FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

(Held On Wednesday 25th January, 2023)
TIME : 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

61. Let M be the maximum value of the product of two positive integers when their sum is 66 . Let the sample space $S=\left\{x \in Z: x(66-x) \geq \frac{5}{9} M\right\}$ and the event $A=\{x \in S: x$ is a multiple of 3$\}$. Then $P(A)$ is equal to
(1) $\frac{15}{44}$
(2) $\frac{1}{3}$
(3) $\frac{1}{5}$
(4) $\frac{7}{22}$

Official Ans. by NTA (2)
Ans. (2)
Sol. $\mathrm{M}=33 \times 33$
$x(66-x) \geq \frac{5}{9} \times 33 \times 33$
$11 \leq \mathrm{x} \leq 55$
A : $\{12,15,18, \ldots .54\}$
$\mathrm{P}(\mathrm{A})=\frac{15}{45}=\frac{1}{3}$
62. Let \vec{a}, \vec{b} and \vec{c} be three non zero vectors such that $\vec{b} \cdot \vec{c}=0$ and $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}-\vec{c}}{2}$. If \vec{d} be a vector such that $\vec{b} \cdot \vec{d}=\vec{a} \cdot \vec{b}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ is equal to
(1) $\frac{3}{4}$
(2) $\frac{1}{2}$
(3) $-\frac{1}{4}$
(4) $\frac{1}{4}$

Official Ans. by NTA (4)
Ans. (4)
Sol. $\quad(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\frac{\vec{b}-\vec{c}}{2}$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=\frac{1}{2}, \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\frac{1}{2}$
$\therefore \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{d}}=\frac{1}{2}$

TEST PAPER WITH SOLUTION

$(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\vec{a} \cdot(\vec{b} \times(\vec{c} \times \vec{d}))$
$=\vec{a} \cdot((\vec{b} \cdot \vec{d}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{d})$
$=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{d}})=\frac{1}{4}$
63. Let $y=y(x)$ be the solution curve of the differential equation $\frac{d y}{d x}=\frac{y}{x}\left(1+x y^{2}\left(1+\log _{e} x\right)\right)$,
$x>0, y(1)=3$. Then $\frac{y^{2}(x)}{9}$ is equal to :
(1) $\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}$
(2) $\frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}$
(3) $\frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}$
(4) $\frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}$

Official Ans. by NTA (1)
Ans. (1)
Sol. $\frac{d y}{d x}-\frac{y}{x}=y^{3}\left(1+\log _{e} x\right)$
$\frac{1}{y^{3}} \frac{d y}{d x}-\frac{1}{x y^{2}}=1+\log _{e} x$
Let $-\frac{1}{y^{2}}=\mathrm{t} \Rightarrow \frac{2}{\mathrm{y}^{3}} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}$
$\therefore \frac{\mathrm{dt}}{\mathrm{dx}}+\frac{2 \mathrm{t}}{\mathrm{x}}=2\left(1+\log _{\mathrm{e}} \mathrm{x}\right)$
I.F. $=\mathrm{e}^{\int \frac{2}{\mathrm{x}} \mathrm{dx}}=\mathrm{X}^{2}$
$\frac{-x^{2}}{y^{2}}=\frac{2}{3}\left(\left(1+\log _{e} x\right) x^{3}-\frac{x^{3}}{3}\right)+C$
$y(1)=3$
$\frac{y^{2}}{9}=\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}$
OR
$x d y=y d x+x y^{3}\left(1+\log _{e} x\right) d x$
$\frac{x d y-y d x}{y^{3}}=x\left(1+\log _{e} x\right) d x$
$-\frac{x}{y} d\left(\frac{x}{y}\right)=x^{2}\left(1+\log _{e} x\right) d x$
$-\left(\frac{x}{y}\right)^{2}=2 \int x^{2}\left(1+\log _{e} x\right) d x$
64. The value of
$\operatorname{Lim}_{n \rightarrow \infty} \frac{1+2-3+4+5-6+\ldots+(3 n-2)+(3 n-1)-3 n}{\sqrt{2 n^{4}+4 n+3-\sqrt{n^{4}+5 n+4}}}$
is :
(1) $\frac{\sqrt{2}+1}{2}$
(2) $3(\sqrt{2}+1)$
(3) $\frac{3}{2}(\sqrt{2}+1)$
(4) $\frac{3}{2 \sqrt{2}}$

Official Ans. by NTA (3)
Ans. (3)
Sol. $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \frac{0+3+6+9+\ldots . . \mathrm{n} \text { terms }}{\sqrt{2 \mathrm{n}^{4}+4 \mathrm{n}+3}-\sqrt{\mathrm{n}^{4}+5 \mathrm{n}+4}}$
$\operatorname{Lim}_{n \rightarrow \infty} \frac{3 n(n-1)}{2\left(\sqrt{2 n^{4}+4 n+3}-\sqrt{n^{4}+5 n+4}\right)}$
$=\frac{3}{2(\sqrt{2}-1)}=\frac{3}{2}(\sqrt{2}+1)$
65. The points of intersection of the line $a x+b y=0$, $(a \neq b)$ and the circle $x^{2}+y^{2}-2 x=0$ are $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(1, \beta)$. The image of the circle with AB as a diameter in the line $\mathrm{x}+\mathrm{y}+2=0$ is :
(1) $x^{2}+y^{2}+5 x+5 y+12=0$
(2) $x^{2}+y^{2}+3 x+5 y+8=0$
(3) $x^{2}+y^{2}+3 x+3 y+4=0$
(4) $x^{2}+y^{2}-5 x-5 y+12=0$

Official Ans. by NTA (1)
Ans. (1)

Sol. Only possibility $\alpha=0, \beta=1$
\therefore equation of circle $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}-\mathrm{y}=0$
Image of circle in $x+y+2=0$ is
$x^{2}+y^{2}+5 x+5 y+12=0$
66. The mean and variance of the marks obtained by the students in a test are 10 and 4 respectively. Later, the marks of one of the students is increased from 8 to 12 . If the new mean of the marks is 10.2 . then their new variance is equal to :
(1) 4.04
(2) 4.08
(3) 3.96
(4) 3.92

Official Ans. by NTA (3)
Ans. (3)
Sol. $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}=10 \mathrm{n}$
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}-8+12=(10.2) \mathrm{n} \quad \therefore \mathrm{n}=20$
Now $\frac{\sum_{i=1}^{20} x_{i}{ }^{2}}{20}-(10)^{2}=4 \Rightarrow \sum_{i=1}^{20} x_{i}{ }^{2}=2080$
$\frac{\sum_{i=1}^{20} \mathrm{x}_{\mathrm{i}}{ }^{2}-8^{2}+12^{2}}{20}-(10.2)^{2}$
$=108-104.04=3.96$
67. Let
$\mathrm{y}(\mathrm{x})=(1+\mathrm{x})\left(1+\mathrm{x}^{2}\right)\left(1+\mathrm{x}^{4}\right)\left(1+\mathrm{x}^{8}\right)\left(1+\mathrm{x}^{16}\right)$.
Then $y^{\prime}-y^{\prime \prime}$ at $x=-1$ is equal to
(1) 976
(2) 464
(3) 496
(4) 944

Official Ans. by NTA (3)
Ans. (3)
Sol. $y=\frac{1-x^{32}}{1-x} \Rightarrow y-x y=1-x^{32}$
$y^{\prime}-x y^{\prime}-y=-32 x^{31}$
$y^{\prime \prime}-x y^{\prime \prime}-y^{\prime}-y^{\prime}=-(32)(31) x^{30}$
at $x=-1 \Rightarrow y^{\prime}-y^{\prime \prime}=496$
68. The vector $\vec{a}=-\hat{i}+2 \hat{j}+\hat{k}$ is rotated through a right angle, passing through the y-axis in its way and the resulting vector is \vec{b}. Then the projection of $3 \vec{a}+\sqrt{2} \vec{b}$ on $\vec{c}=5 \hat{i}+4 \hat{j}+3 \hat{k}$ is
(1) $3 \sqrt{2}$
(2) 1
(3) $\sqrt{6}$
(4) $2 \sqrt{3}$

Official Ans. by NTA (1)

Ans. (1)
Sol. $\vec{b}=\lambda \vec{a} \times(\vec{a} \times \hat{j})$
$\Rightarrow \overrightarrow{\mathrm{b}}=\lambda(-2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
$|\vec{b}|=|\vec{a}| \quad \therefore \sqrt{6}=\sqrt{12}|\lambda| \Rightarrow \lambda= \pm \frac{1}{\sqrt{2}}$
$\left(\lambda=\frac{1}{\sqrt{2}}\right.$ rejected $\because \overrightarrow{\mathrm{b}}$ makes acute angle with y axis $)$
$\overrightarrow{\mathrm{b}}=-\sqrt{2}(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
$\frac{(3 \vec{a}+\sqrt{2} \vec{b}) \cdot \vec{c}}{|\vec{c}|}=3 \sqrt{2}$
69. The minimum value of the function $f(x)=\int_{0}^{2} e^{|x-t|} d t$ is
(1) $2(\mathrm{e}-1)$
(2) $2 \mathrm{e}-1$
(3) 2
(4) $\mathrm{e}(\mathrm{e}-1)$

Official Ans. by NTA (1)
Ans. (1)
Sol. For $\mathrm{x} \leq 0$
$f(x)=\int_{0}^{2} e^{t-x} d t=e^{-x}\left(e^{2}-1\right)$
For $0<x<2$
$f(x)=\int_{0}^{x} e^{x-t} d t+\int_{x}^{2} e^{t-x} d t=e^{x}+e^{2-x}-2$
For $\mathrm{x} \geq 2$
$f(x)=\int_{0}^{2} e^{x-t} d t=e^{x-2}\left(e^{2}-1\right)$
For $\mathrm{x} \leq 0, \mathrm{f}(\mathrm{x})$ is \downarrow and $\mathrm{x} \geq 2, \mathrm{f}(\mathrm{x})$ is \uparrow
\therefore Minimum value of $f(x)$ lies in $x \in(0,2)$
Applying A. $\mathrm{M} \geq \mathrm{G} . \mathrm{M}$, minimum value of $f(x)$ is $2(e-1)$
70. Consider the lines L_{1} and L_{2} given by
$\mathrm{L}_{1}: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-3}{1}=\frac{\mathrm{z}-2}{2}$
$\mathrm{L}_{2}: \frac{\mathrm{x}-2}{1}=\frac{\mathrm{y}-2}{2}=\frac{\mathrm{z}-3}{3}$
A line L_{3} having direction ratios $1,-1,-2$, intersects L_{1} and L_{2} at the points P and Q respectively. Then the length of line segment $P Q$ is
(1) $2 \sqrt{6}$
(2) $3 \sqrt{2}$
(3) $4 \sqrt{3}$
(4) 4

Official Ans. by NTA (1)
Ans. (1)
Sol. Let $\mathrm{P}=(2 \lambda+1, \lambda+3,2 \lambda+2)$
Let $\mathrm{Q}=(\mu+2,2 \mu+2,3 \mu+3)$
$\Rightarrow \frac{2 \lambda-\mu-1}{1}=\frac{\lambda-2 \mu+1}{-1}=\frac{2 \lambda-3 \mu-1}{-2}$
$\Rightarrow \lambda=\mu=3 \Rightarrow \mathrm{P}(7,6,8)$ and $\mathrm{Q}(5,8,12)$
$\mathrm{PQ}=2 \sqrt{6}$
71. Let $x=2$ be a local minima of the function $f(x)=2 x^{4}-18 x^{2}+8 x+12, x \in(-4,4)$. If M is local maximum value of the function f in $(-4,4)$, then $\mathrm{M}=$
(1) $12 \sqrt{6}-\frac{33}{2}$
(2) $12 \sqrt{6}-\frac{31}{2}$
(3) $18 \sqrt{6}-\frac{33}{2}$
(4) $18 \sqrt{6}-\frac{31}{2}$

Official Ans. by NTA (1)
Ans. (1)
Sol. $f^{\prime}(x)=8 x^{3}-36 x+8=4\left(2 x^{3}-9 x+2\right)$
$\mathrm{f}^{\prime}(\mathrm{x})=0$
$\therefore x=\frac{\sqrt{6}-2}{2}$
Now
$f(x)=\left(x^{2}-2 x-\frac{9}{2}\right)\left(2 x^{2}+4 x-1\right)+24 x+7.5$
$\therefore \mathrm{f}\left(\frac{\sqrt{6}-2}{2}\right)=\mathrm{M}=12 \sqrt{6}-\frac{33}{2}$
72. Let $z_{1}=2+3 i$ and $z_{2}=3+4 i$. The set
$\mathrm{S}=\left\{\mathrm{z} \in \mathrm{C}:\left|\mathrm{z}-\mathrm{z}_{1}\right|^{2}-\left|\mathrm{z}-\mathrm{z}_{2}\right|^{2}=\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|^{2}\right\}$
represents a
(1) straight line with sum of its intercepts on the coordinate axes equals 14
(2) hyperbola with the length of the transverse axis 7
(3) straight line with the sum of its intercepts on the coordinate axes equals -18
(4) hyperbola with eccentricity 2

Official Ans. by NTA (1)
Ans. (1)
Sol. $\left((x-2)^{2}+(y-3)^{2}\right)-\left((x-3)^{2}-(y-4)^{2}\right)=1+1$
$\Rightarrow \mathrm{x}+\mathrm{y}=7$
73. The distance of the point $(6,-2 \sqrt{2})$ from the common tangent $y=m x+c, m>0$, of the curves $x=2 y^{2}$ and $x=1+y^{2}$ is
(1) $\frac{1}{3}$
(2) 5
(3) $\frac{14}{3}$
(4) $5 \sqrt{3}$

Official Ans. by NTA (2)

Ans. (2)
Sol. For
$y^{2}=\frac{x}{2}, T: y=m x+\frac{1}{8 m}$
For tangent to $y^{2}+1=x$
$\Rightarrow\left(m x+\frac{1}{8 m}\right)^{2}+1=x$
$\mathrm{D}=0 \Rightarrow \mathrm{~m}=\frac{1}{2 \sqrt{2}}$
$\therefore \mathrm{T}: \mathrm{x}-2 \sqrt{2} \mathrm{y}+1=0$
$d=\left|\frac{6+8+1}{\sqrt{9}}\right|=5$
74. Let S_{1} and S_{2} be respectively the sets of all $\mathrm{a} \in \mathrm{R}-\{0\}$ for which the system of linear equations
$a x+2 a y-3 a z=1$
$(2 a+1) x+(2 a+3) y+(a+1) z=2$
$(3 a+5) x+(a+5) y+(a+2) z=3$
has unique solution and infinitely many solutions. Then
(1) $n\left(S_{1}\right)=2$ and S_{2} is an infinite set
(2) S_{1} is an infinite set an $n\left(S_{2}\right)=2$
(3) $S_{1}=\Phi$ and $S_{2}=\mathbb{R}-\{0\}$
(4) $S_{1}=\mathbb{R}-\{0\}$ and $S_{2}=\Phi$

Official Ans. by NTA (4)
Ans. (4)
Sol. $\Delta=\left|\begin{array}{lll}a & 2 a & -3 a \\ 2 a+1 & 2 a+3 & a+1 \\ 3 a+5 & a+5 & a+2\end{array}\right|$
$=a\left(15 a^{2}+31 a+36\right)=0 \Rightarrow a=0$
$\Delta \neq 0$ for all $\mathrm{a} \in \mathrm{R}-\{0\}$
Hence $S_{1}=R-\{0\} \quad S_{2}=\Phi$
75. Let $f(x)=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$.

If $f(3)=\frac{1}{2}\left(\log _{e} 5-\log _{e} 6\right)$, then $f(4)$ is equal to
(1) $\frac{1}{2}\left(\log _{\mathrm{e}} 17-\log _{\mathrm{e}} 19\right)$
(2) $\log _{\mathrm{e}} 17-\log _{\mathrm{e}} 18$
(3) $\frac{1}{2}\left(\log _{e} 19-\log _{e} 17\right)$
(4) $\log _{\mathrm{e}} 19-\log _{\mathrm{e}} 20$

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. Put $\mathrm{x}^{2}=\mathrm{t}$
$\int \frac{d t}{(t+1)(t+3)}=\frac{1}{2} \int\left(\frac{1}{t+1}-\frac{1}{t+3}\right) d t$
$\mathrm{f}(\mathrm{x})=\frac{1}{2} \ln \left(\frac{\mathrm{x}^{2}+1}{\mathrm{x}^{2}+3}\right)+\mathrm{C}$
$\mathrm{f}(3)=\frac{1}{2}(\ln 10-\ln 12)+\mathrm{C}$
$\Rightarrow \mathrm{C}=0$
$f(4)=\frac{1}{2} \ln \left(\frac{17}{19}\right)$
76. The statement $(\mathrm{p} \wedge(\sim \mathrm{q})) \Rightarrow(\mathrm{p} \Rightarrow(\sim \mathrm{q}))$ is
(1) equivalent to $(\sim p) \vee(\sim q)$
(2) a tautology
(3) equivalent to $p \vee q$
(4) a contradiction

Official Ans. by NTA (2)
Ans. (2)
Sol. $\quad(\mathrm{p} \wedge \sim \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \sim \mathrm{q})$
$\equiv(\sim(\mathrm{p} \wedge \sim \mathrm{q})) \vee(\sim \mathrm{p} \vee \sim \mathrm{q})$
$\equiv(\sim \mathrm{p} \vee \mathrm{q}) \vee(\sim \mathrm{p} \vee \sim \mathrm{q})$
$\equiv \sim \mathrm{p} \vee \mathrm{t} \equiv \mathrm{t}$
77. Let $\mathrm{f}:(0,1) \rightarrow \mathbb{R}$ be a function defined by
$f(x)=\frac{1}{1-e^{-x}}$, and
$g(x)=(f(-x)-f(x))$. Consider two statements
(I) g is an increasing function in $(0,1)$
(II) g is one-one in $(0,1)$

Then,
(1) Only (I) is true
(2) Only (II) is true
(3) Neither (I) nor (II) is true
(4) Both (I) and (II) are true

Official Ans. by NTA (4)
Ans. (4)
Sol. $g(x)=f(-x)-f(x)=\frac{1+e^{x}}{1-e^{x}}$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=\frac{2 \mathrm{e}^{\mathrm{x}}}{\left(1-\mathrm{e}^{\mathrm{x}}\right)^{2}}>0$
$\Rightarrow g$ is increasing in $(0,1)$
$\Rightarrow \mathrm{g}$ is one-one in $(0,1)$
78. The distance of the point $\mathrm{P}(4,6,-2)$ from the line passing through the point $(-3,2,3)$ and parallel to a line with direction ratios $3,3,-1$ is equal to :
(1) 3
(2) $\sqrt{6}$
(3) $2 \sqrt{3}$
(4) $\sqrt{14}$

Official Ans. by NTA (4)
Ans. (4)

Sol.

Equation of line is $\frac{x+3}{3}=\frac{y-2}{3}=\frac{z-3}{-1}=\lambda$
$\mathrm{M}(3 \lambda-3,3 \lambda+2,3-\lambda)$
D.R of $\operatorname{PM}(3 \lambda-7,3 \lambda-4,5-\lambda)$

Since $P M$ is perpendicular to line
$\Rightarrow 3(3 \lambda-7)+3(3 \lambda-4)-1(5-\lambda)=0$
$\Rightarrow \lambda=2$
$\Rightarrow \mathrm{M}(3,8,1) \Rightarrow \mathrm{PM}=\sqrt{14}$
79. Let $x, y, z>1$ and
$A=\left[\begin{array}{lll}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]$.
Then $\left|\operatorname{adj}\left(\operatorname{adj} \mathrm{A}^{2}\right)\right|$ is equal to
(1) 6^{4}
(2) 2^{8}
(3) 4^{8}
(4) 2^{4}

Official Ans. by NTA (2)
Ans. (2)
Sol. $|A|=\frac{1}{\log x \cdot \log y \cdot \log z}\left|\begin{array}{lll}\log x & \log y & \log z \\ \log x & 2 \log y & \log z \\ \log x & \log y & 3 \log z\end{array}\right|=2$ $\Rightarrow\left|\operatorname{adj}\left(\operatorname{adj} \mathrm{A}^{2}\right)\right|=\left|\mathrm{A}^{2}\right|^{4}=2^{8}$
80. If a_{r} is the coefficient of x^{10-r} in the Binomial expansion of $(1+x)^{10}$, then $\sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}$ is equal to
(1) 4895
(2) 1210
(3) 5445
(4) 3025

Official Ans. by NTA (2)
Ans. (2)
Sol. $a_{r}={ }^{10} C_{10-r}={ }^{10} C_{r}$
$\Rightarrow \sum_{\mathrm{r}=1}^{10} \mathrm{r}^{3}\left(\frac{{ }^{10} \mathrm{C}_{\mathrm{r}}}{{ }^{10} \mathrm{C}_{\mathrm{r}-1}}\right)^{2}=\sum_{\mathrm{r}=1}^{10} \mathrm{r}^{3}\left(\frac{11-\mathrm{r}}{\mathrm{r}}\right)^{2}=\sum_{\mathrm{r}=1}^{10} \mathrm{r}(11-\mathrm{r})^{2}$
$=\sum_{r=1}^{10}\left(121 r+r^{3}-22 r^{2}\right)=1210$

SECTION-B

81. Let $S=\{1,2,3,5,7,10,11\}$. The number of nonempty subsets of S that have the sum of all elements a multiple of 3 , is \qquad .

Official Ans. by NTA (43)
Ans. (43)
Sol. Elements of the type $3 \mathrm{k}=3$
Elements of the type $3 \mathrm{k}+1=1,7,9$
Elements of the type $3 \mathrm{k}+2=2,5,11$
Subsets containing one element $S_{1}=1$
Subsets containing two elements
$\mathrm{S}_{2}={ }^{3} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}=9$

Subsets containing three elements
$\mathrm{S}_{3}={ }^{3} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}+1+1=11$
Subsets containing four elements
$\mathrm{S}_{4}={ }^{3} \mathrm{C}_{3}+{ }^{3} \mathrm{C}_{3}+{ }^{3} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}=11$
Subsets containing five elements
$\mathrm{S}_{5}={ }^{3} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2} \times 1=9$
Subsets containing six elements $\mathrm{S}_{6}=1$
Subsets containing seven elements $\mathrm{S}_{7}=1$
\Rightarrow sum $=43$
82. For some $a, b, c \in \mathbb{N}$, let $f(x)=a x-3$ and

$$
g(x)=x^{b}+c, x \in \mathbb{R} . \text { If }(\operatorname{fog})^{-1}(x)=\left(\frac{x-7}{2}\right)^{1 / 3}
$$ then $(\mathrm{fog})(\mathrm{ac})+(\mathrm{gof})(\mathrm{b})$ is equal to \qquad .

Official Ans. by NTA (2039)
Ans. (2039)
Sol. Let $\operatorname{fog}(\mathrm{x})=\mathrm{h}(\mathrm{x})$
$\Rightarrow \mathrm{h}^{-1}(\mathrm{x})=\left(\frac{\mathrm{x}-7}{2}\right)^{\frac{1}{3}}$
$\Rightarrow \mathrm{h}(\mathrm{x})=\mathrm{fog}(\mathrm{x})=2 \mathrm{x}^{3}+7$

$$
\begin{aligned}
& \operatorname{fog}(\mathrm{x})=\mathrm{a}\left(\mathrm{x}^{\mathrm{b}}+\mathrm{c}\right)-3 \\
& \Rightarrow \mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=5 \\
& \Rightarrow \operatorname{fog}(\mathrm{ac})=\operatorname{fog}(10)=2007 \\
& \mathrm{~g}\left(\mathrm{f}(\mathrm{x})=(2 \mathrm{x}-3)^{3}+5\right. \\
& \Rightarrow \operatorname{gof}(\mathrm{b})=\operatorname{gof}(3)=32 \\
& \Rightarrow \operatorname{sum}=2039
\end{aligned}
$$

83. The vertices of a hyperbola H are $(\pm 6,0)$ and its eccentricity is $\frac{\sqrt{5}}{2}$. Let N be the normal to H at a point in the first quadrant and parallel to the line $\sqrt{2} x+y=2 \sqrt{2}$. If d is the length of the line segment of N between H and the y-axis then d^{2} is equal to \qquad .

Official Ans. by NTA (216)
Ans. (216)

Sol.

$H: \frac{x^{2}}{36}-\frac{y^{2}}{9}=1$
equation of normal is $6 x \cos \theta+3 y \cot \theta=45$
slope $=-2 \sin \theta=-\sqrt{2}$
$\Rightarrow \theta=\frac{\pi}{4}$
Equation of normal is $\sqrt{2} x+y=15$
$P:(a \sec \theta, b \tan \theta)$
$\Rightarrow \mathrm{P}(6 \sqrt{2}, 3)$ and $\mathrm{K}(0,15)$
$d^{2}=216$
84. Let

$$
S=\left\{\alpha: \log _{2}\left(9^{2 \alpha-4}+13\right)-\log _{2}\left(\frac{5}{2} \cdot 3^{2 \alpha-4}+1\right)=2\right\}
$$

Then the maximum value of β for which the equation $x^{2}-2\left(\sum_{\alpha \in} \alpha\right)^{2} x+\sum_{\alpha \Theta}(\alpha+1)^{2} \beta=0$ has real roots, is \qquad .

Official Ans. by NTA (25)

Ans. (25)

Sol. $\quad \log _{2}\left(9^{2 \alpha-4}+13\right)-\log _{2}\left(\frac{5}{2} \cdot 3^{2 \alpha-4}+1\right)=2$

$$
\begin{aligned}
& \Rightarrow \frac{9^{2 \alpha-4}+13}{\frac{5}{2} 3^{2 \alpha-4}+1}=4 \\
& \Rightarrow \alpha=2 \quad \text { or } \quad 3 \\
& \sum_{\alpha \in \mathrm{S}} \alpha=5 \text { and } \sum_{\alpha \in \mathrm{S}}(\alpha+1)^{2}=25 \\
& \Rightarrow \mathrm{x}^{2}-50 \mathrm{x}+25 \beta=0 \text { has real roots } \\
& \Rightarrow \beta \leq 25 \\
& \Rightarrow \beta_{\max }=25
\end{aligned}
$$

85. The constant term in the expansion of

$$
\left(2 x+\frac{1}{x^{7}}+3 x^{2}\right)^{5} \text { is }
$$

Official Ans. by NTA (1080)

Ans. (1080)

Sol. General term is $\sum \frac{5!(2 x)^{n_{1}}\left(x^{-7}\right)^{n_{2}}\left(3 x^{2}\right)^{n_{3}}}{n_{1}!n_{2}!n_{3}!}$

For constant term,
$\mathrm{n}_{1}+2 \mathrm{n}_{3}=7 \mathrm{n}_{2}$
$\& \mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}=5$
Only possibility $\mathrm{n}_{1}=1, \mathrm{n}_{2}=1, \mathrm{n}_{3}=3$
\Rightarrow constant term $=1080$
86. Let A_{1}, A_{2}, A_{3} be the three A.P. with the same common difference d and having their first terms as $\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2$, respectively. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the $7^{\text {th }}, 9^{\text {th }}, 17^{\text {th }}$ terms of A_{1}, A_{2}, A_{3}, respectively such that $\left|\begin{array}{lll}\mathrm{a} & 7 & 1 \\ 2 \mathrm{~b} & 17 & 1 \\ \mathrm{c} & 17 & 1\end{array}\right|+70=0$

If $\mathrm{a}=29$, then the sum of first 20 terms of an AP whose first term is $\mathrm{c}-\mathrm{a}-\mathrm{b}$ and common difference is $\frac{\mathrm{d}}{12}$, is equal to \qquad -.

Official Ans. by NTA (495)

Ans. (495)

Sol. $\left|\begin{array}{lll}A+6 d & 7 & 1 \\ 2(A+1+8 d) & 17 & 1 \\ A+2+16 d & 17 & 1\end{array}\right|+70=0$
$\Rightarrow A=-7$ and $d=6$
$\therefore \mathrm{c}-\mathrm{a}-\mathrm{b}=20$
$\mathrm{S}_{20}=495$
87. If the sum of all the solutions of
$\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)+\cot ^{-1}\left(\frac{1-\mathrm{x}^{2}}{2 \mathrm{x}}\right)=\frac{\pi}{3}$,
$-1<x<1, x \neq 0$, is $\alpha-\frac{4}{\sqrt{3}}$, then α is equal to
\qquad _.

Official Ans. by NTA (2)
Ans. (2)
Sol. Case I : $\mathrm{x}>0$
$\tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}+\tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}=\frac{\pi}{3}$
$\mathrm{x}=2-\sqrt{3}$
Case II : $\mathrm{x}<0$
$\tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}+\tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}+\pi=\frac{\pi}{3}$
$x=\frac{-1}{\sqrt{3}} \Rightarrow \alpha=2$
88. Let the equation of the plane passing through the line
$x-2 y-z-5=0=x+y+3 z-5$ and parallel to the line $x+y+2 z-7=0=2 x+3 y+z-2$ be $a x+b y+c z=65$. Then the distance of the point $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from the plane $2 \mathrm{x}+2 \mathrm{y}-\mathrm{z}+16=0$ is
\qquad .

Official Ans. by NTA (9)

Ans. (9)

Sol. Equation of plane is

$$
\begin{aligned}
& (x-2 y-z-5)+b(x+y+3 z-5)=0 \\
& \left|\begin{array}{lll}
1+b & -2+b & -1+3 b \\
1 & 1 & 2 \\
2 & 3 & 1
\end{array}\right|=0 \\
& \Rightarrow b=12
\end{aligned}
$$

\therefore plane is $13 x+10 y+35 z=65$
Distance from given point to plane $=9$
89. Let x and y be distinct integers where $1 \leq \mathrm{x} \leq 25$ and $1 \leq y \leq 25$. Then, the number of ways of choosing x and y , such that $\mathrm{x}+\mathrm{y}$ is divisible by 5 , is \qquad .

Official Ans. by NTA (120)
Ans. (120)
Sol. $\mathrm{x}+\mathrm{y}=5 \lambda$

Cases :

\mathbf{x}	\mathbf{y}	Number of ways
5λ	5λ	20
$5 \lambda+1$	$5 \lambda+4$	25
$5 \lambda+2$	$5 \lambda+3$	25
$5 \lambda+3$	$5 \lambda+2$	25
$5 \lambda+4$	$5 \lambda+1$	25
Total $=120$		

90. It the area enclosed by the parabolas $P_{1}: 2 y=5 x^{2}$ and $P_{2}: x^{2}-y+6=0$ is equal to the area enclosed by P_{1} and $y=\alpha x, \alpha>0$, then α^{3} is equal to
\qquad .

Official Ans. by NTA (600)

Ans. (600)
Sol.

Abscissa of point of intersection of $2 y=5 x^{2}$ and $y=x^{2}+6$ is ± 2

Area $=2 \int_{0}^{2}\left(x^{2}+6-\frac{5 x^{2}}{2}\right) d x=\int_{0}^{\frac{2 \alpha}{5}}\left(\alpha x-\frac{5 x^{2}}{2}\right) d x$
$\Rightarrow \int_{0}^{\frac{2 \alpha}{5}}\left(\alpha x-\frac{5 x^{2}}{2}\right) d x=16$
$\Rightarrow \alpha^{3}=600$

