

CLASS IX: MATHS Chapter 9: Circles

Questions and Solutions | Exercise 9.2 - NCERT Books

- Q1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of common chord.
- Sol. We know that if two circles intersect each other at two points, then the line joining their centres is the perpendicular bisector of their common chord.

- :. Length of the common chord
- \Rightarrow PQ = 2O'P = 2 × 3 = 6 cm
- Q2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
- Sol. O is the centre of the circle. Chords AB and CD of the circle are equal. P is the point of intersection of AB and CD. Join OP, draw OL \perp AB and OM \perp OD.

Here, we find
$$OL = OM$$

$$(:: AB = CD)...(1)$$

In \triangle OLP and \triangle OMP,

$$OL = OM$$

$$OP = OP$$

(Common hypotenuse)

$$\angle OLP = \angle OMP$$

$$(Each = 90^\circ)$$

Then we have
$$\triangle OLP \cong \triangle OMP$$

By CPCT, or
$$PL = PM$$

...(3)

Now,
$$AL = BL = \frac{1}{2}$$
 AB; $CM = DM = \frac{1}{2}$ CD

$$\Rightarrow$$
 AL = CM (: AB = CD)

and
$$BL = DM$$
 ...(4)

Subtracting (1) from (3),

$$AL - PL = CM - PM \Rightarrow AP = CP$$

Adding (2) from (4),

∜Saral

$$PL + BL = PM + DM \Rightarrow PB = PD$$

- Q3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
- Sol. O is the centre of the circle. Chords AB and CD of the circle are equal. P is the point of intersection of AB and CD. Join OP, draw OL \perp AB and OM \perp OD.

Here, we find
$$OL = OM$$

$$(:: AB = CD) ...(1)$$

In \triangle OLP and \triangle OMP,

$$OL = OM$$

$$OP = OP$$

(Common hypotenuse)

$$\angle OLP = \angle OMP$$

$$(Each = 90^\circ)$$

Then we have $\triangle OLP \cong \triangle OMP$ (RHS congruence)

By CPCT, or
$$PL = PM$$

Now, $AL = BL = \frac{1}{2}$ AB;

$$CM = DM = \frac{1}{2} CD$$

$$\Rightarrow$$
 AL = CM (:: AB = CD)

and
$$BL = DM$$

Subtracting (1) from (3),

$$AL - PL = CM - PM$$

$$\Rightarrow$$
 AP = CP

$$PL + BL = PM + DM \Rightarrow PB = PD$$

Q4. If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD (see fig).

Sol. Given: Two circles with the common centre O. A line "\ell" intersects the outer circle at A and D and the inner circle at B and C.

To prove : AB = CD

Construction: Draw OM $\perp \ell$.

Proof: OM $\perp \ell$ [Construction]

For the outer circle,

 \therefore AM = MD [Perpendicular from the centre bisects the chord] (1)

For the inner circle,

 $OM \perp \ell$ [Construction]

:. BM = MC [Perpendicular from the centre to the chord bisects the chord] ...(2)

Subtracting (2) from (1), we have

$$\Rightarrow$$
 AM – BM = MD – MC

$$\Rightarrow$$
 AB = CD

Q5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Sol. We draw SN \perp RS.

∜Saral

Now, SN bisects RM and also SN (produced) passes through the centre O.

Put RN = x

The $ar(\Delta ORS) = \frac{1}{2} \times OS \times RN$

$$= \frac{1}{2} \times 5 \times x \quad (\because OS = OR = 5 \text{ m})$$

i.e.,
$$ar(\Delta ORS) = \frac{5}{2}x ...(1)$$

Now, draw OP \perp RS, P is mid-point of RS.

$$\Rightarrow$$
 PR = PS = 3 m \Rightarrow OP² = $(5)^2 - (3)^2 = 16 \Rightarrow$ OP = 4 m

Here,
$$ar(\Delta ORS) = \frac{1}{2} \times RS \times OP = \frac{1}{2} \times 6 \times 4$$

i.e., $ar(\Delta ORS) = 12 \text{ m}^2$

From (1) and (2),

$$\frac{5}{2}$$
 x = 12 \Rightarrow x = 4.8 m \Rightarrow RM = 2x = 2 × 4.8 m \Rightarrow RM = 9.6 m

Thus, distance between Reshma and Mandip is 9.6 m.

- **Q6.** A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.
- **Sol.** Let Ankur, Syed and David are sitting at A, S and D respectively such that AS = SD = AD i.e., ΔASD is an equilateral triangle.

Let the length of each side of the equilateral triangle is 2x metres.

Draw AM \perp SD.

Since, \triangle ASD is an equilateral triangle,

:. AM passes through O.

$$\Rightarrow$$
 SM = $\frac{1}{2}$ SD = $\frac{1}{2}$ (2x) = x

Now, in $\triangle ASM$, we have $AM^2 + SM^2 = AS^2$

$$\Rightarrow$$
 AM² = AS² - SM² = (2x)² - x² = 4x² - x² = 3x²

$$\Rightarrow$$
 AM = $\sqrt{3}$ x.

Now, OM = AM – OA =
$$(\sqrt{3}x - 20)$$
 m

$$\Rightarrow$$
 (OS = OA = 20 cm)

$$\Rightarrow$$
 $(20)^2 = x^2 + (\sqrt{3}x - 20)^2$

$$\Rightarrow 400 = x^2 + 3x^2 - 40\sqrt{3}x + 400$$

$$\Rightarrow$$
 $4x^2 = 40\sqrt{3}x \Rightarrow 4x = 40\sqrt{3} \Rightarrow x = 10\sqrt{3} \text{ m}$

Now, SD =
$$2x = 2 \times 10\sqrt{3} \text{ m} = 20\sqrt{3} \text{ m}$$

Thus, the length of the string of each phone = $20\sqrt{3}$ m