*****Saral

FINAL JEE-MAIN EXAMINATION – JANUARY, 2023(Held On Tuesday 24th January, 2023)TIME : 3 : 00 PM to 6 : 00MATHEMATICSTEST PAPER WITH ANSWERSECTION-ASol. $f(x + y) = f(x) \cdot f(y) \forall x, y \in N, f(1) = 3$ $f(2) = f^2(1) = 3^2$ and $a_1 + a_3 = 10$. If the mean of these six numbersis $\frac{19}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to(1) 220(2) 210(3) 200(3) 200	PM
MATHEMATICSTEST PAPER WITH ANSWERSECTION-ASol. $f(x + y) = f(x) \cdot f(y) \ \forall x, y \in N, f(1) = 3$ 61. Let the six numbers $a_1, a_2, a_3, a_4, a_5, a_6$ be in A.P. and $a_1 + a_3 = 10$. If the mean of these six numbers is $\frac{19}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to (1) 220 (2) 210 (3) 200 $f(x + y) = f(x) \cdot f(y) \ \forall x, y \in N, f(1) = 3$ $f(4) = 3^4$ $f(k) = 3279$ $f(k) = 3279$ $f(1) + f(2) + f(3) + \dots + f(k) = 3279$	
SECTION-A 61. Let the six numbers $a_1, a_2, a_3, a_4, a_5, a_6$ be in A.P. and $a_1 + a_3 = 10$. If the mean of these six numbers is $\frac{19}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to (1) 220 (2) 210 (3) 200 Sol. $f(x + y) = f(x) \cdot f(y) \forall x, y \in \mathbb{N}$, $f(1) = 3$ $f(2) = f^2(1) = 3^2$ $f(3) = f(1) f(2) = 3^3$ $f(4) = 3^4$ $f(k) = 3^{k}$ $\sum_{k=1}^{n} f(k) = 3279$ $f(1) + f(2) + f(3) + \dots + f(k) = 3279$	
61. Let the six numbers a_1 , a_2 , a_3 , a_4 , a_5 , a_6 be in A.P. and $a_1 + a_3 = 10$. If the mean of these six numbers is $\frac{19}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to (1) 220 (2) 210 (3) 200 (1) 200 (2) 210 (3) 200 (2) 210	
and $a_1 + a_3 = 10$. If the mean of these six numbers is $\frac{19}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to (1) 220 (2) 210 (3) 200 $f(3) = f(1) f(2) = 3^3$ $f(4) = 3^4$ $f(k) = 3^{k}$ $\sum_{k=1}^n f(k) = 3279$ $f(1) + f(2) + f(3) + \dots + f(k) = 3279$	
is $\frac{19}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to (1) 220 (2) 210 (3) 200 $f(4) = 3^4$ $f(k) = 3^k$ $\sum_{k=1}^n f(k) = 3279$ $f(1) + f(2) + f(3) + \dots + f(k) = 3279$	
is $\frac{12}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to (1) 220 (2) 210 (3) 200 $f(k) = 3^k$ f(k) = 3279 $f(1) + f(2) + f(3) + \dots + f(k) = 3279$	
(2) 210 (3) 200 $f(1) + f(2) + f(3) + \dots + f(k) = 3279$	
(2) 210 (3) 200 $f(1) + f(2) + f(3) + \dots + f(k) = 3279$	
(4) 105 $3 + 3^2 + 3^3 + \dots + 3^k = 3279$	
Official Ans. by NTA (2) $\frac{3(3^k - 1)}{2} = 3279$	
Ans. (2) 5^{-1}	
Sol. $a_1 + a_3 = 10 = a_1 + d \Longrightarrow 5$ $\frac{3^k - 1}{2} = 1093$	
$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 57$ $3^k - 1 = 2186$	
$\Rightarrow \frac{6}{2}[a_1 + a_6] = 57$ $3^k = 2187$	
$\Rightarrow a_1 + a_6 = 19$	
$\Rightarrow 2a_1 + 5d = 19$ and $a_1 + d = 5$ 63. The number of real solutions of the eq	uation
$\Rightarrow a_1 = 2, d = 3$ $3\left(x^2 + \frac{1}{x^2}\right) - 2\left(x + \frac{1}{x}\right) + 5 = 0, \text{ is}$	
Numbers : 2, 5, 8, 11, 14, 17 (1) 4 (2) 0	
Variance = σ^2 = mean of squares – square of mean (3) 3 (4) 2	
Official Angley NTA (2)	
$=\frac{2^2+5^2+8^2+(11)^2+(14)^2+(17)^2}{6}-\left(\frac{19}{2}\right)^2$ (Onicial Alis. by NTA (2)) Ans. (2)	
$=\frac{699}{6} - \frac{361}{4} = \frac{105}{4}$ Sol. $3\left(\frac{x^2 + \frac{1}{x^2}}{x^2}\right) - 2\left(\frac{x + \frac{1}{x}}{x}\right) + 5 = 0$	
$8\sigma^{2} = 210$ $3\left[\left(x + \frac{1}{x}\right)^{2} - 2\right] - 2\left(x + \frac{1}{x}\right) + 5 = 0$	
62. Let $f(x)$ be a function such that $f(x + y) = f(x) \cdot f(y)$ $\int \left[\begin{pmatrix} x + - \\ x \end{pmatrix}^{-2} \right]^{-2} \begin{pmatrix} x + - \\ x \end{pmatrix}^{+3} = 0$	
n 1	
for all x, y \in N. If f(1) = 3 and $\sum_{k=1}^{\infty} f(k) = 3279$, Let $x + - = t$	
then the value of n is $3t^2 - 2t - 1 = 0$	
(1) 6 $3t^2 - 3t + t - 1 = 0$	
(1) 0 (2) 8 3t(t-1) + 1(t-1) = 0 (t-1)(3t+1) = 0	
(1-1)(3t+1)=0	
$\frac{(3)}{(4)} \frac{1}{9} t = 1, -\frac{1}{3}$	
Official Ans. by NTA (3)	
Ans. (3) $x + \frac{1}{x} = 1, -\frac{1}{3} \Rightarrow$ No solution.	

66.

The number of integers, greater than 7000 that can

∛Saral 64. If $f(x) = \frac{2^{2x}}{2^{2x}+2}, x \in \mathbb{R}$, then $f\left(\frac{1}{2023}\right) + f\left(\frac{2}{2023}\right) + \dots + f\left(\frac{2022}{2023}\right)$ is equal to (1) 2011(2) 1010(4) 1011 (3) 2010Official Ans. by NTA (4) Ans. (4) **Sol.** $f(x) = \frac{4^x}{4^x + 2}$ $f(x) + f(1-x) = \frac{4^{x}}{4^{x}+2} + \frac{4^{1-x}}{4^{1-x}+2}$ $=\frac{4^{x}}{4^{x}+2}+\frac{4}{4+2(4^{x})}$ $=\frac{4^{x}}{4^{x}+2}+\frac{2}{2+4^{x}}$ = 1 \Rightarrow f(x) + f(1 - x) = 1 Now $f\left(\frac{1}{2023}\right) + f\left(\frac{2}{2023}\right) + f\left(\frac{3}{2023}\right) + \dots +$+f $\left(1-\frac{3}{2023}\right)$ +f $\left(1-\frac{2}{2023}\right)$ +f $\left(1-\frac{1}{2023}\right)$ Now sum of terms equidistant from beginning and end is 1 $Sum = 1 + 1 + 1 + \dots + 1$ (1011 times) = 1011If $f(x) = x^3 - x^2 f'(1) + x f''(2) - f'''(3)$, $x \in \mathbb{R}$, then 65. (1) 3f(1) + f(2) = f(3)(2) f(3) - f(2) = f(1)(3) 2f(0) - f(1) + f(3) = f(2)(4) f(1) + f(2) + f(3) = f(0)Official Ans. by NTA (3) Ans. (3) **Sol.** $f(x) = x^3 - x^2 f'(1) + x f''(2) - f'''(3), x \in \mathbb{R}$ Let f'(1) = a, f''(2) = b, f'''(3) = c $\mathbf{f}(\mathbf{x}) = \mathbf{x}^3 - \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} - \mathbf{c}$ $f'(x) = 3x^2 - 2ax + b$ f''(x) = 6x - 2af'''(x) = 6c = 6, a = 3, b = 6 $f(x) = x^3 - 3x^2 + 6x - 6$ f(1) = -2, f(2) = 2, f(3) = 12, f(0) = -62f(0) - f(1) + f(3) = 2 = f(2)

be formed, using the digits 3, 5, 6, 7, 8 without repetition, is (1) 120(2) 168(3) 220(4) 48Official Ans. by NTA (2) Ans. (2) **Sol.** Four digit numbers greater than 7000 $= 2 \times 4 \times 3 \times 2 = 48$ Five digit number = 5! = 120Total number greater than 7000 = 120 + 48 = 16867. If the system of equations x + 2y + 3z = 34x + 3y - 4z = 4 $8x + 4y - \lambda z = 9 + \mu$ has infinitely many solutions, then the ordered pair (λ, μ) is equal to (1) $\left(\frac{72}{5}, \frac{21}{5}\right)$ (2) $\left(\frac{-72}{5}, \frac{-21}{5}\right)$ $(3)\left(\frac{72}{5},\frac{-21}{5}\right)$ $(4)\left(\frac{-72}{5},\frac{21}{5}\right)$ Official Ans. by NTA (3) Ans. (3) **Sol.** x + 2y + 3z = 3(i)(ii) 4x + 3y - 4z = 4 $8x + 4y - \lambda z = 9 + \mu$ (iii) $(i) \times 4 - (ii) \implies 5y + 16z = 8 \dots (iv)$ (ii) $\times 2 - (iii) \implies 2y + (\lambda - 8)z = -1 - \mu \dots (v)$ $(iv) \times 2 - (iii) \times 5 \Rightarrow (32 - 5(\lambda - 8))z = 16 - 5(-1 - \mu)$ For infinite solutions $\Rightarrow 72 - 5\lambda = 0 \Rightarrow \lambda = \frac{72}{5}$ $21 + 5\mu = 0 \Rightarrow \mu = \frac{-21}{5}$ \Rightarrow $(\lambda,\mu) \equiv \left(\frac{72}{5},\frac{-21}{5}\right)$

<mark>∛Saral</mark>

68. The value of
$$\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^3$$
 is

(1)
$$\frac{-1}{2}(1-i\sqrt{3})$$

(2) $\frac{1}{2}(1-i\sqrt{3})$
(3) $\frac{-1}{2}(\sqrt{3}-i)$
(4) $\frac{1}{2}(\sqrt{3}+i)$

Official Ans. by NTA (3)

Sol. Let $\sin \frac{2\pi}{9} + i \cos \frac{2\pi}{9} = z$

$$\left(\frac{1+z}{1+\overline{z}}\right)^3 = \left(\frac{1+z}{1+\frac{1}{z}}\right)^3 = z^3$$
$$\Rightarrow \left(i\left(\cos\frac{2\pi}{9} - i\sin\frac{2\pi}{9}\right)\right)^3$$
$$= -i\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right) = -i\left(\frac{-1}{2} - i\frac{\sqrt{3}}{2}\right)$$
$$\Rightarrow \frac{-1}{2}(\sqrt{3} - i).$$

69. The equations of the sides AB and AC of a triangle ABC are

 $(\lambda + 1) x + \lambda y = 4$ and $\lambda x + (1 - \lambda) y + \lambda = 0$

respectively. Its vertex A is on the y-axis and its orthocentre is (1, 2). The length of the tangent from the point C to the part of the parabola $y^2 = 6x$ in the first quadrant is

(1) √6
(2) 2√2
(3) 2
(4) 4
Official Ans. by NTA (2) Ans. (2)

Sol. AB:
$$(\lambda + 1)x + \lambda y = 4$$

AC: $\lambda x + (1 - \lambda)y + \lambda = 0$
Vertex A is on y-axis
 $\Rightarrow x = 0$
A(0,2)
B
C($\alpha, 2\alpha + 2$)
So $y = \frac{4}{\lambda}, y = \frac{\lambda}{\lambda - 1}$
 $\Rightarrow \frac{4}{\lambda} = \frac{\lambda}{\lambda - 1}$
 $\Rightarrow \lambda = 2$
AB: $3x + 2y = 4$
AC: $2x - y + 2 = 0$
 $\Rightarrow A(0,2)$ Let C ($\alpha, 2\alpha + 2$)
Now (Slope of Altitude through C) $\left(-\frac{3}{2}\right) = -1$
 $\left(\frac{2\alpha}{\alpha - 1}\right)\left(-\frac{3}{2}\right) = -1 \Rightarrow \alpha = -\frac{1}{2}$
So $C\left(-\frac{1}{2},1\right)$
Let Equation of tangent be $y = mx + \frac{3}{2m}$
 $m^2 + 2m - 3 = 0$

$$\Rightarrow$$
 m = 1, -3

So tangent which touches in first quadrant at T is

$$T \equiv \left(\frac{a}{m^2}, \frac{2a}{m}\right)$$
$$\equiv \left(\frac{3}{2}, 3\right)$$
$$\Rightarrow CT = \sqrt{4+4} = 2\sqrt{2}$$

<u>*Saral</u>

Let the plane containing the line of intersection 72. set of all values of a for which 70. The $\operatorname{Lim}([x-5]-[2x+2]) = 0$, where $[\infty]$ denotes the of the planes P1: $x + (\lambda + 4)y + z = 1$ and greater integer less than or equal to ∞ is equal to P2 : 2x + y + z = 2 pass through the points (0, 1, 0) (1)(-7.5,-6.5)(2)(-7.5, -6.5]and (1, 0, 1). Then the distance of the point (3)[-7.5,-6.5](4) [-7.5, -6.5) $(2\lambda, \lambda, -\lambda)$ from the plane P2 is Official Ans. by NTA (1) (1) $5\sqrt{6}$ Ans. (1) $(2) 4 \sqrt{6}$ Sol. $\lim([x-5] - [2x+2]) = 0$ $(3) 2\sqrt{6}$ $\lim([x]-5-[2x]-2) = 0$ (4) $3\sqrt{6}$ $\lim_{x \to a} ([x] - [2x]) = 7$ Official Ans. by NTA (4) [a] - [2a] = 7Ans. (4) $a \in I$, a = -7Equation of plane passing through point of Sol. $a \notin I$, a = I + fintersection of P1 and P2 Now, [a] - [2a] = 7P = P1 + kP2-I - [2f] = 7 $(x + (\lambda + 4)y + z - 1) + k(2x + y + z - 2) = 0$ Case-I: $f \in \left(0, \frac{1}{2}\right)$ Passing through (0, 1, 0) and (1, 0, 1) $(\lambda + 4 - 1) + k(1 - 2) = 0$ $2f \in (0, 1)$ $(\lambda + 3) - k = 0$(1) -I = 7Also passing (1, 0, 1) $I = -7 \implies a \in (-7, -6.5)$ (1+1-1) + k(2+1-2) = 0Case-II: $f \in \left(\frac{1}{2}, 1\right)$ 1 + k = 0k = -1 $2f \in (1, 2)$ put in (1)-I - 1 = 7 $\lambda + 3 + 1 = 0$ $I = -8 \implies a \in (-7.5, -7)$ $\lambda = -4$ Hence, $a \in (-7.5, -6.5)$ Then point $(2 \lambda, \lambda, -\lambda)$ If $({}^{30}C_1)^2 + 2({}^{30}C_2)^2 + 3({}^{30}C_3)^2 + \dots + 30({}^{30}C_{30})^2$ 71. (-8, -4, 4) $=\frac{\alpha 60!}{(30!)^2}$, then α is equal to $d = \frac{-16 - 4 + 4 - 2}{\sqrt{6}}$ (1) 30(2) 60 $d = \frac{18}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} = 3\sqrt{6}$ (3) 15(4) 10Official Ans. by NTA (3) Let $\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k}$ and $\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}$. Let $\vec{\beta}_1$ be Ans. (3) 73. **Sol.** S=0. $({}^{30}C_0)^2$ +1. $({}^{30}C_1)^2$ +2. $({}^{30}C_2)^2$ ++ 30. $({}^{30}C_{30})^2$ parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ be perpendicular to $\vec{\alpha}$. If $S=30.({}^{30}C_0)^2+29.({}^{30}C_1)^2+28.({}^{30}C_2)^2+\ldots+0.({}^{30}C_0)^2$ $2S = 30.({}^{30}C_0{}^2 + {}^{30}C_1{}^2 + \dots + {}^{30}C_{30}{}^2)$ $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, then the value of $5\vec{\beta}_2 \cdot (\hat{i} + \hat{j} + \hat{k})$ is $S = 15 \cdot {}^{60}C_{30} = 15 \cdot \frac{60!}{(30!)^2}$ (1) 6(2) 11 $\frac{15\cdot10!}{(30!)^2} = \frac{\alpha\cdot60!}{(30!)^2}$ (3)7(4) 9Official Ans. by NTA (3) $\Rightarrow \alpha = 15$ Ans. (3)

Sol. Let
$$\vec{\beta}_1 = \lambda \vec{\alpha}$$

Now $\vec{\beta}_2 = \vec{\beta} - \vec{\beta}_1$
 $= (\hat{i} + 2\hat{j} - 4\hat{k}) - \lambda(4\hat{i} + 3\hat{j} + 5\hat{k})$
 $= (1 - 4\lambda)\hat{i} + (2 - 3\lambda)\hat{j} - (5\lambda + 4)\hat{k}$
 $\vec{\beta}_2 \cdot \vec{\alpha} = 0$
 $\Rightarrow 4(1 - 4\lambda) + 3(2 - 3\lambda) - 5(5\lambda + 4) = 0$
 $\Rightarrow 4 - 16\alpha + 6 - 9\lambda - 25\lambda - 20 = 0$
 $\Rightarrow 50\lambda = -10$
 $\Rightarrow \sqrt{\lambda = -\frac{1}{5}}$
 $\vec{\beta}_2 = (1 + \frac{4}{5})\hat{i} + (2 + \frac{3}{5})\hat{j} - (-1 + 4)\hat{k}$
 $\vec{\beta}_2 = \frac{9}{5}\hat{i} + \frac{13}{5}\hat{j} - 3\hat{k}$
 $5\vec{\beta}_2 = 9\hat{i} + 13\hat{j} - 15\hat{k}$
 $5\vec{\beta}_2 \cdot (\hat{i} + \hat{j} + \hat{k}) = 9 + 13 - 15 = 7$

74. The locus of the mid points of the chords of the circle C_1 : $(x - 4)^2 + (y - 5)^2 = 4$ which subtend an angle θ_i at the centre of the circle C_1 , is a circle of radius r_{i} . If $\theta_1 = \frac{\pi}{3}$, $\theta_3 = \frac{2\pi}{3}$ and $r_1^2 = r_2^2 + r_3^2$, then θ_2 is equal to

> (2) $\frac{3\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{2}$

(1) $\frac{\pi}{4}$ Official Ans. by NTA (4) Ans. (4)

75. If the foot of the perpendicular drawn from (1, 9, 7) to the line passing through the point (3, 2, 1) and parallel to the planes x + 2y + z = 0 and 3y - z = 3is (α, β, γ) , then $\alpha + \beta + \gamma$ is equal to (1) - 1(2)3(3)1(4)5Official Ans. by NTA (4) Ans. (4)

<mark>∛Saral</mark>

Integrating both side

Sol.	Direction ratio of line = $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{vmatrix}$						
	$=\hat{i}(-5)-\hat{j}(-1)+\hat{k}(3)$						
	$= -5\hat{i} + \hat{j} + 3\hat{k}$						
	P (1,9,7)						
	$\frac{\square}{M} \xrightarrow{x-3} = \frac{y-2}{1} = \frac{z-1}{3}$						
	$\frac{x-5}{-5} = \frac{y-2}{1} = \frac{z-1}{3}$						
	$M(-5\lambda+3, \lambda+2, 3\lambda+1)$						
	$\overrightarrow{PM} \perp (-5\hat{i} + \hat{j} + 3\hat{k})$						
	$-5(-5\lambda + 2) + (\lambda - 7) + 3(3\lambda - 6) = 0$						
	$\Rightarrow 25\lambda + \lambda + 9\lambda - 10 - 7 - 18 = 0$						
	$\Rightarrow \lambda = 1$						
	Point M = $(-2, 3, 4) = (\alpha, \beta, \gamma)$						
	$\alpha + \beta + \gamma = 5$						
76.	Let $y = y(x)$ be the solution of the differential						
	equation $(x^2 - 3y^2)dx + 3xy dy = 0$, $y(1) = 1$. Then						
	$6y^2(e)$ is equal to						
	(1) $3e^2$						
	(2) e^2 (3) $2e^2$						
	(4) $\frac{3e^2}{2}$						
	Official Ans. by NTA (3)						
	Ans. (3)						
Sol.	$(x^2 - 3y^2) dx + 3xy dy = 0$						
	$\frac{dy}{dx} = \frac{3y^2 - x^2}{3xy} \Longrightarrow \frac{dy}{dx} = \frac{y}{x} - \frac{1}{3}\frac{x}{y} (1)$						
	Put $y = vx$						
	$\frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$						
	$(1) \Longrightarrow v + x \frac{dv}{dx} = v - \frac{1}{3} \frac{1}{v}$						
	\Rightarrow vdv = $\frac{-1}{3x}$						

$$\frac{v^2}{2} = \frac{-1}{3} \ln x + c$$

$$\Rightarrow \frac{y^2}{2x^2} = \frac{-1}{3} \ln x + c$$

$$y(1) = 1$$

$$\Rightarrow \left[\frac{1}{2} = c\right]$$

$$\Rightarrow \frac{y^2}{2x^2} = \frac{-1}{3} \ln x + \frac{1}{2}$$

$$\Rightarrow y^2 = -\frac{2}{3} x^2 \ln x + x^2$$

$$y^2(e) = -\frac{2}{3} e^2 + e^2 = \frac{e^2}{3}$$

$$\Rightarrow \left[\frac{6y^2(e) = 2e^2}{3}\right]$$
77. Let p and q be two statements.
Then $\sim (p \land (p \Rightarrow \sim q))$ is equivalent to
(1) $p \lor (p \land (\sim q))$
(2) $p \lor ((\sim p) \land q)$
(3) $(\sim p) \lor q$
(4) $p \lor (p \land q)$
Official Ans. by NTA (3)
Ans. (3)
Sol. $\sim (p \land (p \rightarrow \sim q))$
 $\equiv \sim p \lor (p \land q)$
 $\equiv (\sim p \lor p) \land (\sim p \lor q)$
 $\equiv (\sim p \lor p) \land (\sim p \lor q)$
 $\equiv t \land (\sim p \lor q)$
 $\equiv \sim p \lor q$
78. The number of square matrices of on

- **78.** The number of square matrices of order 5 with entries from the set {0, 1}, such that the sum of all the elements in each row is 1 and the sum of all the elements in each column is also 1, is
 - (1) 225
 (2) 120
 (3) 150
 (4) 125
 Official Analysis

Official Ans. by NTA (2) Ans. (2) Sol.

In each row and each column exactly one is to be placed –

 \therefore No. of such matrices = $5 \times 4 \times 3 \times 2 \times 1 = 120$

Alternate :

0	0	1	0	$0 \rightarrow 5$ ways
0	1	0	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
0	0	0	1	$0 \rightarrow 3$ ways
0	0	0	0	$1 \rightarrow 2$ ways
_1	0	0	0	0 ightarrow 1 ways

Step-1 : Select any 1 place for 1's in row 1. Automatically some column will get filled with 0's. Step-2 : From next now select 1 place for 1's. Automatically some column will get filled with 0's. \Rightarrow Each time one less place will be available for putting 1's.

Repeat step-2 till last row.

Req. ways = $5 \times 4 \times 3 \times 2 \times 1 = 120$

79.
$$\frac{3\sqrt{3}}{\frac{4}{3}} \frac{48}{\sqrt{9-4x^2}} \, dx \text{ is equal to}$$
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{6}$
(4) 2π
Official Ans. by NTA (4)
Ans. (4)

Sol.
$$\int_{\frac{3\sqrt{2}}{4}}^{\frac{3\sqrt{3}}{4}} \frac{48}{\sqrt{9-4x^{2}}} dx$$

We have $\int \frac{dx}{\sqrt{a^{2}-x^{2}}} = \sin^{-1}\frac{x}{a} + C$
Hence $\int_{\frac{3\sqrt{2}}{4}}^{\frac{3\sqrt{3}}{4}} \frac{48}{\sqrt{9-4x^{2}}} dx = \frac{48}{2} \times \left[\sin^{-1}\frac{2x}{3}\right]_{\frac{3\sqrt{2}}{4}}^{\frac{3\sqrt{3}}{4}}$
 $= 24 \times \left[\sin^{-1}\left(\frac{2}{3} \times \frac{3\sqrt{3}}{4}\right) - \sin^{-1}\left(\frac{2}{3} \times \frac{3\sqrt{2}}{4}\right)\right]$
 $= 24 \times \left[\sin^{-1}\frac{\sqrt{3}}{2} - \sin^{-1}\frac{1}{\sqrt{2}}\right]$
 $= 24 \times \left(\frac{\pi}{3} - \frac{\pi}{4}\right)$
 $= 24 \times \frac{\pi}{12} = 2\pi$

∛Saral

80. Let A be a 3×3 matrix such that $|adj(adj(adjA))| = 12^4$. Then $|A^{-1}adjA|$ is equal to (1) $2\sqrt{3}$ (2) $\sqrt{6}$ (3) 12 (4) 1 Official Ans. by NTA (1) Ans. (1) Sol. Given $|adj(adj(adj.A))| = 12^4$ $\Rightarrow |A|^{(n-1)^3} = 12^4$ Given n = 3

$$\Rightarrow |\mathbf{A}|^8 = 12^4$$
$$\Rightarrow |\mathbf{A}|^2 = 12$$

$$|A| = 2\sqrt{3}$$

$$|\mathbf{A}^{-1}.\mathbf{adj}\mathbf{A}|$$

$$= |A^{-1}| | |adj A|$$

$$= \frac{1}{|\mathbf{A}|} \cdot |\mathbf{A}|^{3}$$
$$= |\mathbf{A}| = 2\sqrt{3}$$

81. The urns A, B and C contain 4 red, 6 black; 5 red, 5 black and λ red, 4 black balls respectively. One of the urns is selected at random and a ball is drawn. If the ball drawn is red and the probability that it is drawn from urn C is 0.4 then the square of the length of the side of the largest equilateral triangle, inscribed in the parabola $y^2 = \lambda x$ with one vertex at the vertex of the parabola is

Official Ans. by NTA (432)

Ans. (432)

Saral

 $\frac{1}{\sqrt{3}} = \frac{2}{t}$ $t = 2\sqrt{3}$

$$\left(\frac{3}{2}t^2, 3t\right) = (18, 6\sqrt{3})$$
$$\ell^2 = 18^2 + (6\sqrt{3})^2$$
$$= 324 + 108$$
$$= 432$$

82. If the area of the region bounded by the curves $y^2 - 2y = -x, x + y = 0$ is A, then 8A is equal to

Official Ans. by NTA (36)

Ans. (36)
Sol.
$$y^2 - 2y = -x$$

 $\Rightarrow y^2 - 2y + 1 = -x + 1$
 $(y - 1)^2 = -(x - 1)$
 $y = -x$
Points of intersection
 $x^2 + 2x = -x$
 $x^2 + 3x = 0$
 $x = 0, -3$
 $A = \int_{0}^{3} (-y^2 + 2y + y) dy$
 $= \frac{3y^2}{2} - \frac{y^3}{3} \Big|_{0}^{3} = \frac{9}{2}$
8A = 36
83. If $\frac{1^3 + 2^3 + 3^3 + \dots$ upto n terms $\frac{9}{5}$, then

the value of n is

Official Ans. by NTA (5)

Ans. (5)

Sol. $1^3 + 2^3 + 3^3 \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$ $1 \cdot 3 + 2 \cdot 5 + 3 \cdot 7 + \dots + n$ terms = $\sum_{r=1}^{n} r(2r+1) = \sum_{r=1}^{n} \left(2r^{2} + r\right)$ $=\frac{2 \cdot n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$ $= \frac{n(n+1)}{6} (2(2n+1)+3)$ $=\frac{n(n+1)}{2}\times\frac{(4n+5)}{3}$ $=\frac{\frac{n^2(n+1)^2}{4}}{\frac{n(n+1)}{2}\times\frac{(4n+5)}{2}}=\frac{9}{5}$ $\Rightarrow \frac{5n(n+1)}{2} = \frac{9(4n+5)}{3}$ $\Rightarrow 15n(n+1) = 18(4n+5)$ $\Rightarrow 15n^2 + 15n = 72n + 90$ $\Rightarrow 15n^2 - 57n - 90 = 0 \Rightarrow 5n^2 - 19n - 30 = 0$ \Rightarrow (n-5)(5n+6) = 0 \Rightarrow n = $\frac{-6}{5}$ or 5 \Rightarrow n = 5.

84. Let f be a differentiable function defined on

$$\left\lfloor 0, \frac{\pi}{2} \right\rfloor$$
 such that $f(x) > 0$ and

$$f(x) + \int_{0}^{x} f(t) \sqrt{1 - (\log_{e} f(t))^{2}} dt = e, \forall x \in \left[0, \frac{\pi}{2}\right].$$

Then $\left(6 \log_{e} f\left(\frac{\pi}{6}\right)\right)^{2}$ is equal to _____.

Official Ans. by NTA (27)

Ans. (27)

Sol.
$$f(x) + \int_{0}^{x} f(t) \sqrt{1 - (\log_{e} f(t))^{2}} dt = e$$

$$\Rightarrow f(0) = e$$

$$f(x) + f(x) \sqrt{1 - (\ln f(x))^{2}} = 0$$

$$f(x) = y$$

$$\frac{dy}{dx} = -y \sqrt{1 - (\ln y)^{2}}$$

$$\int \frac{dy}{y\sqrt{1 - (\ln y)^{2}}} = -\int dx$$

Put ln y = t

$$\int \frac{dt}{\sqrt{1 - t^{2}}} = -x + C$$

$$\sin^{-1}t = -x + C \Rightarrow \sin^{-1}(\ln y) = -x + C$$

$$\sin^{-1}(\ln f(x)) = -x + C$$

$$f(0) = e$$

$$\Rightarrow \frac{\pi}{2} = C$$

$$\Rightarrow \sin^{-1}(\ln f(x)) = -x + \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}(\ln f(\frac{\pi}{6})) = -\frac{\pi}{6} + \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}(\ln f(\frac{\pi}{6})) = \frac{\pi}{3}$$

$$\Rightarrow \ln f(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}, \text{ we need } \left(6 \times \frac{\sqrt{3}}{2}\right)^{2} = 27.$$

85. The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is _____.

Official Ans. by NTA (13)

Ans. (13)

Sol. Given $R = \{(a, b), (b, c), (b, d)\}$

In order to make it equivalence relation as per given set, R must be

{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (b, c), (c, b), (b, d), (d, b), (a, c), (a, d), (c, d), (d, c), (c, a), (d, a)} There already given so 13 more to be added.

86.	Let $\vec{a} = \hat{i} + 2\hat{j} + \lambda\hat{k}$, $\vec{b} = 3\hat{i} - 5\hat{j} - \lambda\hat{k}$, $\vec{a} \cdot \vec{c} = 7$,
	$2\vec{b}\cdot\vec{c} + 43 = 0$, $\vec{a}\times\vec{c} = \vec{b}\times\vec{c}$. Then $ \vec{a}\cdot\vec{b} $ is equal to
	Official Ans. by NTA (8)
	Ans. (8)
Sol.	$\vec{a} = \hat{i} + 2\hat{j} + \lambda\hat{k}, \ \vec{b} = 3\hat{i} - 5\hat{j} - \lambda\hat{k}, \ \vec{a} \cdot \vec{c} = 7$
	$\vec{a} \times \vec{c} - \vec{b} \times \vec{c} = \vec{0},$
	$(\vec{a} - \vec{b}) \times \vec{c} = 0 \Longrightarrow (\vec{a} - \vec{b})$ is paralleled to \vec{c}
	$\vec{a} - \vec{b} = \mu \vec{c}$, where μ is a scalar
	$-2\hat{\mathbf{i}}+7\hat{\mathbf{j}}+2\lambda\hat{\mathbf{k}}=\boldsymbol{\mu}\cdot\vec{\mathbf{c}}$
	Now $\vec{a} \cdot \vec{c} = 7$ gives $2\lambda^2 + 12 = 7\mu$
	And $\vec{b} \cdot \vec{c} = -\frac{43}{2}$ gives $4\lambda^2 + 82 = 43\mu$
	$\mu = 2$ and $\lambda^2 = 1$
	$\left \vec{a} \cdot \vec{b} \right = 8$
87.	Let the sum of the coefficients of the first three
	$(3)^n$

∛Saral

7. Let the sum of the coefficients of the first three terms in the expansion of $\left(x - \frac{3}{x^2}\right)^n$, $x \neq 0, n \in \mathbb{N}$,

be 376. Then the coefficient of x^4 is _

Official Ans. by NTA (405)

Ans. (405)

Sol. Given Binomial $\left(x - \frac{3}{x^2}\right)^n$, $x \neq 0, n \in \mathbb{N}$,

Sum of coefficients of first three terms

$${}^{n}C_{0} - {}^{n}C_{1} \cdot 3 + {}^{n}C_{2}3^{2} = 376$$

$$\Rightarrow 3n^{2} - 5n - 250 = 0$$

$$\Rightarrow (n - 10) (3n + 25) = 0$$

$$\Rightarrow n = 10$$
Now general term ${}^{10}C_{r}x^{10-r}\left(\frac{-3}{x^{2}}\right)^{r}$

$$= {}^{10}C_{r}x^{10-r}(-3)^{r} \cdot x^{-2r}$$

$$= {}^{10}C_{r}(-3)^{r} \cdot x^{10-3r}$$
Coefficient of $x^{4} \Rightarrow 10 - 3r = 4$

$$\Rightarrow r = 2$$
 ${}^{10}C_{2}(-3)^{2} = 405$

88. If the shortest between the lines

$$\frac{x+\sqrt{6}}{2} = \frac{y-\sqrt{6}}{3} = \frac{z-\sqrt{6}}{4}$$
 and
$$\frac{x-\lambda}{3} = \frac{y-2\sqrt{6}}{4} = \frac{z+2\sqrt{6}}{5}$$
 is 6, then the square

of sum of all possible values of λ is

Official Ans. by NTA (384)

Ans. (384)

Sol. Shortest distance between the lines

$$\frac{x+\sqrt{6}}{2} = \frac{y-\sqrt{6}}{3} = \frac{z-\sqrt{6}}{4}$$
$$\frac{x-\lambda}{3} = \frac{y-2\sqrt{6}}{4} = \frac{2+2\sqrt{6}}{5} \text{ is } 6$$

Vector along line of shortest distance

$$=\begin{vmatrix}i & j & k\\2 & 3 & 4\\3 & 4 & 5\end{vmatrix} \Rightarrow -\hat{i} + 2\hat{j} - k \text{ (its magnitude is } \sqrt{6}\text{)}$$

Now
$$\frac{1}{\sqrt{6}} \begin{vmatrix} \sqrt{6} + \lambda & \sqrt{6} & -3\sqrt{6} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = \pm 6$$

$$\Rightarrow \lambda = -2\sqrt{6}, 10\sqrt{6}$$

So, square of sum of these values is 384.

89. Let
$$S = \{\theta \in [0, 2\pi) : \tan(\pi \cos \theta) + \tan(\pi \sin \theta) = 0\}$$

Then $\sum_{\theta \in S} \sin^2 \left(\theta + \frac{\pi}{4} \right)$ is equal to

Official Ans. by NTA (2)

Ans. (2)

Sol. $\tan(\pi \cos \theta) + \tan(\pi \sin \theta) = 0$ $\tan(\pi \cos \theta) = -\tan(\pi \sin \theta)$ $\tan(\pi \cos \theta) = \tan(-\pi \sin \theta)$ $\pi \cos \theta = n\pi - \pi \sin \theta$ $\sin \theta + \cos \theta = n$ where $n \in I$ possible values are n = 0, 1 and -1 because $-\sqrt{2} \le \sin \theta + \cos \theta \le \sqrt{2}$ Now it gives $\theta \in \left\{0, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{7\pi}{4}, \frac{3\pi}{2}, \pi\right\}$ So $\sum_{\theta \in S} \sin^2\left(\theta + \frac{\pi}{4}\right) = 2(0) + 4\left(\frac{1}{2}\right) = 2$

The equations of the sides AB, BC and CA of a 90. triangle ABC are: 2x + y = 0, x + py = 21a, $(a \neq 0)$ and x - y = 3 respectively. Let P (2, a) be the centroid of $\triangle ABC$. Then $(BC)^2$ is equal to

Official Ans. by NTA (122)

Ans. (122)

Sol.

g Session

$$\Rightarrow \alpha + \beta = 2 \qquad -2\alpha - 2 + \beta = 3a$$

$$\Rightarrow \beta = 2 - \alpha \qquad -2\alpha - 2 + 2 - \alpha = 3a \Rightarrow \alpha = -a$$
Now both B and C lies as given line

$$\alpha - p \cdot 2\alpha = 21a$$

$$\alpha(1 - 2p) = 21 a \qquad \dots (1)$$

$$-\alpha(1 - 2p) = 21 a \Rightarrow p = 11$$

$$\beta + 3 + p\beta = 21 a$$

$$\beta + 3 + 11\beta = 21 a$$

$$21\alpha + 12\beta + 3 = 0$$
Also $\beta = 2 - \alpha$

 $\alpha -$

 $21\alpha + 12(2 - \alpha) + 3 = 0$

 $21\alpha + 24 - 12\alpha + 3 = 0$

So BC = $\sqrt{122}$ and (BC)² = 122

 $9\alpha + 27 = 0$

 $\alpha = -3, \beta = 5$