3\mu - 2)$		
	$\frac{(3\vec{a} + \sqrt{2}\vec{b})\cdot\vec{c}}{ \vec{c} } = 3\sqrt{2}$		$\Rightarrow \frac{2\lambda - \mu - 1}{1} = \frac{\lambda - 2\mu + 1}{-1}$	$=\frac{2\lambda-3\mu-1}{-2}$	
(0)			$\Rightarrow \lambda = \mu = 3 \Rightarrow P(7,6,8)a$	nd Q(5,8,12)	
69.	The minimum value of the function		$PQ = 2\sqrt{6}$		
	$f(x) = \int e^{ x-t } dt is$	71.	Let $x = 2$ be a local m	inima of the	
	(1) $2(e-1)$ (2) $2e-1$		$f(x) = 2x^4 - 18x^2 + 8x + 1$	2, $x \in (-4, 4)$	
	$\begin{array}{c} (1) \ 2(c - 1) \\ (3) \ 2 \\ (4) \ e(e - 1) \end{array}$		local maximum value of th	e function f in	
	Official Ans. by NTA (1)		then M =		
	Ans. (1)		(1) $12\sqrt{6} - \frac{33}{2}$ (2)	$12\sqrt{6} - \frac{31}{2}$	
Sol.	For $x \le 0$		(3) $18\sqrt{6} - \frac{33}{2}$ (4)	$18\sqrt{6} - \frac{31}{2}$	
	$f(x) = \int_{0}^{2} e^{t-x} dt = e^{-x} (e^{2} - 1)$		$(3) 18\sqrt{6} - \frac{1}{2}$ (4)	$18\sqrt{6}-\frac{1}{2}$	
			Official Ans. by NTA (1)		
	For $0 < x < 2$		Ans. (1)		
	$f(x) = \int_{0}^{x} e^{x-t} dt + \int_{0}^{2} e^{t-x} dt = e^{x} + e^{2-x} - 2$	Sol.	$f'(x) = 8x^3 - 36x + 8 = 4(3)$	$2x^3 - 9x + 2)$	
	$\prod_{i=0}^{n} \prod_{i=1}^{n} \prod_{i$		f'(x) = 0		
	For $x \ge 2$		$\therefore \mathbf{x} = \frac{\sqrt{6} - 2}{2}$		
	$f(x) = \int_{0}^{2} e^{x-t} dt = e^{x-2}(e^{2} - 1)$		Now		
	For $x \le 0$, $f(x)$ is \downarrow and $x \ge 2$, $f(x)$ is \uparrow		$f(x) = \left(x^2 - 2x - \frac{9}{2}\right) \left(2x^2\right)$	+4x-1)+24	
	$\therefore \text{Minimum value of } f(x) \text{ lies in } x \in (0,2)$		(Γ_{-})		
	Applying $A.M \ge G.M$,		$\therefore f\left(\frac{\sqrt{6-2}}{2}\right) = M = 12\sqrt{6}$	$\frac{33}{2}$	
	minimum value of $f(x)$ is $2(e-1)$			2	

72. Let
$$z_1 = 2 + 3i$$
 and $z_2 = 3 + 4i$. The set

$$S = \left\{ z \in C : |z - z_1|^2 - |z - z_2|^2 = |z_1 - z_2|^2 \right\}$$
represents a
(1) straight line with sum of its intercepts on the coordinate axes equals 14
(2) hyperbola with the length of the transverse axis 7
(3) straight line with the sum of its intercepts on the coordinate axes equals -18
(4) hyperbola with eccentricity 2
Official Ans. by NTA (1)
Ans. (1)
Sol. $((x - 2)^2 + (y - 3)^2) - ((x - 3)^2 - (y - 4)^2) = 1 + 1)$
 $\Rightarrow x + y = 7$
73. The distance of the point $(6, -2\sqrt{2})$ from the common tangent $y = mx + c_x m > 0$, of the curves $x = 2y^2$ and $x = 1 + y^2$ is
(1) $\frac{1}{3}$
(2) 5
(3) $\frac{14}{3}$
(4) $5\sqrt{3}$
Official Ans. by NTA (2)
Ans. (2)
Sol. For
 $y^2 = \frac{x}{2}$, T: $y = mx + \frac{1}{8m}$
For tangent to $y^2 + 1 = x$
 $\Rightarrow \left(mx + \frac{1}{8m}\right)^2 + 1 = x$
 $D = 0 \Rightarrow m = \frac{1}{2\sqrt{2}}$
 \therefore T: $x - 2\sqrt{2}y + 1 = 0$
 $d = \left|\frac{6+8+1}{\sqrt{9}}\right| = 5$

Let S_1 and S_2 be respectively the sets of all 74. $a \in R - \{0\}$ for which the system of linear equations ax + 2ay - 3az = 1(2a+1)x + (2a+3)y + (a+1)z = 2(3a+5)x + (a+5)y + (a+2)z = 3has unique solution and infinitely many solutions. Then (1) $n(S_1) = 2$ and S_2 is an infinite set (2) S_1 is an infinite set an $n(S_2) = 2$ (3) $S_1 = \Phi$ and $S_2 = \mathbb{R} - \{0\}$ (4) $\mathbf{S}_1 = \mathbb{R} - \{\mathbf{0}\}$ and $\mathbf{S}_2 = \Phi$ Official Ans. by NTA (4) Ans. (4) Sol. $\Delta = \begin{vmatrix} a & 2a & -3a \\ 2a+1 & 2a+3 & a+1 \\ 3a+5 & a+5 & a+2 \end{vmatrix}$ $= a(15a^{2} + 31a + 36) = 0 \implies a = 0$ $\Delta \neq 0$ for all $a \in \mathbb{R} - \{0\}$ Hence $S_1 = R - \{0\}$ $S_2 = \Phi$ 75. Let $f(x) = \int \frac{2x}{(x^2+1)(x^2+3)} dx$. If $f(3) = \frac{1}{2}(\log_e 5 - \log_e 6)$, then f(4) is equal to (1) $\frac{1}{2}(\log_e 17 - \log_e 19)$ (2) $\log_{e} 17 - \log_{e} 18$ (3) $\frac{1}{2}(\log_e 19 - \log_e 17)$ (4) $\log_{e} 19 - \log_{e} 20$ Official Ans. by NTA (1) Allen Ans. (1) **Sol.** Put $x^2 = t$ $\int \frac{dt}{(t+1)(t+3)} = \frac{1}{2} \int \left(\frac{1}{t+1} - \frac{1}{t+3}\right) dt$ $f(x) = \frac{1}{2} ln \left(\frac{x^2 + 1}{x^2 + 3} \right) + C$ $f(3) = \frac{1}{2}(\ln 10 - \ln 12) + C$ \Rightarrow C = 0 $f(4) = \frac{1}{2} ln \left(\frac{17}{19} \right)$

<mark>∛Saral</mark>

76. The statement
$$(p \land (-q)) \Rightarrow (p \Rightarrow (-q))$$
 is
(1) equivalent to $(-p) \lor (-q)$
(2) a tautology
(3) equivalent to $p \lor q$
(4) a contradiction
Official Ans. by NTA (2)
Ans. (2)
Sol. $(p \land -q) \rightarrow (p \rightarrow -q)$
 $= (-(p \land q)) \lor (-p \lor -q)$
 $= (-p \lor q) \lor (-p \lor -q)$
 $= -p \lor t = t$
77. Let $f: (0,1) \rightarrow \mathbb{R}$ be a function defined by
 $f(x) = \frac{1}{1 - e^{-x}}$, and
 $g(x) = (f(-x) - f(x))$. Consider two statements
(1) g is one-one in (0, 1)
Then,
(1) Only (1) is true
(2) Only (11) is true
(3) Neither (1) nor (11) is true
(4) Both (1) and (11) are true
Official Ans. by NTA (4)
Ans. (4)
Sol. $g(x) = f(-x) - f(x) = \frac{1 + e^x}{1 - e^x}$
 $\Rightarrow g'(x) = \frac{2e^x}{(1 - e^x)^2} > 0$
 $\Rightarrow g$ is increasing in (0, 1)
 $\Rightarrow g$ is one-one in (0, 1)
78. The distance of the point P(4, 6, -2) from the line
passing through the point (-3, 2, 3) and parallel to
a line with direction ratios 3, 3, -1 is equal to :
(1) 3
(2) $\sqrt{6}$
(3) $2\sqrt{3}$
(4) $\sqrt{14}$
Official Ans. by NTA (4)
Ans. (4)

P(4,6,-2)Sol. м Equation of line is $\frac{x+3}{3} = \frac{y-2}{3} = \frac{z-3}{-1} = \lambda$ $M(3\lambda - 3, 3\lambda + 2, 3 - \lambda)$ D.R of PM $(3\lambda - 7, 3\lambda - 4, 5 - \lambda)$ Since PM is perpendicular to line $\Rightarrow 3(3\lambda - 7) + 3(3\lambda - 4) - 1(5 - \lambda) = 0$ $\Rightarrow \lambda = 2$ \Rightarrow M(3,8,1) \Rightarrow PM = $\sqrt{14}$ Let x, y, z > 1 and 79. $\mathbf{A} = \begin{bmatrix} 1 & \log_{x} \mathbf{y} & \log_{x} \mathbf{z} \\ \log_{y} \mathbf{x} & 2 & \log_{y} \mathbf{z} \\ \log_{z} \mathbf{x} & \log_{z} \mathbf{y} & 3 \end{bmatrix}.$ Then $\left| adj(adj A^2) \right|$ is equal to $(1) 6^4$ $(2) 2^8$ $(3) 4^8$ $(4) 2^4$ Official Ans. by NTA (2) Ans. (2) Sol. $|A| = \frac{1}{\log x \cdot \log y \cdot \log z} \begin{vmatrix} \log x & \log y & \log z \\ \log x & 2\log y & \log z \\ \log x & \log y & 3\log z \end{vmatrix} = 2$ $\Rightarrow |adj(adjA^2)| = |A^2|^4 = 2^8$ If a_r is the coefficient of x^{10-r} in the Binomial 80. expansion of $(1 + x)^{10}$, then $\sum_{r=1}^{10} r^3 \left(\frac{a_r}{a_r}\right)^2$ is equal to (1) 4895 (2) 1210 (3) 5445 (4) 3025 Official Ans. by NTA (2) Ans. (2) **Sol.** $a_r = {}^{10}C_{10-r} = {}^{10}C_r$ $\Rightarrow \sum_{r=1}^{10} r^3 \left(\frac{{}^{10}C_r}{{}^{10}C_r} \right)^2 = \sum_{r=1}^{10} r^3 \left(\frac{11-r}{r} \right)^2 = \sum_{r=1}^{10} r(11-r)^2$ $=\sum_{1}^{10}(121r+r^{3}-22r^{2})=1210$

<mark>∛Saral</mark>

81. Let $S = \{1, 2, 3, 5, 7, 10, 11\}$. The number of nonempty subsets of S that have the sum of all elements a multiple of 3, is _____.

SECTION-B

Official Ans. by NTA (43)

Ans. (43)

Sol. Elements of the type 3k = 3

Elements of the type 3k + 1 = 1, 7, 9

Elements of the type 3k + 2 = 2, 5, 11

Subsets containing one element $S_1 = 1$

Subsets containing two elements

$$S_2 = {}^3C_1 \times {}^3C_1 = 9$$

Subsets containing three elements

$$S_3 = {}^3C_1 \times {}^3C_1 + 1 + 1 = 11$$

Subsets containing four elements

$$S_4 = {}^3C_3 + {}^3C_3 + {}^3C_2 \times {}^3C_2 = 11$$

Subsets containing five elements

$$S_5 = {}^3C_2 \times {}^3C_2 \times 1 = 9$$

Subsets containing six elements $S_6 = 1$

Subsets containing seven elements $S_7 = 1$

- \Rightarrow sum = 43
- 82. For some $a, b, c \in \mathbb{N}$, let f(x) = ax 3 and

$$g(x) = x^{b} + c, x \in \mathbb{R}$$
. If $(fog)^{-1}(x) = \left(\frac{x-7}{2}\right)^{1/3}$

then (fog) (ac) + (gof) (b) is equal to $\underline{\qquad}$.

Official Ans. by NTA (2039)

Ans. (2039)

Sol. Let fog(x) = h(x)

$$\Rightarrow h^{-1}(x) = \left(\frac{x-7}{2}\right)^{\frac{1}{3}}$$

$$\Rightarrow$$
 h(x) = fog(x) = 2x³ + 7

 $fog(x) = a(x^{b} + c) - 3$ $\Rightarrow a = 2, b = 3, c = 5$ $\Rightarrow fog(ac) = fog(10) = 2007$ $g(f(x) = (2x - 3)^{3} + 5$ $\Rightarrow gof(b) = gof(3) = 32$ $\Rightarrow sum = 2039$

83. The vertices of a hyperbola H are (±6,0) and its eccentricity is $\frac{\sqrt{5}}{2}$. Let N be the normal to H at a point in the first quadrant and parallel to the line $\sqrt{2}x + y = 2\sqrt{2}$. If d is the length of the line segment of N between H and the y-axis then d² is equal to _____.

Official Ans. by NTA (216)

Ans. (216)

Sol.

equation of normal is $6x \cos\theta + 3y \cot\theta = 45$

slope =
$$-2\sin\theta = -\sqrt{2}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Equation of normal is $\sqrt{2}x + y = 15$ P : (a sec θ , b tan θ) \Rightarrow P(6 $\sqrt{2}$,3) and K(0,15) d² = 216

84. Let

$$\mathbf{S} = \left\{ \alpha : \log_2(9^{2\alpha - 4} + 13) - \log_2\left(\frac{5}{2} \cdot 3^{2\alpha - 4} + 1\right) = 2 \right\}.$$

Then the maximum value of β for which the

equation $x^2 - 2\left(\sum_{\alpha \in s} \alpha\right)^2 x + \sum_{\alpha \in s} (\alpha + 1)^2 \beta = 0$ has

real roots, is _____.

Official Ans. by NTA (25)

Ans. (25)

Sol.
$$\log_2(9^{2\alpha-4}+13) - \log_2\left(\frac{5}{2} \cdot 3^{2\alpha-4}+1\right) = 2$$

$$\Rightarrow \frac{9^{2\alpha-4} + 13}{\frac{5}{2}3^{2\alpha-4} + 1} = 4$$

$$\Rightarrow \alpha = 2 \quad \text{or} \quad 3$$

$$\sum_{\alpha \in S} \alpha = 5 \text{ and } \sum_{\alpha \in S} (\alpha + 1)^2 = 25$$

$$\Rightarrow x^2 - 50x + 25\beta = 0 \text{ has real roots}$$

$$\Rightarrow \beta \le 25$$

$$\Rightarrow \beta_{\text{max}} = 25$$

85. The constant term in the expansion of

$$\left(2x + \frac{1}{x^7} + 3x^2\right)^5 \text{ is } \underline{\qquad}$$

Official Ans. by NTA (1080)

Ans. (1080)

Sol. General term is
$$\sum \frac{5!(2x)^{n_1}(x^{-7})^{n_2}(3x^2)^{n_3}}{n_1! n_2! n_3!}$$

For constant term,

$$n_1 + 2n_3 = 7n_2$$

& $n_1 + n_2 + n_3 = 5$

Only possibility $n_1 = 1$, $n_2 = 1$, $n_3 = 3$

 \Rightarrow constant term = 1080

86. Let A₁, A₂, A₃ be the three A.P. with the same common difference d and having their first terms as A, A + 1, A + 2, respectively. Let a, b, c be the 7th, 9th, 17th terms of A₁, A₂, A₃, respectively such

that
$$\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + 70 = 0$$

If a = 29, then the sum of first 20 terms of an AP whose first term is c - a - b and common difference is $\frac{d}{12}$, is equal to _____.

Official Ans. by NTA (495)

Ans. (<mark>495)</mark>

Sol.
$$\begin{vmatrix} A + 6d & 7 & 1 \\ 2(A + 1 + 8d) & 17 & 1 \\ A + 2 + 16d & 17 & 1 \end{vmatrix} + 70 = 0$$

 $\Rightarrow A = -7 \text{ and } d = 6$
 $\therefore c - a - b = 20$
 $S_{20} = 495$

87. If the sum of all the solutions of

$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3},$$

$$-1 < x < 1, x \neq 0$$
, is $\alpha - \frac{4}{\sqrt{3}}$, then α is equal to

Official Ans. by NTA (2)

Ans. (2)
Sol. Case I :
$$x > 0$$

 $\tan^{-1} \frac{2x}{1 - x^2} + \tan^{-1} \frac{2x}{1 - x^2} = \frac{\pi}{3}$
 $x = 2 - \sqrt{3}$
Case II : $x < 0$
 $\tan^{-1} \frac{2x}{1 - x^2} + \tan^{-1} \frac{2x}{1 - x^2} + \pi = \frac{\pi}{3}$
 $x = \frac{-1}{\sqrt{3}} \Rightarrow \alpha = 2$

88. Let the equation of the plane passing through the line

x-2y-z-5=0=x+y+3z-5 and parallel to the line x + y + 2z - 7 = 0 = 2x + 3y + z - 2 be ax + by + cz = 65. Then the distance of the point (a, b, c) from the plane 2x + 2y - z + 16 = 0 is

Official Ans. by NTA (9)

Ans. (9)

Sara

Sol. Equation of plane is (x-2y-z-5)+b(x+y+3z-5) = 0 $\begin{vmatrix} 1+b & -2+b & -1+3b \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix} = 0$ $\Rightarrow b = 12$ $\therefore \text{ plane is } 13x + 10y + 35z = 65$ Distance from given point to plane = 9

89. Let x and y be distinct integers where $1 \le x \le 25$ and $1 \le y \le 25$. Then, the number of ways of choosing x and y, such that x + y is divisible by 5, is _____.

Official Ans. by NTA (120)

Ans. (120)

Sol.
$$x + y = 5\lambda$$

X	У	Number of ways
5λ	5λ	20
$5\lambda + 1$	$5\lambda + 4$	25
$5\lambda + 2$	$5\lambda + 3$	25
$5\lambda + 3$	$5\lambda + 2$	25
$5\lambda + 4$	$5\lambda + 1$	25
Total = 120		

90. It the area enclosed by the parabolas $P_1 : 2y = 5x^2$ and $P_2 : x^2 - y + 6 = 0$ is equal to the area enclosed by P_1 and $y = \alpha x$, $\alpha > 0$, then α^3 is equal to

Official Ans. by NTA (600)

Ans. (600)

Abscissa of point of intersection of $2y = 5x^2$ and $y = x^2 + 6$ is ± 2

$$\Rightarrow \alpha^3 = 600$$