CLASS IX: MATHS

Chapter 11: Surface Areas and Volume

Questions and Solutions | Exercise 11.1 - NCERT Books

Q1. Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm . Find its curved surface area.

Sol. \because Diameter of the base $=10.5 \mathrm{~cm}$
$\therefore \quad$ Radius of the base $(\mathrm{r})=\frac{10.5}{2} \mathrm{~cm}=5.25 \mathrm{~cm}$
Slant height $(\ell)=10 \mathrm{~cm}$
\therefore Curved surface area of the cone

$$
=\pi \mathrm{r} \ell=\frac{22}{7} \times 5.25 \times 10=165 \mathrm{~cm}^{2} .
$$

Q2. Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m .

Sol. $\quad \ell=21 \mathrm{~m}, \mathrm{r}=12 \mathrm{~m}$
Total surface area $=\pi r(r+\ell)=\frac{22}{7} \times 12 \times 33 \mathrm{~m}^{2}$
$=1244.57 \mathrm{~m}^{2}$

Q3. Curved surface area of a cone is $308 \mathrm{~cm}^{2}$ and its slant height is 14 cm . Find
(i) radius of the base and (ii) total surface area of the cone.

Sol. (i) Slant height $(\ell)=14 \mathrm{~cm}$
Curved surface area $=308 \mathrm{~cm}^{2}$
$\Rightarrow \pi \mathrm{r} \ell=308 \quad \Rightarrow \frac{22}{7} \times \mathrm{r} \times 14=308$
$\Rightarrow \mathrm{r}=\frac{308 \times 7}{22 \times 14} \quad \Rightarrow \mathrm{r}=7 \mathrm{~cm}$
Hence, the radius of the base is 7 cm .
(ii) Total surface area of the cone $=\pi r(\ell+r)=\frac{22}{7} \times 7 \times(14+7)=\frac{22}{7} \times 7 \times 21=462 \mathrm{~cm}^{2}$ Hence, the total surface area of the cone is $462 \mathrm{~cm}^{2}$.

Q4. A conical tent is 10 m high and the radius of its base is 24 m . Find
(i) Slant height of the tent.
(ii) cost of the canvas required to make the tent, if the cost of $1 \mathrm{~m}^{2}$ canvas is Rs. 70.

Sol. Height of the tent (h) $=10 \mathrm{~m}$
Radius of the base (r) $=24 \mathrm{~m}$
(i) The slant height, $\ell=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}$

$$
\begin{aligned}
& \ell=\sqrt{(24)^{2}+(10)^{2}} \mathrm{~m}=\sqrt{576+100} \mathrm{~m} \\
& \ell=26 \mathrm{~m}
\end{aligned}
$$

Thus, the required slant height of the tent is 26 m .
(ii) Curved surface area of the cone $=\pi r \ell$
\therefore Area of the canvas required $=\frac{13728}{7} \mathrm{~m}^{2}$
\therefore Cost of $\frac{13728}{7} \mathrm{~m}^{2}$ canvas

$$
=\operatorname{Rs} 70 \times \frac{13728}{7}=\operatorname{Rs} 137280
$$

Q5. What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m ? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm (Use $\pi=3.14$)

Sol. Area of Tarpaulin required $=$ Curved surface of the conical tent
$1=\sqrt{8^{2}+6^{2}}=10 \mathrm{~m}$
Area of tarpaulin $=3.14 \times 6 \times 10$
Acc. to quest $=188.4$
$3 \mathrm{~m} \times$ length $=188.4$
length $=62.8 \mathrm{~m}$
wastage $=20 \mathrm{~cm}=0.2 \mathrm{~m}$
Total length required $=62.8+0.2=63 \mathrm{~m}$
i.e., $\ell \times \mathrm{b}=\pi \mathrm{r} \ell$]

Ans. 63 m .

Q6. The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white washing its curved surface at the rate of Rs. 210 per $100 \mathrm{~m}^{2}$.

Sol. $\quad \ell=25 \mathrm{~m}, \mathrm{r}=7 \mathrm{~m}$
Curved surface $=\frac{22}{7} \times 7 \times 25 \mathrm{~m}^{2}=550 \mathrm{~m}^{2}$
Cost of white washing $=$ Rs. $\frac{210}{100} \times 550=$ Rs. 1155

Q7. A joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm . Find the area of the sheet required to make 10 such caps.
Sol. $\mathrm{r}=7 \mathrm{~cm}, \mathrm{~h}=24 \mathrm{~cm} \ell^{2}=\mathrm{h}^{2}+\mathrm{r}^{2}$
$=576+49=625 \Rightarrow \ell=25 \mathrm{~cm}$
Sheet required for one cap
$=\frac{22}{7} \times 7 \times 25 \mathrm{~cm}^{2}=550 \mathrm{~cm}^{2}$
Sheet required for 10 caps $=10 \times 550 \mathrm{~cm}^{2}=5500 \mathrm{~cm}^{2}$

Q8. A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of 40 cm and height 1 m . If the outer side of each of the cones is to be painted and the cost of painting is Rs 12 per m^{2}, what will be the cost of painting all these cones? (Use $\pi=3.14$ and take $\sqrt{1.04}=1.02$)

Sol. Radius $(\mathrm{r})=\frac{40}{2} \mathrm{~cm}=\frac{20}{100} \mathrm{~m}=0.2 \mathrm{~m}$
Height (h) $=1 \mathrm{~m}$
Slant height $(\ell)=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}=\sqrt{(0.2)^{2}+(1)^{2}}$

$$
=1.02 \mathrm{~m}
$$

Now, curved surface area $=\pi r \ell$
\therefore Curved surface area of 1 cone

$$
\begin{aligned}
& =3.14 \times 0.2 \times 1.02 \mathrm{~m}^{2} \\
& =\frac{314}{100} \times \frac{2}{10} \times \frac{102}{100} \mathrm{~m}^{2}
\end{aligned}
$$

Curved surface area of 50 cones

$$
\begin{aligned}
& =50 \times\left[\frac{314}{100} \times \frac{2}{10} \times \frac{102}{100}\right] \mathrm{m}^{2} \\
& =\frac{314 \times 102}{10 \times 100} \mathrm{~m}^{2}
\end{aligned}
$$

Cost of painting per $\mathrm{m}^{2}=$ Rs 12
$\therefore \quad$ Cost of painting $\left[\frac{314 \times 102}{1000}\right] \mathrm{m}^{2}$
$=\frac{12 \times 314 \times 102}{1000}=\operatorname{Rs} 384.34$ (approx)

