FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

(Held On Tuesday 24th January, 2023)
TIME: 3:00 PM to 6: 00 PM

MATHEMATICS

SECTION-A

61. Let the six numbers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ be in A.P. and $a_{1}+a_{3}=10$. If the mean of these six numbers is $\frac{19}{2}$ and their variance is σ^{2}, then $8 \sigma^{2}$ is equal to
(1) 220
(2) 210
(3) 200
(4) 105

Official Ans. by NTA (2)
Ans. (2)
Sol. $a_{1}+a_{3}=10=a_{1}+d \Rightarrow 5$
$a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=57$
$\Rightarrow \frac{6}{2}\left[a_{1}+a_{6}\right]=57$
$\Rightarrow \mathrm{a}_{1}+\mathrm{a}_{6}=19$
$\Rightarrow 2 \mathrm{a}_{1}+5 \mathrm{~d}=19$ and $\mathrm{a}_{1}+\mathrm{d}=5$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{~d}=3$
Numbers : 2, 5, 8, 11, 14, 17
Variance $=\sigma^{2}=$ mean of squares - square of mean
$=\frac{2^{2}+5^{2}+8^{2}+(11)^{2}+(14)^{2}+(17)^{2}}{6}-\left(\frac{19}{2}\right)^{2}$
$=\frac{699}{6}-\frac{361}{4}=\frac{105}{4}$
$8 \sigma^{2}=210$
62. Let $f(x)$ be a function such that $f(x+y)=f(x) \cdot f(y)$ for all $x, y \in N$. If $f(1)=3$ and $\sum_{k=1}^{n} f(k)=3279$, then the value of n is
(1) 6
(2) 8
(3) 7
(4) 9

Official Ans. by NTA (3)
Ans. (3)

TEST PAPER WITH ANSWER

Sol. $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{N}, \mathrm{f}(1)=3$
$\mathrm{f}(2)=\mathrm{f}^{2}(1)=3^{2}$
$f(3)=f(1) f(2)=3^{3}$
$f(4)=3^{4}$
$f(k)=3^{k}$
$\sum_{k=1}^{n} f(k)=3279$
$\mathrm{f}(1)+\mathrm{f}(2)+\mathrm{f}(3)+$ \qquad $.+f(k)=3279$
$3+3^{2}+3^{3}+$ \qquad $.3^{k}=3279$
$\frac{3\left(3^{k}-1\right)}{3-1}=3279$
$\frac{3^{\mathrm{k}}-1}{2}=1093$
$3^{k}-1=2186$
$3^{k}=2187$
$\mathrm{k}=7$
63. The number of real solutions of the equation $3\left(x^{2}+\frac{1}{x^{2}}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is
(1) 4
(2) 0
(3) 3
(4) 2

Official Ans. by NTA (2)
Ans. (2)
Sol. $3\left(x^{2}+\frac{1}{x^{2}}\right)-2\left(x+\frac{1}{x}\right)+5=0$
$3\left[\left(x+\frac{1}{x}\right)^{2}-2\right]-2\left(x+\frac{1}{x}\right)+5=0$
Let $\mathrm{x}+\frac{1}{\mathrm{x}}=\mathrm{t}$
$3 \mathrm{t}^{2}-2 \mathrm{t}-1=0$
$3 \mathrm{t}^{2}-3 \mathrm{t}+\mathrm{t}-1=0$
$3 \mathrm{t}(\mathrm{t}-1)+1(\mathrm{t}-1)=0$
$(t-1)(3 t+1)=0$
$\mathrm{t}=1,-\frac{1}{3}$
$x+\frac{1}{x}=1,-\frac{1}{3} \Rightarrow$ No solution.
64. If $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$,
then $\mathrm{f}\left(\frac{1}{2023}\right)+\mathrm{f}\left(\frac{2}{2023}\right)+\ldots \ldots+\mathrm{f}\left(\frac{2022}{2023}\right)$ is equal to
(1) 2011
(2) 1010
(3) 2010
(4) 1011

Official Ans. by NTA (4)
Ans. (4)
Sol. $f(x)=\frac{4^{x}}{4^{x}+2}$
$f(x)+f(1-x)=\frac{4^{x}}{4^{x}+2}+\frac{4^{1-x}}{4^{1-x}+2}$
$=\frac{4^{x}}{4^{x}+2}+\frac{4}{4+2\left(4^{x}\right)}$
$=\frac{4^{x}}{4^{x}+2}+\frac{2}{2+4^{x}}$
$=1$
$\Rightarrow \mathrm{f}(\mathrm{x})+\mathrm{f}(1-\mathrm{x})=1$
Now $\mathrm{f}\left(\frac{1}{2023}\right)+\mathrm{f}\left(\frac{2}{2023}\right)+\mathrm{f}\left(\frac{3}{2023}\right)+\ldots \ldots+$
$\ldots \ldots \ldots .+\mathrm{f}\left(1-\frac{3}{2023}\right)+\mathrm{f}\left(1-\frac{2}{2023}\right)+\mathrm{f}\left(1-\frac{1}{2023}\right)$
Now sum of terms equidistant from beginning and end is 1
Sum $=1+1+1+$. \qquad 1 (1011 times)
$=1011$
65. If $f(x)=x^{3}-x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)-f^{\prime \prime \prime}(3), x \in R$, then
(1) $3 f(1)+f(2)=f(3)$
(2) $f(3)-f(2)=f(1)$
(3) $2 f(0)-f(1)+f(3)=f(2)$
(4) $f(1)+f(2)+f(3)=f(0)$

Official Ans. by NTA (3)

Ans. (3)

Sol. $f(x)=x^{3}-x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)-f^{\prime \prime \prime}(3), x \in R$
Let $f^{\prime}(1)=a, f^{\prime \prime}(2)=b, f^{\prime \prime \prime}(3)=c$
$f(x)=x^{3}-\mathbf{a x}^{2}+b x-c$
$f^{\prime}(x)=3 x^{2}-2 a x+b$
$f^{\prime \prime}(x)=6 x-2 a$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=6$
$\mathrm{c}=6, \mathrm{a}=3, \mathrm{~b}=6$
$f(x)=x^{3}-3 x^{2}+6 x-6$
$f(1)=-2, f(2)=2, f(3)=12, f(0)=-6$
$2 \mathrm{f}(0)-\mathrm{f}(1)+\mathrm{f}(3)=2=\mathrm{f}(2)$
66. The number of integers, greater than 7000 that can be formed, using the digits $3,5,6,7,8$ without repetition, is
(1) 120
(2) 168
(3) 220
(4) 48

Official Ans. by NTA (2)
Ans. (2)
Sol. Four digit numbers greater than 7000
$=2 \times 4 \times 3 \times 2=48$
Five digit number $=5!=120$
Total number greater than 7000
$=120+48=168$
67. If the system of equations
$x+2 y+3 z=3$
$4 x+3 y-4 z=4$
$8 x+4 y-\lambda z=9+\mu$
has infinitely many solutions, then the ordered pair (λ, μ) is equal to
(1) $\left(\frac{72}{5}, \frac{21}{5}\right)$
(2) $\left(\frac{-72}{5}, \frac{-21}{5}\right)$
(3) $\left(\frac{72}{5}, \frac{-21}{5}\right)$
(4) $\left(\frac{-72}{5}, \frac{21}{5}\right)$

Official Ans. by NTA (3)
Ans. (3)
Sol. $x+2 y+3 z=3$
$4 x+3 y-4 z=4$
$8 x+4 y-\lambda z=9+\mu$
(i) $\times 4$ - (ii) $\Rightarrow 5 y+16 z=8$
(ii) $\times 2-$ (iii) $\Rightarrow 2 y+(\lambda-8) z=-1-\mu$ \qquad
(iv) $\times 2-$ (iii) $\times 5 \Rightarrow(32-5(\lambda-8)) \mathrm{z}=16-5(-1-\mu)$

For infinite solutions $\Rightarrow 72-5 \lambda=0 \Rightarrow \lambda=\frac{72}{5}$
$21+5 \mu=0 \Rightarrow \mu=\frac{-21}{5}$
$\Rightarrow(\lambda, \mu) \equiv\left(\frac{72}{5}, \frac{-21}{5}\right)$
68. The value of $\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}-i \cos \frac{2 \pi}{9}}\right)^{3}$ is
(1) $\frac{-1}{2}(1-i \sqrt{3})$
(2) $\frac{1}{2}(1-i \sqrt{3})$
(3) $\frac{-1}{2}(\sqrt{3}-i)$
(4) $\frac{1}{2}(\sqrt{3}+i)$

Official Ans. by NTA (3)
Ans. (3)
Sol. Let $\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}=z$
$\left(\frac{1+z}{1+\bar{z}}\right)^{3}=\left(\frac{1+z}{1+\frac{1}{z}}\right)^{3}=z^{3}$
$\Rightarrow\left(\mathrm{i}\left(\cos \frac{2 \pi}{9}-\mathrm{i} \sin \frac{2 \pi}{9}\right)\right)^{3}$
$=-\mathrm{i}\left(\cos \frac{2 \pi}{3}-\mathrm{i} \sin \frac{2 \pi}{3}\right)=-\mathrm{i}\left(\frac{-1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}\right)$
$\Rightarrow \frac{-1}{2}(\sqrt{3}-i)$.
69. The equations of the sides AB and AC of a triangle ABC are
$(\lambda+1) x+\lambda y=4$ and $\lambda x+(1-\lambda) y+\lambda=0$
respectively. Its vertex A is on the y-axis and its orthocentre is (1,2). The length of the tangent from the point C to the part of the parabola $y^{2}=6 x$ in the first quadrant is
(1) $\sqrt{6}$
(2) $2 \sqrt{2}$
(3) 2
(4) 4

Official Ans. by NTA (2)
Ans. (2)

Sol. $\quad \mathrm{AB}:(\lambda+1) \mathrm{x}+\lambda \mathrm{y}=4$
$A C: \lambda x+(1-\lambda) y+\lambda=0$
Vertex A is on y -axis
$\Rightarrow \mathrm{x}=0$

So $\mathrm{y}=\frac{4}{\lambda}, \mathrm{y}=\frac{\lambda}{\lambda-1}$
$\Rightarrow \frac{4}{\lambda}=\frac{\lambda}{\lambda-1}$
$\Rightarrow \lambda=2$
AB: $3 \mathrm{x}+2 \mathrm{y}=4$
$\mathrm{AC}: 2 \mathrm{x}-\mathrm{y}+2=0$
$\Rightarrow \mathrm{A}(0,2)$ Let $\mathrm{C}(\alpha, 2 \alpha+2)$
Now (Slope of Altitude through C) $\left(-\frac{3}{2}\right)=-1$
$\left(\frac{2 \alpha}{\alpha-1}\right)\left(-\frac{3}{2}\right)=-1 \Rightarrow \alpha=-\frac{1}{2}$
So $\mathrm{C}\left(-\frac{1}{2}, 1\right)$

Let Equation of tangent be $y=m x+\frac{3}{2 m}$
$m^{2}+2 \mathrm{~m}-3=0$
$\Rightarrow \mathrm{m}=1,-3$
So tangent which touches in first quadrant at T is
$\mathrm{T} \equiv\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
$\equiv\left(\frac{3}{2}, 3\right)$
$\Rightarrow \mathrm{CT}=\sqrt{4+4}=2 \sqrt{2}$
70. The set of all values of a for which $\operatorname{Lim}_{x \rightarrow a}([x-5]-[2 x+2])=0$, where $[\propto]$ denotes the greater integer less than or equal to \propto is equal to
(1) $(-7.5,-6.5)$
(2) $(-7.5,-6.5]$
(3) $[-7.5,-6.5]$
(4) $[-7.5,-6.5)$

Official Ans. by NTA (1)

Ans. (1)

Sol. $\quad \lim _{x \rightarrow a}([x-5]-[2 x+2])=0$
$\lim _{x \rightarrow a}([x]-5-[2 x]-2)=0$
$\lim _{x \rightarrow a}([x]-[2 x])=7$
$[\mathrm{a}]-[2 \mathrm{a}]=7$
$a \in I, \quad a=-7$
$\mathrm{a} \notin \mathrm{I}, \quad \mathrm{a}=\mathrm{I}+\mathrm{f}$
Now, $[\mathrm{a}]-[2 \mathrm{a}]=7$

$$
-\mathrm{I}-[2 \mathrm{f}]=7
$$

Case-I: $\mathrm{f} \in\left(0, \frac{1}{2}\right)$
$2 \mathrm{f} \in(0,1)$
$-\mathrm{I}=7$
$\mathrm{I}=-7 \Rightarrow \mathrm{a} \in(-7,-6.5)$
Case-II: $\mathrm{f} \in\left(\frac{1}{2}, 1\right)$
$2 \mathrm{f} \in(1,2)$
$-\mathrm{I}-1=7$
$\mathrm{I}=-8 \Rightarrow \mathrm{a} \in(-7.5,-7)$
Hence, $\mathrm{a} \in(-7.5,-6.5)$
71. If $\left({ }^{30} \mathrm{C}_{1}\right)^{2}+2\left({ }^{30} \mathrm{C}_{2}\right)^{2}+3\left({ }^{30} \mathrm{C}_{3}\right)^{2}+\ldots \ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^{2}$ $=\frac{\alpha 60!}{(30!)^{2}}$, then α is equal to
(1) 30
(2) 60
(3) 15
(4) 10

Official Ans. by NTA (3)

Ans. (3)
Sol. $\quad \mathrm{S}=0 .\left({ }^{30} \mathrm{C}_{0}\right)^{2}+1 \cdot\left({ }^{30} \mathrm{C}_{1}\right)^{2}+2 \cdot\left({ }^{30} \mathrm{C}_{2}\right)^{2}+\ldots \ldots .+30 \cdot\left({ }^{30} \mathrm{C}_{30}\right)^{2}$ $\mathrm{S}=30 \cdot\left({ }^{30} \mathrm{C}_{0}\right)^{2}+29 \cdot\left({ }^{30} \mathrm{C}_{1}\right)^{2}+28 \cdot\left({ }^{30} \mathrm{C}_{2}\right)^{2}+\ldots . .+0 \cdot\left({ }^{30} \mathrm{C}_{0}\right)^{2}$ $2 \mathrm{~S}=30 .\left({ }^{30} \mathrm{C}_{0}{ }^{2}+{ }^{30} \mathrm{C}_{1}{ }^{2}+\right.$ \qquad .$+{ }^{30} \mathrm{C}_{30}{ }^{2}$)
$\mathrm{S}=15 \cdot{ }^{60} \mathrm{C}_{30}=15 \cdot \frac{60!}{(30!)^{2}}$
$\frac{15 \cdot 10!}{(30!)^{2}}=\frac{\alpha \cdot 60!}{(30!)^{2}}$
$\Rightarrow \alpha=15$
72. Let the plane containing the line of intersection of the planes

P1: $x+(\lambda+4) y+z=1$ and
$\mathrm{P} 2: 2 \mathrm{x}+\mathrm{y}+\mathrm{z}=2$ pass through the points $(0,1,0)$ and $(1,0,1)$. Then the distance of the point $(2 \lambda, \lambda,-\lambda)$ from the plane P 2 is
(1) $5 \sqrt{6}$
(2) $4 \sqrt{6}$
(3) $2 \sqrt{6}$
(4) $3 \sqrt{6}$

Official Ans. by NTA (4)

Ans. (4)

Sol. Equation of plane passing through point of intersection of P1 and P2
$\mathrm{P}=\mathrm{P} 1+\mathrm{kP} 2$
$(x+(\lambda+4) y+z-1)+k(2 x+y+z-2)=0$
Passing through $(0,1,0)$ and $(1,0,1)$
$(\lambda+4-1)+\mathrm{k}(1-2)=0$
$(\lambda+3)-\mathrm{k}=0$
Also passing $(1,0,1)$
$(1+1-1)+\mathrm{k}(2+1-2)=0$
$1+\mathrm{k}=0$
$\mathrm{k}=-1$
put in (1)
$\lambda+3+1=0$
$\lambda=-4$
Then point $(2 \lambda, \lambda,-\lambda)$

$$
(-8,-4,4)
$$

$d=\left|\frac{-16-4+4-2}{\sqrt{6}}\right|$
$d=\frac{18}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}=3 \sqrt{6}$
73. Let $\vec{\alpha}=4 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}$. Let $\vec{\beta}_{1}$ be parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ be perpendicular to $\vec{\alpha}$. If $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, then the value of $5 \vec{\beta}_{2} \cdot(\hat{i}+\hat{j}+\hat{k})$ is
(1) 6
(2) 11
(3) 7
(4) 9

Official Ans. by NTA (3)
Ans. (3)

Sol. Let $\vec{\beta}_{1}=\lambda \vec{\alpha}$
Now $\vec{\beta}_{2}=\vec{\beta}-\vec{\beta}_{1}$
$=(\hat{i}+2 \hat{j}-4 \hat{k})-\lambda(4 \hat{i}+3 \hat{j}+5 \hat{k})$
$=(1-4 \lambda) \hat{i}+(2-3 \lambda) \hat{j}-(5 \lambda+4) \hat{k}$
$\vec{\beta}_{2} \cdot \vec{\alpha}=0$
$\Rightarrow 4(1-4 \lambda)+3(2-3 \lambda)-5(5 \lambda+4)=0$
$\Rightarrow 4-16 \alpha+6-9 \lambda-25 \lambda-20=0$
$\Rightarrow 50 \lambda=-10$
$\Rightarrow \lambda=\frac{-1}{5}$
$\vec{\beta}_{2}=\left(1+\frac{4}{5}\right) \hat{\mathrm{i}}+\left(2+\frac{3}{5}\right) \hat{\mathrm{j}}-(-1+4) \hat{\mathrm{k}}$
$\vec{\beta}_{2}=\frac{9}{5} \hat{\mathrm{i}}+\frac{13}{5} \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$5 \vec{\beta}_{2}=9 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}-15 \hat{\mathrm{k}}$
$5 \vec{\beta}_{2} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=9+13-15=7$
74. The locus of the mid points of the chords of the circle $C_{1}:(x-4)^{2}+(y-5)^{2}=4$ which subtend an angle θ_{i} at the centre of the circle C_{1}, is a circle of radius r_{i}. If $\theta_{1}=\frac{\pi}{3}, \theta_{3}=\frac{2 \pi}{3}$ and $\mathrm{r}_{1}^{2}=\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}$, then θ_{2} is equal to
(1) $\frac{\pi}{4}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{2}$

Official Ans. by NTA (4)
Ans. (4)

Sol. In \triangle CPB

$\cos \frac{\theta}{2}=\frac{\mathrm{PC}}{2} \Rightarrow \mathrm{PC}=2 \cos \frac{\theta}{2}$
$\Rightarrow(\mathrm{h}-4)^{2}+(\mathrm{k}-5)^{2}=4 \cos ^{2} \frac{\theta}{2}$
Now $(x-4)^{2}+(y-5)^{2}=\left(2 \cos \frac{\theta}{2}\right)^{2}$
$\Rightarrow r_{1}=2 \cos \frac{\pi}{6}=\sqrt{3}$
$\mathrm{r}_{2}=2 \cos \frac{\theta_{2}}{2}$
$r_{3}=2 \cos \frac{\pi}{3}=1$
$\Rightarrow \mathrm{r}_{1}^{2}=\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}$
$\Rightarrow 3=4 \cos ^{2} \frac{\theta_{2}}{2}+1$
$\Rightarrow 4 \cos ^{2} \frac{\theta_{2}}{2}=2$
$\Rightarrow \cos ^{2} \frac{\theta_{2}}{2}=\frac{1}{2}$
$\Rightarrow \theta_{2}=\frac{\pi}{2}$
75. If the foot of the perpendicular drawn from (1,9 , 7) to the line passing through the point $(3,2,1)$ and parallel to the planes $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=0$ and $3 \mathrm{y}-\mathrm{z}=3$ is (α, β, γ), then $\alpha+\beta+\gamma$ is equal to
(1) -1
(2) 3
(3) 1
(4) 5

Official Ans. by NTA (4)
Ans. (4)

Sol. Direction ratio of line $=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 0 & 3 & -1\end{array}\right|$
$=\hat{\mathrm{i}}(-5)-\hat{\mathrm{j}}(-1)+\hat{\mathrm{k}}(3)$
$=-5 \hat{i}+\hat{j}+3 \hat{k}$
$\underbrace{\mathrm{C}_{\frac{\mathrm{x}-3}{-5}=\frac{\mathrm{y}-2}{1}}^{\mathrm{P}(1,9,7)}=\frac{\mathrm{z}-1}{3}}_{\mathrm{M}}<--5,1,3>$
$\mathrm{M}(-5 \lambda+3, \lambda+2,3 \lambda+1)$
$\overrightarrow{\mathrm{PM}} \perp(-5 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
$-5(-5 \lambda+2)+(\lambda-7)+3(3 \lambda-6)=0$
$\Rightarrow 25 \lambda+\lambda+9 \lambda-10-7-18=0$
$\Rightarrow \lambda=1$
Point $\mathrm{M}=(-2,3,4)=(\alpha, \beta, \gamma)$
$\alpha+\beta+\gamma=5$
76. Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0, y(1)=1$. Then $6 y^{2}(e)$ is equal to
(1) $3 e^{2}$
(2) e^{2}
(3) $2 e^{2}$
(4) $\frac{3 e^{2}}{2}$

Official Ans. by NTA (3)

Ans. (3)

Sol. $\quad\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0$
$\frac{d y}{d x}=\frac{3 y^{2}-x^{2}}{3 x y} \Rightarrow \frac{d y}{d x}=\frac{y}{x}-\frac{1}{3} \frac{x}{y}$
Put $y=v x$
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
(1) $\Rightarrow v+x \frac{d v}{d x}=v-\frac{1}{3} \frac{1}{v}$
$\Rightarrow \mathrm{vdv}=\frac{-1}{3 \mathrm{x}}$

Integrating both side
$\frac{\mathrm{v}^{2}}{2}=\frac{-1}{3} \ln \mathrm{x}+\mathrm{c}$
$\Rightarrow \frac{\mathrm{y}^{2}}{2 \mathrm{x}^{2}}=\frac{-1}{3} \ln \mathrm{x}+\mathrm{c}$
$y(1)=1$
$\Rightarrow \frac{1}{2}=\mathrm{c}$
$\Rightarrow \frac{\mathrm{y}^{2}}{2 \mathrm{x}^{2}}=\frac{-1}{3} \ln \mathrm{x}+\frac{1}{2}$
$\Rightarrow y^{2}=-\frac{2}{3} x^{2} \ln x+x^{2}$
$\mathrm{y}^{2}(\mathrm{e})=-\frac{2}{3} \mathrm{e}^{2}+\mathrm{e}^{2}=\frac{\mathrm{e}^{2}}{3}$
$\Rightarrow 6 y^{2}(e)=2 e^{2}$
77. Let p and q be two statements.

Then $\sim(\mathrm{p} \wedge(\mathrm{p} \Rightarrow \sim \mathrm{q}))$ is equivalent to
(1) $p \vee(p \wedge(\sim q))$
(2) $p \vee((\sim p) \wedge q)$
(3) $(\sim \mathrm{p}) \vee \mathrm{q}$
(4) $p \vee(p \wedge q)$

Official Ans. by NTA (3)
Ans. (3)
Sol. $\sim(p \wedge(p \rightarrow \sim q))$
$\equiv \sim p \vee \sim(\sim p \vee \sim q)$
$\equiv \sim p \vee(p \wedge q)$
$\equiv(\sim p \vee p) \wedge(\sim p \vee q)$
$\equiv \mathrm{t} \wedge(\sim \mathrm{p} \vee \mathrm{q})$
$\equiv \sim p \vee q$
78. The number of square matrices of order 5 with entries from the set $\{0,1\}$, such that the sum of all the elements in each row is 1 and the sum of all the elements in each column is also 1 , is
(1) 225
(2) 120
(3) 150
(4) 125

Official Ans. by NTA (2)
Ans. (2)

In each row and each column exactly one is to be placed -
\therefore No. of such matrices $=5 \times 4 \times 3 \times 2 \times 1=120$

Alternate :

$\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow 5$ ways
Step-1 : Select any 1 place for 1 's in row 1.
Automatically some column will get filled with 0 's.
Step-2 : From next now select 1 place for 1's. Automatically some column will get filled with 0's.
\Rightarrow Each time one less place will be available for putting 1's.

Repeat step-2 till last row.
Req. ways $=5 \times 4 \times 3 \times 2 \times 1=120$
79. $\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 \mathrm{x}^{2}}} \mathrm{dx}$ is equal to
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{6}$
(4) 2π

Official Ans. by NTA (4)
Ans. (4)

Sol. $\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 \mathrm{x}^{2}}} \mathrm{dx}$
We have $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+C$
Hence $\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 \mathrm{x}^{2}}} \mathrm{dx}=\frac{48}{2} \times\left[\sin ^{-1} \frac{2 \mathrm{x}}{3}\right]_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}}$
$=24 \times\left[\sin ^{-1}\left(\frac{2}{3} \times \frac{3 \sqrt{3}}{4}\right)-\sin ^{-1}\left(\frac{2}{3} \times \frac{3 \sqrt{2}}{4}\right)\right]$
$=24 \times\left[\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} \frac{1}{\sqrt{2}}\right]$
$=24 \times\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$
$=24 \times \frac{\pi}{12}=2 \pi$
80. Let A be a 3×3 matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=12^{4}$. Then $\left|\mathrm{A}^{-1} \operatorname{adj} \mathrm{~A}\right|$ is equal to
(1) $2 \sqrt{3}$
(2) $\sqrt{6}$
(3) 12
(4) 1

Official Ans. by NTA (1)
Ans. (1)
Sol. Given $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} . A))|=12^{4}$
$\Rightarrow|\mathrm{A}|^{(\mathrm{n}-1)^{3}}=12^{4}$
Given $\mathrm{n}=3$
$\Rightarrow|\mathrm{A}|^{8}=12^{4}$
$\Rightarrow|\mathrm{A}|^{2}=12$
$|\mathrm{A}|=2 \sqrt{3}$
We are asked
$\left|\mathrm{A}^{-1} \cdot \operatorname{adj} \mathrm{~A}\right|$
$=\left|\mathrm{A}^{-1}\right| \cdot|\operatorname{adj} \mathrm{A}|$
$=\frac{1}{|\mathrm{~A}|} \cdot|\mathrm{A}|^{3-1}$
$=|\mathrm{A}|=2 \sqrt{3}$
81. The urns A, B and C contain 4 red, 6 black; 5 red, 5 black and λ red, 4 black balls respectively. One of the urns is selected at random and a ball is drawn. If the ball drawn is red and the probability that it is drawn from urn C is 0.4 then the square of the length of the side of the largest equilateral triangle, inscribed in the parabola $y^{2}=\lambda x$ with one vertex at the vertex of the parabola is

Official Ans. by NTA (432)
Ans. (432)
Sol. Urn A Urn B

Red Black
Red Black
Urn C
Red Black
$\begin{array}{llllll}4 & 6 & 5 & 5 & \lambda & 4\end{array}$
$P\left(\frac{C}{R}\right)=\frac{P(C) P\left(\frac{R}{C}\right)}{P(A) P\left(\frac{R}{A}\right)+P(B) P\left(\frac{R}{B}\right)+P(C) P\left(\frac{R}{C}\right)}$
$0.4=\frac{\frac{1}{3} \times \frac{\lambda}{(\lambda+4)}}{\frac{1}{3} \times \frac{4}{10}+\frac{1}{3} \times \frac{5}{10}+\frac{1}{3} \frac{\lambda}{(\lambda+4)}}$
$\Rightarrow \lambda=6$

$\tan 30^{\circ}=3 \mathrm{t}=\frac{3}{2} \mathrm{t}^{2}$
$\frac{1}{\sqrt{3}}=\frac{2}{\mathrm{t}}$
$t=2 \sqrt{3}$
$\left(\frac{3}{2} \mathrm{t}^{2}, 3 \mathrm{t}\right)=(18,6 \sqrt{3})$
$\ell^{2}=18^{2}+(6 \sqrt{3})^{2}$
$=324+108$
$=432$
82. If the area of the region bounded by the curves $y^{2}-2 y=-x, x+y=0$ is A, then $8 A$ is equal to

Official Ans. by NTA (36)
Ans. (36)
Sol. $y^{2}-2 y=-x$
$\Rightarrow y^{2}-2 y+1=-x+1$
$(y-1)^{2}=-(x-1)$
$y=-x$
Points of intersection
$x^{2}+2 x=-x$
$x^{2}+3 x=0$
$\mathrm{x}=0,-3$

$A=\int_{0}^{3}\left(-y^{2}+2 y+y\right) d y$
$=\frac{3 y^{2}}{2}-\left.\frac{y^{3}}{3}\right|_{0} ^{3}=\frac{9}{2}$
$8 \mathrm{~A}=36$
83. If $\frac{1^{3}+2^{3}+3^{3}+\ldots \ldots \text {.upto } n \text { terms }}{1 \cdot 3+2 \cdot 5+3 \cdot 7+\ldots \ldots \text { upto } n \text { terms }}=\frac{9}{5}$, then the value of n is

Official Ans. by NTA (5)
Ans. (5)

Sol. $1^{3}+2^{3}+3^{3} \ldots . .+\mathrm{n}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
$1 \cdot 3+2 \cdot 5+3 \cdot 7+\ldots \ldots .+\mathrm{n}$ terms $=$
$\sum_{r=1}^{n} r(2 r+1)=\sum_{r=1}^{n}\left(2 r^{2}+r\right)$
$=\frac{2 \cdot \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$=\frac{\mathrm{n}(\mathrm{n}+1)}{6}(2(2 \mathrm{n}+1)+3)$
$=\frac{\mathrm{n}(\mathrm{n}+1)}{2} \times \frac{(4 \mathrm{n}+5)}{3}$
$=\frac{\frac{n^{2}(n+1)^{2}}{4}}{\frac{n(n+1)}{2} \times \frac{(4 n+5)}{3}}=\frac{9}{5}$
$\Rightarrow \frac{5 \mathrm{n}(\mathrm{n}+1)}{2}=\frac{9(4 \mathrm{n}+5)}{3}$
$\Rightarrow 15 \mathrm{n}(\mathrm{n}+1)=18(4 \mathrm{n}+5)$
$\Rightarrow 15 n^{2}+15 n=72 n+90$
$\Rightarrow 15 \mathrm{n}^{2}-57 \mathrm{n}-90=0 \Rightarrow 5 \mathrm{n}^{2}-19 \mathrm{n}-30=0$
$\Rightarrow(\mathrm{n}-5)(5 \mathrm{n}+6)=0$
$\Rightarrow \mathrm{n}=\frac{-6}{5}$ or 5
$\Rightarrow \mathrm{n}=5$.
84. Let f be a differentiable function defined on $\left[0, \frac{\pi}{2}\right]$ such that $\mathrm{f}(\mathrm{x})>0$ and
$\mathrm{f}(\mathrm{x})+\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \sqrt{1-\left(\log _{\mathrm{e}} \mathrm{f}(\mathrm{t})\right)^{2}} \mathrm{dt}=\mathrm{e}, \forall \mathrm{x} \in\left[0, \frac{\pi}{2}\right]$.
Then $\left(6 \log _{e} f\left(\frac{\pi}{6}\right)\right)^{2}$ is equal to \qquad .

Official Ans. by NTA (27)

Sol. $f(x)+\int_{0}^{x} f(t) \sqrt{1-\left(\log _{e} f(t)\right)^{2}} d t=e$
$\Rightarrow \mathrm{f}(0)=\mathrm{e}$
$\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}(\mathrm{x}) \sqrt{1-(\ln \mathrm{f}(\mathrm{x}))^{2}}=0$
$\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\frac{d y}{d x}=-y \sqrt{1-(\ln y)^{2}}$
$\int \frac{d y}{y \sqrt{1-(\ln y)^{2}}}=-\int d x$
Put $\ln y=t$
$\int \frac{\mathrm{dt}}{\sqrt{1-\mathrm{t}^{2}}}=-\mathrm{x}+\mathrm{C}$
$\sin ^{-1} \mathrm{t}=-\mathrm{x}+\mathrm{C} \Rightarrow \sin ^{-1}(\ln \mathrm{y})=-\mathrm{x}+\mathrm{C}$
$\sin ^{-1}(\ln f(x))=-x+C$
$f(0)=e$
$\Rightarrow \frac{\pi}{2}=\mathrm{C}$
$\Rightarrow \sin ^{-1}(\ln \mathrm{f}(\mathrm{x}))=-\mathrm{x}+\frac{\pi}{2}$
$\Rightarrow \sin ^{-1}\left(\ln \mathrm{f}\left(\frac{\pi}{6}\right)\right)=\frac{-\pi}{6}+\frac{\pi}{2}$
$\Rightarrow \sin ^{-1}\left(\ln \mathrm{f}\left(\frac{\pi}{6}\right)\right)=\frac{\pi}{3}$
$\Rightarrow \ln \mathrm{f}\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$, we need $\left(6 \times \frac{\sqrt{3}}{2}\right)^{2}=27$.
85. The minimum number of elements that must be added to the relation $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{d})\}$ on the set $\{a, b, c, d\}$ so that it is an equivalence relation, is \qquad .

Official Ans. by NTA (13)

Ans. (13)

Sol. Given $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{d})\}$
In order to make it equivalence relation as per given set, R must be
$\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, a),(b, c),(c, b)$,
$(b, d),(d, b),(a, c),(a, d),(c, d),(d, c),(c, a),(d, a)\}$
There already given so 13 more to be added.
86. Let $\vec{a}=\hat{i}+2 \hat{j}+\lambda \hat{k}, \vec{b}=3 \hat{i}-5 \hat{j}-\lambda \hat{k}, \vec{a} \cdot \vec{c}=7$, $2 \vec{b} \cdot \vec{c}+43=0, \vec{a} \times \vec{c}=\vec{b} \times \vec{c}$. Then $|\vec{a} \cdot \vec{b}|$ is equal to Official Ans. by NTA (8)

Ans. (8)
Sol. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-\lambda \hat{\mathrm{k}}, \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=7$
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{0}$,
$(\vec{a}-\vec{b}) \times \vec{c}=0 \Rightarrow(\vec{a}-\vec{b})$ is paralleled to \vec{c}
$\vec{a}-\vec{b}=\mu \vec{c}$, where μ is a scalar
$-2 \hat{i}+7 \hat{j}+2 \lambda \hat{k}=\mu \cdot \vec{c}$
Now $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=7$ gives $2 \lambda^{2}+12=7 \mu$
And $\vec{b} \cdot \overrightarrow{\mathrm{c}}=-\frac{43}{2}$ gives $4 \lambda^{2}+82=43 \mu$
$\mu=2$ and $\lambda^{2}=1$
$|\vec{a} \cdot \vec{b}|=8$
87. Let the sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{n}, x \neq 0, n \in N$, be 376 . Then the coefficient of x^{4} is \qquad .

Official Ans. by NTA (405)
Ans. (405)
Sol. Given Binomial $\left(x-\frac{3}{x^{2}}\right)^{n}, x \neq 0, n \in N$,
Sum of coefficients of first three terms
${ }^{n} C_{0}-{ }^{n} C_{1} \cdot 3+{ }^{n} C_{2} 3^{2}=376$
$\Rightarrow 3 \mathrm{n}^{2}-5 \mathrm{n}-250=0$
$\Rightarrow(\mathrm{n}-10)(3 \mathrm{n}+25)=0$
$\Rightarrow \mathrm{n}=10$
Now general term ${ }^{10} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{10-\mathrm{r}}\left(\frac{-3}{\mathrm{x}^{2}}\right)^{\mathrm{r}}$

$$
\begin{aligned}
& ={ }^{10} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{10-\mathrm{r}}(-3)^{\mathrm{r}} \cdot \mathrm{x}^{-2 \mathrm{r}} \\
& ={ }^{10} \mathrm{C}_{\mathrm{r}}(-3)^{\mathrm{r}} \cdot \mathrm{x}^{10-3 \mathrm{r}}
\end{aligned}
$$

Coefficient of $\mathrm{x}^{4} \Rightarrow 10-3 \mathrm{r}=4$
$\Rightarrow \mathrm{r}=2$
${ }^{10} \mathrm{C}_{2}(-3)^{2}=405$
88. If the shortest between the lines
$\frac{x+\sqrt{6}}{2}=\frac{y-\sqrt{6}}{3}=\frac{z-\sqrt{6}}{4}$ and
$\frac{x-\lambda}{3}=\frac{y-2 \sqrt{6}}{4}=\frac{z+2 \sqrt{6}}{5}$ is 6 , then the square
of sum of all possible values of λ is
Official Ans. by NTA (384)

Ans. (384)

Sol. Shortest distance between the lines
$\frac{x+\sqrt{6}}{2}=\frac{y-\sqrt{6}}{3}=\frac{z-\sqrt{6}}{4}$
$\frac{x-\lambda}{3}=\frac{y-2 \sqrt{6}}{4}=\frac{2+2 \sqrt{6}}{5}$ is 6
Vector along line of shortest distance
$=\left|\begin{array}{lll}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|, \Rightarrow-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\mathrm{k}$ (its magnitude is $\sqrt{6}$)
Now $\frac{1}{\sqrt{6}}\left|\begin{array}{ccc}\sqrt{6}+\lambda & \sqrt{6} & -3 \sqrt{6} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|= \pm 6$
$\Rightarrow \lambda=-2 \sqrt{6}, 10 \sqrt{6}$
So, square of sum of these values is 384 .
89. Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.

Then $\sum_{\theta \in S} \sin ^{2}\left(\theta+\frac{\pi}{4}\right)$ is equal to
Official Ans. by NTA (2)
Ans. (2)
Sol. $\tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0$
$\tan (\pi \cos \theta)=-\tan (\pi \sin \theta)$
$\tan (\pi \cos \theta)=\tan (-\pi \sin \theta)$
$\pi \cos \theta=\mathrm{n} \pi-\pi \sin \theta$
$\sin \theta+\cos \theta=n$ where $n \in I$
possible values are $\mathrm{n}=0,1$ and -1 because
$-\sqrt{2} \leq \sin \theta+\cos \theta \leq \sqrt{2}$
Now it gives $\theta \in\left\{0, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{3 \pi}{2}, \pi\right\}$
So $\sum_{\theta \in \mathrm{S}} \sin ^{2}\left(\theta+\frac{\pi}{4}\right)=2(0)+4\left(\frac{1}{2}\right)=2$
90. The equations of the sides AB, BC and CA of a triangle $A B C$ are: $2 x+y=0, x+p y=21 a,(a \neq 0)$ and $x-y=3$ respectively. Let $P(2, a)$ be the centroid of $\triangle \mathrm{ABC}$. Then $(\mathrm{BC})^{2}$ is equal to

Official Ans. by NTA (122)

Ans. (122)

Sol.

Assume $B(\alpha,-2 \alpha) \quad$ and $C(\beta+3, \beta)$
$\frac{\alpha+\beta+3+1}{3}=2 \quad$ also $\frac{-2 \alpha-2+\beta}{3}=\mathrm{a}$
$\Rightarrow \alpha+\beta=2 \quad-2 \alpha-2+\beta=3 \mathrm{a}$
$\Rightarrow \beta=2-\alpha \quad-2 \alpha-\not 2+\not 2-\alpha=3 a \Rightarrow \alpha=-a$
Now both B and C lies as given line
$\alpha-p \cdot 2 \alpha=21 a$
$\alpha(1-2 p)=21 a$
$-\alpha(1-2 p)=21 a \Rightarrow p=11$
$\beta+3+\mathrm{p} \beta=21 \mathrm{a}$
$\beta+3+11 \beta=21 \mathrm{a}$
$21 \alpha+12 \beta+3=0$
Also $\beta=2-\alpha$
$21 \alpha+12(2-\alpha)+3=0$
$21 \alpha+24-12 \alpha+3=0$
$9 \alpha+27=0$
$\alpha=-3, \beta=5$
So $B C=\sqrt{122}$ and $(B C)^{2}=122$

