## Questions and Solutions | Exercise 2.1 - NCERT Books

## Question 1:

If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of $x$ and $y$.
Answer
It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$.
Since the ordered pairs are-equal , the corresponding elements will also be equal.
Therefore, $\frac{x}{3}+1=\frac{5}{3}$ and
$\frac{x}{3}+1=\frac{5}{3}$
$\Rightarrow \frac{x}{3}=\frac{5}{3}-1 \quad y-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \frac{x}{3}=\frac{2}{3} \quad \Rightarrow y=\frac{1}{3}+\frac{2}{3}$
$\Rightarrow x=2 \quad \Rightarrow y=1$
$\therefore x=2$ and $y=1$

## Question 2:

If the set $A$ has 3 elements and the set $B=\{3,4,5\}$, then find the number of elements in $(A \times B)$ ?
Answer
It is given that set $A$ has 3 elements and the elements of set $B$ are 3, 4, and 5 .
$\Rightarrow$ Number of elements in set $B=3$
Number of elements in $(A \times B)$
$=($ Number of elements in $A) \times($ Number of elements in $B)$
$=3 \times 3=9$
Thus, the number of elements in $(A \times B)$ is 9 .

## Question 3:

If $G=\{7,8\}$ and $H=\{5,4,2\}$, find $G \times H$ and $H \times G$.
Answer
$G=\{7,8\}$ and $H=\{5,4,2\}$
We know that the Cartesian product $\mathrm{P} \times \mathrm{Q}$ of two non-empty sets P and Q is defined as $\mathrm{P} \times \mathrm{Q}=\{(p, q): p \in \mathrm{P}, q \in \mathrm{Q}\}$
$\therefore G \times H=\{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)\}$
$H \times G=\{(5,7),(5,8),(4,7),(4,8),(2,7),(2,8)\}$

## Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.
(i) If $\mathrm{P}=\{m, n\}$ and $\mathrm{Q}=\{n, m\}$, then $\mathrm{P} \times \mathrm{Q}=\{(m, n),(n, m)\}$.
(ii) If $A$ and $B$ are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs $(x, y)$ such that $x \in A$ and $y \in B$.
(iii) If $A=\{1,2\}, B=\{3,4\}$, then $A \times(B \cap \Phi)=\Phi$.

Answer
(i) False

If $P=\{m, n\}$ and $Q=\{n, m\}$, then
$\mathrm{P} \times \mathrm{Q}=\{(m, m),(m, n),(n, m),(n, n)\}$
(ii) True
(iii) True

## Question 5:

If $A=\{-1,1\}$, find $A \times A \times A$.
Answer
It is known that for any non-empty set $A, A \times A \times A$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore A \times A \times A=\{(-1,-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1)$,
$(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\}$

## Question 6:

If $\mathrm{A} \times \mathrm{B}=\{(a, x),(a, y),(b, x),(b, y)\}$. Find A and B.
Answer
It is given that $\mathrm{A} \times \mathrm{B}=\{(a, x),(a, y),(b, x),(b, y)\}$
We know that the Cartesian product of two non-empty sets P and Q is defined as $\mathrm{P} \times \mathrm{Q}$ $=\{(p, q): p \in \mathrm{P}, q \in \mathrm{Q}\}$
$\therefore \mathrm{A}$ is the set of all first elements and B is the set of all second elements.
Thus, $A=\{a, b\}$ and $B=\{x, y\}$

## Question 7:

Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$. Verify that
(i) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(ii) $A \times C$ is a subset of $B \times D$

Answer
(i) To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$

We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\Phi$
$\therefore$ L.H.S. $=A \times(B \cap C)=A \times \Phi=\Phi$
$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$\therefore$ R.H.S. $=(A \times B) \cap(A \times C)=\Phi$
$\therefore$ L.H.S. $=$ R.H.S
Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(ii) To verify: $A \times C$ is a subset of $B \times D$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$B \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7)$, $(3,8),(4,5),(4,6),(4,7),(4,8)\}$
We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$.
Therefore, $A \times C$ is a subset of $B \times D$.

## Question 8:

Let $A=\{1,2\}$ and $B=\{3,4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.
Answer
$A=\{1,2\}$ and $B=\{3,4\}$
$\therefore A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$
$\Rightarrow n(\mathrm{~A} \times \mathrm{B})=4$
We know that if C is a set with $n(\mathrm{C})=m$, then $n[\mathrm{P}(\mathrm{C})]=2^{m}$.
Therefore, the set $A \times B$ has $2^{4}=16$ subsets. These are
$\Phi,\{(1,3)\},\{(1,4)\},\{(2,3)\},\{(2,4)\},\{(1,3),(1,4)\},\{(1,3),(2,3)\}$,
$\{(1,3),(2,4)\},\{(1,4),(2,3)\},\{(1,4),(2,4)\},\{(2,3),(2,4)\}$,
$\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\{(1,3),(2,3),(2,4)\}$,
$\{(1,4),(2,3),(2,4)\},\{(1,3),(1,4),(2,3),(2,4)\}$

## Question 9:

Let $A$ and $B$ be two sets such that $n(A)=3$ and $n(B)=2$. If $(x, 1),(y, 2),(z, 1)$ are in $A$ $\times B$, find $A$ and $B$, where $x, y$ and $z$ are distinct elements.
Answer
It is given that $n(A)=3$ and $n(B)=2$; and $(x, 1),(y, 2),(z, 1)$ are in $A \times B$.
We know that $A=$ Set of first elements of the ordered pair elements of $A \times B$
$B=$ Set of second elements of the ordered pair elements of $A \times B$.
$\therefore x, y$, and $z$ are the elements of $A$; and 1 and 2 are the elements of $B$.
Since $n(A)=3$ and $n(B)=2$, it is clear that $A=\{x, y, z\}$ and $B=\{1,2\}$.

## Question 10:

The Cartesian product $A \times A$ has 9 elements among which are found $(-1,0)$ and $(0,1)$. Find the set $A$ and the remaining elements of $A \times A$.
Answer
We know that if $n(\mathrm{~A})=p$ and $n(\mathrm{~B})=q$, then $n(\mathrm{~A} \times \mathrm{B})=p q$.
$\therefore n(\mathrm{~A} \times \mathrm{A})=n(\mathrm{~A}) \times n(\mathrm{~A})$
It is given that $n(A \times A)=9$
$\therefore n(A) \times n(A)=9$
$\Rightarrow n(A)=3$
The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $A \times A$.
We know that $A \times A=\{(a, a): a \in A\}$. Therefore, $-1,0$, and 1 are elements of $A$.
Since $n(A)=3$, it is clear that $A=\{-1,0,1\}$.
The remaining elements of set $A \times A$ are $(-1,-1),(-1,1),(0,-1),(0,0)$, $(1,-1),(1,0)$, and $(1,1)$

## Class XI : Maths <br> Chapter 2 : Related And Functions

## Questions and Solutions | Exercise 2.3 - NCERT Books

## Question 1:

Let $\mathrm{A}=\{1,2,3, \ldots, 14\}$. Define a relation R from A to A by $\mathrm{R}=\{(x, y): 3 x-y=0$, where $x, y \in A\}$. Write down its domain, codomain and range.
Answer
The relation R from A to A is given as
$\mathrm{R}=\{(x, y): 3 x-y=0$, where $x, y \in \mathrm{~A}\}$
i.e., $\mathrm{R}=\{(x, y): 3 x=y$, where $x, y \in \mathrm{~A}\}$
$\therefore \mathrm{R}=\{(1,3),(2,6),(3,9),(4,12)\}$
The domain of R is the set of all first elements of the ordered pairs in the relation.
$\therefore$ Domain of $\mathrm{R}=\{1,2,3,4\}$
The whole set $A$ is the codomainof the relation $R$.
$\therefore$ Codomain of $R=A=\{1,2,3, \ldots, 14\}$
The range of $R$ is the set of all second elements of the ordered pairs in the relation.
$\therefore$ Range of $R=\{3,6,9,12\}$

## Question 2:

Define a relation R on the set $\mathbf{N}$ of natural numbers by $\mathrm{R}=\{(x, y): y=x+5, x$ is a natural number less than $4 ; x, y \in \mathbf{N}\}$. Depict this relationship using roster form. Write down the domain and the range.
Answer
$\mathrm{R}=\{(x, y): y=x+5, x$ is a natural number less than $4, x, y \in \mathbf{N}\}$
The natural numbers less than 4 are 1, 2, and 3.
$\therefore R=\{(1,6),(2,7),(3,8)\}$
The domain of $R$ is the set of all first elements of the ordered pairs in the relation.
$\therefore$ Domain of $R=\{1,2,3\}$
The range of $R$ is the set of all second elements of the ordered pairs in the relation.
$\therefore$ Range of $\mathrm{R}=\{6,7,8\}$

## Question 3:

$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation $R$ from $A$ to $B$ by $R=\{(x, y)$ : the difference between $x$ and $y$ is odd; $x \in A, y \in B\}$. Write R in roster form.

## Answer

$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$
$\mathrm{R}=\{(x, y)$ : the difference between $x$ and $y$ is odd; $x \in \mathrm{~A}, y \in \mathrm{~B}\}$
$\therefore \mathrm{R}=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$

## Question 4:

The given figure shows a relationship between the sets $P$ and $Q$. write this relation (i) in set-builder form (ii) in roster form.

What is its domain and range?


Answer
According to the given figure, $\mathrm{P}=\{5,6,7\}, \mathrm{Q}=\{3,4,5\}$
(i) $\mathrm{R}=\{(x, y): y=x-2 ; x \in \mathrm{P}\}$ or $\mathrm{R}=\{(x, y): y=x-2$ for $x=5,6,7\}$
(ii) $\mathrm{R}=\{(5,3),(6,4),(7,5)\}$

Domain of $R=\{5,6,7\}$
Range of $R=\{3,4,5\}$

## Question 5:

Let $A=\{1,2,3,4,6\}$. Let $R$ be the relation on $A$ defined by $\{(a, b): a, b \in A, b$ is exactly divisible by $a\}$.
(i) Write R in roster form
(ii) Find the domain of $R$
(iii) Find the range of $R$.

Answer
$A=\{1,2,3,4,6\}, R=\{(a, b): a, b \in A, b$ is exactly divisible by $a\}$
(i) $R=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4)$,
$(6,6)\}$
(ii) Domain of $R=\{1,2,3,4,6\}$
(iii) Range of $R=\{1,2,3,4,6\}$

## Question 6:

Determine the domain and range of the relation R defined by $\mathrm{R}=\{(x, x+5): x \in\{0,1$, $2,3,4,5\}\}$.
Answer
$\mathrm{R}=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$
$\therefore \mathrm{R}=\{(0,5),(1,6),(2,7),(3,8),(4,9),(5,10)\}$
$\therefore$ Domain of $R=\{0,1,2,3,4,5\}$
Range of $R=\{5,6,7,8,9,10\}$

## Question 7:

Write the relation $\mathrm{R}=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$ in roster form.
Answer
$\mathrm{R}=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$
The prime numbers less than 10 are $2,3,5$, and 7 .
$\therefore R=\{(2,8),(3,27),(5,125),(7,343)\}$

## Question 8:

Let $A=\{x, y, z\}$ and $B=\{1,2\}$. Find the number of relations from $A$ to $B$.
Answer
It is given that $\mathrm{A}=\{x, y, z\}$ and $\mathrm{B}=\{1,2\}$.
$\therefore \mathrm{A} \times \mathrm{B}=\{(x, 1),(x, 2),(y, 1),(y, 2),(z, 1),(z, 2)\}$
Since $n(A \times B)=6$, the number of subsets of $A \times B$ is $2^{6}$.

Therefore, the number of relations from $A$ to $B$ is $2^{6}$.

## Question 9:

Let R be the relation on $\mathbf{Z}$ defined by $\mathrm{R}=\{(a, b): a, b \in \mathbf{Z}, a-b$ is an integer $\}$. Find the domain and range of $R$.
Answer
$\mathrm{R}=\{(a, b): a, b \in \mathbf{Z}, a-b$ is an integer $\}$
It is known that the difference between any two integers is always an integer.
$\therefore$ Domain of $\mathrm{R}=\mathbf{Z}$
Range of $R=\mathbf{Z}$

## Class XI : Maths <br> Chapter 2 : Related And Functions

## Questions and Solutions | Exercise 2.3-NCERT Books

## Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

Answer
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

Since $2,5,8,11,14$, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain $=\{2,5,8,11,14,17\}$ and range $=\{1\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

Since $2,4,6,8,10,12$, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain $=\{2,4,6,8,10,12,14\}$ and range $=\{1,2,3,4,5,6,7\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

## Question 2:

Find the domain and range of the following real function:
(i) $f(x)=-|x|$
(ii) $f(x)=\sqrt{9-x^{2}}$

Answer
(i) $f(x)=-|x|, x \in \mathrm{R}$

We know that $|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$
$\therefore f(x)=-|x|=\left\{\begin{array}{l}-x, x \geq 0 \\ x, x<0\end{array}\right.$
Since $f(x)$ is defined for $x \in \mathbf{R}$, the domain of $f$ is $\mathbf{R}$.
It can be observed that the range of $f(x)=-|x|$ is all real numbers except positive real numbers.
$\therefore$ The range of $f$ is $(-\infty, 0]$.
(ii)
$f(x)=\sqrt{9-x^{2}}$
Since $\sqrt{9-x^{2}}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3 , the domain of $f(x)$ is $\{x:-3 \leq x \leq 3\}$ or $[-3,3]$.
For any value of $x$ such that $-3 \leq x \leq 3$, the value of $f(x)$ will lie between 0 and 3 .
$\therefore$ The range of $f(x)$ is $\{x: 0 \leq x \leq 3\}$ or [0, 3].

## Question 3:

A function $f$ is defined by $f(x)=2 x-5$. Write down the values of
(i) $f(0),($ ii) $f(7),($ iii $f(-3)$

## Answer

The given function is $f(x)=2 x-5$.
Therefore,
(i) $f(0)=2 \times 0-5=0-5=-5$
(ii) $f(7)=2 \times 7-5=14-5=9$
(iii) $f(-3)=2 \times(-3)-5=-6-5=-11$

## Question 4:

The function ' $t$ ' which maps temperature in degree Celsius into temperature in degree

Fahrenheit is defined by

$$
t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32
$$

Find (i) $t$ (0) (ii) $t(28)$ (iii) $t(-10)$ (iv) The value of C , when $t(\mathrm{C})=212$
Answer

The given function is

$$
t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32
$$

Therefore,
(i)

$$
t(0)=\frac{9 \times 0}{5}+32=0+32=32
$$

$t(28)=\frac{9 \times 28}{5}+32=\frac{252+160}{5}=\frac{412}{5}$
(ii)

$$
t(-10)=\frac{9 \times(-10)}{5}+32=9 \times(-2)+32=-18+32=14
$$

(iii)
(iv) It is given that $t(C)=212$
$\therefore 212=\frac{9 \mathrm{C}}{5}+32$
$\Rightarrow \frac{9 C}{5}=212-32$
$\Rightarrow \frac{9 C}{5}=180$
$\Rightarrow 9 C=180 \times 5$
$\Rightarrow C=\frac{180 \times 5}{9}=100$
Thus, the value of $t$, when $t(C)=212$, is 100 .

## Question 5:

Find the range of each of the following functions.
(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$.
(ii) $f(x)=x^{2}+2, x$, is a real number.
(iii) $f(x)=x, x$ is a real number

Answer
(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$

The values of $f(x)$ for various values of real numbers $x>0$ can be written in the tabular form as

| $x$ | 0.01 | 0.1 | 0.9 | 1 | 2 | 2.5 | 4 | 5 | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1.97 | 1.7 | -0.7 | -1 | -4 | -5.5 | -10 | -13 | $\ldots$ |

Thus, it can be clearly observed that the range of $f$ is the set of all real numbers less than 2.
i.e., range of $f=(-\infty, 2)$

## Alter:

Let $x>0$
$\Rightarrow 3 x>0$
$\Rightarrow 2-3 x<2$
$\Rightarrow f(x)<2$
$\therefore$ Range of $f=(-\infty, 2)$
(ii) $f(x)=x^{2}+2, x$, is a real number

The values of $f(x)$ for various values of real numbers $x$ can be written in the tabular form as

| $x$ | 0 | $\pm 0.3$ | $\pm 0.8$ | $\pm 1$ | $\pm 2$ | $\pm 3$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 2 | 2.09 | 2.64 | 3 | 6 | 11 | $\ldots .$. |

Thus, it can be clearly observed that the range of $f$ is the set of all real numbers greater than 2.
i.e., range of $f=[2, \infty)$

## Alter:

Let $x$ be any real number.
Accordingly,
$x^{2} \geq 0$
$\Rightarrow x^{2}+2 \geq 0+2$
$\Rightarrow x^{2}+2 \geq 2$
$\Rightarrow f(x) \geq 2$
$\therefore$ Range of $f=[2, \infty)$
(iii) $f(x)=x, x$ is a real number

It is clear that the range of $f$ is the set of all real numbers.
$\therefore$ Range of $f=\mathbf{R}$

## Class XI : Maths

## Chapter 2 : Related And Functions

## Questions and Solutions | Miscellaneous Exercise 2 - NCERT Books

## Question 1:

The relation $f$ is defined by

$$
f(x)=\left\{\begin{array}{l}
x^{2}, 0 \leq x \leq 3 \\
3 x, 3 \leq x \leq 10
\end{array}\right.
$$

The relation $g$ is defined by

$$
g(x)= \begin{cases}x^{2}, & 0 \leq x \leq 2 \\ 3 x, & 2 \leq x \leq 10\end{cases}
$$

Show that $f$ is a function and $g$ is not a function.
Answer

The relation $f$ is defined as

$$
f(x)= \begin{cases}x^{2}, & 0 \leq x \leq 3 \\ 3 x, & 3 \leq x \leq 10\end{cases}
$$

It is observed that for
$0 \leq x<3, f(x)=x^{2}$
$3<x \leq 10, f(x)=3 x$
Also, at $x=3, f(x)=3^{2}=9$ or $f(x)=3 \times 3=9$
i.e., at $x=3, f(x)=9$

Therefore, for $0 \leq x \leq 10$, the images of $f(x)$ are unique.
Thus, the given relation is a function.

The relation $g$ is defined as

$$
g(x)= \begin{cases}x^{2}, & 0 \leq x \leq 2 \\ 3 x, & 2 \leq x \leq 10\end{cases}
$$

It can be observed that for $x=2, g(x)=2^{2}=4$ and $g(x)=3 \times 2=6$
Hence, element 2 of the domain of the relation $g$ corresponds to two different images i.e., 4 and 6 . Hence, this relation is not a function.

## Question 2:

$$
\begin{equation*}
\frac{f(1.1)-f(1)}{(1.1-1)} \tag{1.1-1}
\end{equation*}
$$

If $f(x)=x^{2}$, find
Answer
$f(x)=x^{2}$
$\therefore \frac{f(1.1)-f(1)}{(1.1-1)}=\frac{(1.1)^{2}-(1)^{2}}{(1.1-1)}=\frac{1.21-1}{0.1}=\frac{0.21}{0.1}=2.1$

## Question 3:

Find the domain of the function $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$
Answer
The given function is $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$.

$$
f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}=\frac{x^{2}+2 x+1}{(x-6)(x-2)}
$$

It can be seen that function $f$ is defined for all real numbers except at $x=6$ and $x=2$. Hence, the domain of $f$ is $\mathbf{R}-\{2,6\}$.

## Question 4:

Find the domain and the range of the real function $f$ defined by $f(x)=\sqrt{(x-1)}$.
Answer
The given real function is $f(x)=\sqrt{x-1}$.
It can be seen that $\sqrt{x-1}$ is defined for $(x-1) \geq 0$.
i.e., $f(x)=\sqrt{(x-1)}$ is defined for $x \geq 1$.

Therefore, the domain of $f$ is the set of all real numbers greater than or equal to 1 i.e., the domain of $f=[1, \infty)$.
As $x \geq 1 \Rightarrow(x-1) \geq 0 \Rightarrow \sqrt{x-1} \geq 0$
Therefore, the range of $f$ is the set of all real numbers greater than or equal to 0 i.e., the range of $f=[0, \infty)$.

## Question 5:

Find the domain and the range of the real function $f$ defined by $f(x)=|x-1|$.
Answer
The given real function is $f(x)=|x-1|$.
It is clear that $|x-1|$ is defined for all real numbers.
$\therefore$ Domain of $f=\mathbf{R}$
Also, for $x \in \mathbf{R},|x-1|$ assumes all real numbers.
Hence, the range of $f$ is the set of all non-negative real numbers.
Question 6:
Let $f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\}$ be a function from $\mathbf{R}$ into $\mathbf{R}$. Determine the range of $f$.
Answer

$$
\begin{aligned}
& f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\} \\
& =\left\{(0,0),\left( \pm 0.5, \frac{1}{5}\right),\left( \pm 1, \frac{1}{2}\right),\left( \pm 1.5, \frac{9}{13}\right),\left( \pm 2, \frac{4}{5}\right),\left(3, \frac{9}{10}\right),\left(4, \frac{16}{17}\right), \ldots\right\}
\end{aligned}
$$

The range of $f$ is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.
[Denominator is greater numerator]
Thus, range of $f=[0,1)$

## Question 7:

Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be defined, respectively by $f(x)=x+1, g(x)=2 x-3$. Find $f+g, f-g$ $\underline{f}$
and $g$.
Answer
$f, g: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=x+1, g(x)=2 x-3$
$(f+g)(x)=f(x)+g(x)=(x+1)+(2 x-3)=3 x-2$
$\therefore(f+g)(x)=3 x-2$
$(f-g)(x)=f(x)-g(x)=(x+1)-(2 x-3)=x+1-2 x+3=-x+4$
$\therefore(f-g)(x)=-x+4$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbf{R}$
$\therefore\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}, 2 x-3 \neq 0$ or $2 x \neq 3$
$\therefore\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}, x \neq \frac{3}{2}$

## Question 8:

Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from $\mathbf{Z}$ to $\mathbf{Z}$ defined by $f(x)=a x$ $+b$, for some integers $a, b$. Determine $a, b$.

## Answer

$f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$
$f(x)=a x+b$
$(1,1) \in f$
$\Rightarrow f(1)=1$
$\Rightarrow a \times 1+b=1$
$\Rightarrow a+b=1$
$(0,-1) \in f$
$\Rightarrow f(0)=-1$
$\Rightarrow a \times 0+b=-1$
$\Rightarrow b=-1$
On substituting $b=-1$ in $a+b=1$, we obtain $a+(-1)=1 \Rightarrow a=1+1=2$.
Thus, the respective values of $a$ and $b$ are 2 and -1 .

## Question 9:

Let R be a relation from $\mathbf{N}$ to $\mathbf{N}$ defined by $\mathrm{R}=\left\{(a, b): a, b \in \mathbf{N}\right.$ and $\left.a=b^{2}\right\}$. Are the following true?
(i) $(a, a) \in \mathrm{R}$, for all $a \in \mathbf{N}$ (ii) $(a, b) \in \mathrm{R}$, implies $(b, a) \in \mathrm{R}$
(iii) $(a, b) \in R,(b, c) \in \mathrm{R}$ implies $(a, c) \in \mathrm{R}$.

Justify your answer in each case.

## Answer

$\mathrm{R}=\left\{(a, b): a, b \in \mathbf{N}\right.$ and $\left.a=b^{2}\right\}$
(i) It can be seen that $2 \in \mathbf{N}$;however, $2 \neq 2^{2}=4$.

Therefore, the statement " $(a, a) \in \mathrm{R}$, for all $a \in \mathbf{N}$ " is not true.
(ii) It can be seen that $(9,3) \in \mathbf{N}$ because $9,3 \in \mathbf{N}$ and $9=3^{2}$.

Now, $3 \neq 9^{2}=81$; therefore, $(3,9) \notin \mathbf{N}$

Therefore, the statement " $(a, b) \in R$, implies $(b, a) \in R$ " is not true.
(iii) It can be seen that $(9,3) \in R,(16,4) \in R$ because $9,3,16,4 \in \mathbf{N}$ and $9=3^{2}$ and 16 $=4^{2}$.
Now, $9 \neq 4^{2}=16$; therefore, $(9,4) \notin \mathbf{N}$
Therefore, the statement " $(a, b) \in \mathrm{R},(b, c) \in \mathrm{R}$ implies $(a, c) \in \mathrm{R}$ " is not true.

## Question 10:

Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2$, 11) \}. Are the following true?
(i) $f$ is a relation from A to B (ii) $f$ is a function from A to B .

Justify your answer in each case.

## Answer

$A=\{1,2,3,4\}$ and $B=\{1,5,9,11,15,16\}$
$\therefore A \times B=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),(2,9),(2,11)$, $(2,15),(2,16),(3,1),(3,5),(3,9),(3,11),(3,15),(3,16),(4,1),(4,5),(4,9),(4$, 11), $(4,15),(4,16)\}$

It is given that $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
(i) A relation from a non-empty set $A$ to a non-empty set $B$ is a subset of the Cartesian product $A \times B$.
It is observed that $f$ is a subset of $A \times B$.
Thus, $f$ is a relation from $A$ to $B$.
(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11 , relation $f$ is not a function.

Question 11:
Let $f$ be the subset of $\mathbf{Z} \times \mathbf{Z}$ defined by $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$. Is $f$ a function from $\mathbf{Z}$ to $\mathbf{Z}$ : justify your answer.
Answer
The relation $f$ is defined as $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$
We know that a relation $f$ from a set $A$ to a set $B$ is said to be a function if every element of set $A$ has unique images in set $B$.
Since $2,6,-2,-6 \in \mathbf{Z},(2 \times 6,2+6),(-2 \times-6,-2+(-6)) \in f$
i.e., $(12,8),(12,-8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8 . Thus, relation $f$ is not a function.

## Question 12:

Let $\mathrm{A}=\{9,10,11,12,13\}$ and let $f: \mathrm{A} \rightarrow \mathbf{N}$ be defined by $f(n)=$ the highest prime factor of $n$. Find the range of $f$.
Answer
$A=\{9,10,11,12,13\}$
$f: \mathrm{A} \rightarrow \mathbf{N}$ is defined as
$f(n)=$ The highest prime factor of $n$
Prime factor of $9=3$
Prime factors of $10=2,5$
Prime factor of $11=11$
Prime factors of $12=2,3$
Prime factor of $13=13$
$\therefore f(9)=$ The highest prime factor of $9=3$
$f(10)=$ The highest prime factor of $10=5$
$f(11)=$ The highest prime factor of $11=11$
$f(12)=$ The highest prime factor of $12=3$
$f(13)=$ The highest prime factor of $13=13$
The range of $f$ is the set of all $f(n)$, where $n \in \mathrm{~A}$.
$\therefore$ Range of $f=\{3,5,11,13\}$

