Å

CLASS IX: MATHS Chapter 1: Number System

Questions and Solutions | EXERCISE 1.1 - NCERT Books

- **Q1.** Is zero a rational number? Can you write it in the form p/q, where p and q are integers and $q \neq 0$?
- Sol. Yes, zero is a rational number. We can write zero in the form p/q whose p and q are integers and $q \neq 0$.

so, 0 can be written as $\frac{0}{1} = \frac{0}{2} = \frac{0}{3}$ etc.

- Q2. Find six rational numbers between 3 and 4.
- **Sol.** First rational number between 3 and 4 is $=\frac{3+4}{2}=\frac{7}{2}$ Similarly other numbers

$$\frac{3 + \frac{7}{2}}{2} = \frac{13}{4}$$
$$\frac{3 + \frac{13}{4}}{2} = \frac{25}{8}$$
$$\frac{3 + \frac{25}{8}}{2} = \frac{49}{16}$$
$$\frac{3 + \frac{49}{16}}{2} = \frac{97}{32}$$
$$\frac{97}{32} + 3}{2} = \frac{193}{64}$$
So, numbers are

 $\frac{7}{2}, \frac{13}{4}, \frac{25}{8}, \frac{49}{16}, \frac{97}{32}, \frac{193}{64}$

Q3. Find five rational numbers between 3/5 and 4/5.

Sol. Let $a = \frac{3}{5} b = \frac{4}{5} n = 5$

then, d = $\frac{b-a}{n+1} = \frac{\frac{4}{5} - \frac{3}{5}}{5+1} = \frac{1}{30}$

So, rational numbers are

 $\frac{3}{5} + \frac{1}{30} = \frac{19}{30}$ $\frac{3}{5} + \frac{2}{30} = \frac{20}{30}$ $\frac{3}{5} + \frac{3}{30} = \frac{21}{30}$ $\frac{3}{5} + \frac{4}{30} = \frac{22}{30}$ $\frac{3}{5} + \frac{5}{30} = \frac{23}{30}$ Thus, numbers are $\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}$

- Q4. State whether the following statements are true or false? Give reasons for your answers.
 - (i) Every natural number is a whole number.
 - (ii) Every integer is a whole number.
 - (iii) Every rational number is a whole number.

Sol. (i) True, the collection of whole numbers contains all natural numbers.

(ii) False, -2 is not a whole number

(iii) False, $\frac{1}{2}$ is a rational number but not a whole number.

<mark>∛S</mark>aral

- Q1. State whether the following statements are true or false ? Justify your answers.
 - (i) Every irrational number is a real number.
 - (ii) Every point on the number line is of the form \sqrt{m} , where m is a natural number.
 - (iii) Every real number is an irrational number.
- Sol. (i) True, since collection of real numbers consists of rationals and irrationals.
 (ii) False, because no negative number can be the square root of any natural number.
 (iii) False, 2 is real but not irrational.
- **Q2.** Are the square roots of all positive integers irrational ? If not, give an example of the square root of a number that is a rational number.
- **Sol.** No, $\sqrt{4} = 2$ is a rational number.
- **Q3.** Show how $\sqrt{5}$ can be represented on the number line.

Sol. $\sqrt{5}$ on Number line.

OABC is unit square

Using compass we can cut arc with centre O and radius = OF on number line. ON is required result.

Questions and Solutions | EXERCISE 1.3 - NCERT Books

Q1. Write the following in decimal form and say what kind of decimal expansion each has :

(i)
$$\frac{36}{100}$$
 (ii) $\frac{1}{11}$ (iii) $4\frac{1}{8}$
(iv) $\frac{3}{13}$ (v) $\frac{2}{11}$ (vi) $\frac{329}{400}$

- Sol. (i) $\frac{36}{100} = 0.36$ (Terminating) (ii) $\frac{1}{11} = 0.090909....$ (Non terminating Repeating) $11\sqrt{1.00000}$ 0.090909.... $\frac{-99}{100}$ $\frac{99}{100}$ $\frac{99}{100}$
 - (iii) $4\frac{1}{8} = \frac{33}{8} = 4.125$ (Terminating decimal)
 - (iv) $\frac{3}{13} = 0.230769230769.....$

 $= 0.\overline{230769}$ (Non Terminating repeating)

- (v) $\frac{2}{11} = 0.1818.... = 0.\overline{18}$ (Non Terminating repeating)
- (vi) $\frac{329}{400}$ $400\overline{)329.0000(0.8225)}$ $\underline{3200}$ $\underline{900}$ $\underline{800}$ $\underline{1000}$ $\underline{800}$ $\underline{2000}$ $\underline{2000}$ $\underline{2000}$

$$\frac{329}{400} = 0.8225 \Longrightarrow \text{(Terminating)}$$

- **Q2.** You know that $\frac{1}{7} = 0.\overline{142857}$. Can you predict what the decimal expansion of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division ? If so, how ?
- Sol. Yes, we can predict decimal explain without actually doing long division method as

$$\frac{2}{7} = 2 \times \frac{1}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$$

Class IX Maths

 $\frac{3}{7} = 3 \times \frac{1}{7} = 3 \times .\overline{142857} = .\overline{428571}$ $\frac{4}{7} = 4 \times \frac{1}{7} = 4 \times .\overline{142857} = .\overline{571428}$ $\frac{5}{7} = 5 \times \frac{1}{7} = 5 \times .\overline{142857} = .\overline{714285}$ $\frac{6}{7} = 6 \times \frac{1}{7} = 6 \times .\overline{142857} = .\overline{857142}$

Q3. Express the following in the form p/q, where p and q are integers and $q \neq 0$.

(i) $0.\overline{6}$ (ii) $0.4\overline{7}$ (iii) 0.001

Sol. (i) Let x = 0.6666...(1) Multiplying both the sides by 10. 10 x = 6.666...(2)Subtract (1) from (2) 10x - x = (6.66666...) - (0.66666...) $\Rightarrow 9x = 6 \Rightarrow x = \frac{6}{9} = \frac{2}{3}$ (ii) Let $x = 0.4\overline{7} = .4777...$ Multiply both sides by 10 $10x = 4.\overline{7}$...(1) Multiply both sides by 10 $100 \ x = 47.\overline{7}$...(2) Subtract (1) from (2) 90x = 43 $x = \frac{43}{90}$ (iii) Let x = 0.001 = 0.001001001......(1) Multiply both sides by 1000 1000x = 1.001...(2) Subtract (1) from (2)999x = 1

 $x = \frac{1}{999}$

Q4. Express 0.99999 in the form p/q. Are you surprised by your answer ? With your teacher and classmates discuss why the answer makes sense.

Sol. Let x = 0.999.... ...(1) Multiply both sides by 10 we get 10x = 9.99.... ...(2) Subtract (1) from (2)

> $9x = 9 \implies x = 1$.99999.... = 1 = $\frac{1}{1}$

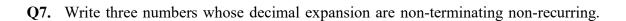
- $\therefore p = 1, q = 1$
- Q5. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 1/17 ? Perform the division to check your answer.
- Sol. Maximum no. of digits in the repeating block of digits in decimal expansion of $\frac{1}{17}$ can be 16.

0.058823529411764705	
<u>85</u> 150	
<u>136</u> 140	
136	
40 34	
$\begin{array}{r} 40\\ \underline{34}\\ \hline 60\\ 51 \end{array}$	
90	
$\frac{85}{50}$	
<u> 34 </u> 160	
153	
70 68	
20 17	
30	
<u>17</u> 130	
$\frac{119}{110}$	
<u>102</u> 80	
<u>68</u> 120	
119	
100 85	
85 150 136	
<u> </u>	

Ans. .0588235294117647

- **Q6.** Look at several examples of rational numbers in the form p/q ($q \neq 0$), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy ?
- **Sol.** There is a property that q must satisfy rational no. of form $\frac{p}{q}$ (q \neq 0) where p, q are integers with no common factors other than 1 having terminating decimal representation (expansions) is that the prime factorization of q has only powers of 2 or powers of 5 or both [i.e., q must be of the form $2^m \times 5^n$]. Here m,n are whole numbers.

Å



- Sol. 0.01001000100001... 0.20200200020002... 0.003000300003...
- Q8. Find three different irrational numbers between the rational numbers 5/7 and 9/11.

Sol. 7)
$$\overline{5.000000}(0.714285...)$$

 $\frac{49}{10}$
 $\frac{7}{30}$
 $\frac{28}{20}$
 $\frac{14}{60}$
 $\frac{56}{40}$
 $\frac{35}{5}$
Thus, $\frac{5}{7} = 0.714285$
 $\frac{9}{11} = 11$ 9.0000 (0.8181.
 $\frac{88}{20}$
 $\frac{11}{90}$
 $\frac{88}{20}$
 $\frac{11}{90}$
 $\frac{88}{20}$
 $\frac{11}{9}$
Thus, $\frac{9}{11} = 0.\overline{81}$

Three different irrational numbers between

Class IX Maths

Q9. Classify the following numbers as rational or irrational :

(i) $\sqrt{23}$ (ii) $\sqrt{225}$ (iii) 0.3796(iv) 7.478478(v) 1.101001000100001

Sol. (i) $\sqrt{23}$ = irrational number

- (ii) $\sqrt{225}$ = 15 = Rational number
- (iii) 0.3796 decimal expansion is terminating

 \Rightarrow .3796 = Rational number.

- (iv) 7.4784<mark>78...</mark>
 - = $7.\overline{478}$ which is non terminating recurring.
 - = Rational number.
- (v) 1.101001000100001.....

decimal expansion is non terminating and non repeating.

= Irrational number

Questions and Solutions | EXERCISE 1.4 - NCERT Books

Q1. Classify the following numbers as rational or irrational :

(i)
$$2 - \sqrt{5}$$
 (ii) $(3 + \sqrt{23}) - \sqrt{23}$ (iii) $\frac{2\sqrt{7}}{7\sqrt{7}}$

(iv) $\frac{1}{\sqrt{2}}$ (v) 2π

Sol. (i) : 2 is a rational number and $\sqrt{5}$ is an irrational number.

 $\therefore 2 - \sqrt{5}$ is an irrational number.

(ii) $(3 + \sqrt{23}) - \sqrt{23} \implies (3 + \sqrt{23}) - \sqrt{23} = 3$ is a rational number.

(iii)
$$\frac{2\sqrt{7}}{7\sqrt{7}} = \frac{2}{7}$$
 Rational number.

(iv) $\frac{1}{\sqrt{2}}$

 \therefore 1 is a rational number and $\sqrt{2}$ is an irrational number.

So,
$$\frac{1}{\sqrt{2}}$$
 is irrational number.

(v) 2π

 \therefore 2 is a rational number and π is an irrational number So, 2π is irrational number.

- Q2. Simplify each of the following expressions :
 - (i) $(3 + \sqrt{3})(2 + \sqrt{2})$ (ii) $(3 + \sqrt{3})(3 - \sqrt{3})$ (iii) $(\sqrt{5} + \sqrt{2})^2$ (iv) $(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})$

Sol. (i)
$$(3 + \sqrt{3})(2 + \sqrt{2}) = 3(2 + \sqrt{2}) + \sqrt{3}(2 + \sqrt{2})$$

 $= 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$
(ii) $(3 + \sqrt{3})(3 - \sqrt{3}) = (3)^2 - (\sqrt{3})^2 = 9 - 3 = 6$
(iii) $(\sqrt{5} + \sqrt{2})^2$
 $= (\sqrt{5})^2 + 2\sqrt{10} + (\sqrt{2})^2$
 $= 7 + 2\sqrt{10}$
(iv) $(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2}) = 5 - 2 = 3$

Q3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, $\pi = c/d$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction ?

Class IX Maths

Å

- **Sol.** There is no contradiction. When we measure a length with a scale or any other device, we only get an approximate rational value. Therefore, we may not realise that c or d is irrational.
- **Q4.** Represent $\sqrt{9.3}$ on the number line.

Sol.
$$A = 9.3$$
 units $B \rightarrow C$ P l
1 unit

Let *l* be the number line.

Draw a line segment AB = 9.3 units and BC = 1 unit. Find the mid point O of AC.

Draw a semicircle with centre O and radius OA or OC.

Draw BD \perp AC intersecting the semicircle at D. Then, BD = $\sqrt{9.3}$ units. Now, with centre B and radius BD, draw an arc intersecting the number line ℓ at P.

Hence, BD = BP = $\sqrt{9.3}$

Q5. Rationalise the denominators of the following :

 $\Gamma =$

(i)
$$\frac{1}{\sqrt{7}}$$
 (ii) $\frac{1}{\sqrt{7} - \sqrt{6}}$ (iii) $\frac{1}{\sqrt{5} + \sqrt{2}}$ (iv) $\frac{1}{\sqrt{7} - 2}$

Sol. (i)
$$\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{\sqrt{7}}{7}$$

(ii) $\frac{1}{\sqrt{7} - \sqrt{6}} = \frac{1}{\sqrt{7} - \sqrt{6}} \times \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}}$
 $= \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \frac{\sqrt{7} + \sqrt{6}}{1} = \sqrt{7} + \sqrt{6}$
(iii) $\frac{1}{\sqrt{5} + \sqrt{2}}$
 $\frac{1}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{\sqrt{5} - \sqrt{2}}{3}$
(iv) $\frac{1}{\sqrt{7} - 2} = \frac{1}{\sqrt{7} - 2} \times \frac{\sqrt{7} + 2}{\sqrt{7} + 2}$
 $= \frac{\sqrt{7} + 2}{7 - 4} = \frac{\sqrt{7} + 2}{3}$

Class IX Maths

<mark>∛</mark>Saral

Questions and Solutions | EXERCISE 1.5 - NCERT Books **Q1.** Find : (i) $(64)^{1/2}$ (ii) $32^{1/5}$ (iii) $125^{1/3}$ **Sol.** (i) $(64)^{1/2} = (8^2)^{1/2} = (8^{2 \times \frac{1}{2}}) = 8^1 = 8$ (ii) $32^{1/5} = (2^5)^{1/5} = (2^{5 \times \frac{1}{5}}) = 2^1 = 2$ (iii) $(125)^{\frac{1}{3}} = (5^3)^{\frac{1}{3}} = 5^{3\times\frac{1}{3}} = 5$ **Q2.** Find : (i) $9^{3/2}$ (ii) $32^{2/5}$ (iii) $16^{3/4}$ (iv) $125^{1/3}$ **Sol.** (i) $9^{\frac{3}{2}} = (9^{\frac{1}{2}})^3 = (3)^3 = 27$ (ii) $32^{\frac{2}{5}} = (2^{5})^{\frac{2}{5}} = 2^{5 \times \frac{2}{5}} = 2^{2} = 4$ (iii) $16^{3/4} = (2^4)^{3/4} = 2^3 = 8$ (iv) $125^{1/3} = (5^3)^{1/3} = 5$ **Q3.** Simplify : (i) $2^{2/3} \cdot 2^{1/5}$ (ii) $\left(\frac{1}{3^3}\right)^7$ (iii) $\frac{11^{1/2}}{11^{1/4}}$ (iv) $7^{1/2} \cdot 8^{1/2}$ **Sol.** (i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = 2^{\frac{2}{3} + \frac{1}{5}} = 2^{\frac{10+3}{15}} = 2^{\frac{13}{15}}$ (ii) $\left(\frac{1}{3^3}\right)^7 = \frac{1^7}{(3^3)^7} = \frac{1}{3^{21}} = 3^{-21}$ (iii) $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2}-\frac{1}{4}}$ $= 11^{\frac{1}{4}} = \sqrt[4]{11}$ (iv) $\frac{1}{7^2} \frac{1}{8^2}$ $= (7 \times 8)^{1/2} = (56)^{1/2}$