Miscellaneous Solutions

Question 1:

Find the area under the given curves and given lines:
(i) $y=x^{2}, x=1, x=2$ and x-axis
(ii) $y=x^{4}, x=1, x=5$ and x-axis

Answer
i. The required area is represented by the shaded area ADCBA as

$$
\begin{aligned}
\text { Area ADCBA } & =\int_{1}^{2} y d x \\
& =\int_{1}^{2} x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{1}^{2} \\
& =\frac{8}{3}-\frac{1}{3} \\
& =\frac{7}{3} \text { units }
\end{aligned}
$$

ii. The required area is represented by the shaded area ADCBA as

$$
\begin{aligned}
\text { Area ADCBA } & =\int_{1}^{5} x^{4} d x \\
& =\left[\frac{x^{5}}{5}\right]_{1}^{5} \\
& =\frac{(5)^{5}}{5}-\frac{1}{5} \\
& =(5)^{4}-\frac{1}{5} \\
& =625-\frac{1}{5} \\
& =624.8 \text { units }
\end{aligned}
$$

Question 2:

Find the area between the curves $y=x$ and $y=x^{2}$
Answer
The required area is represented by the shaded area OBAO as

The points of intersection of the curves, $y=x$ and $y=x^{2}$, is $\mathrm{A}(1,1)$.
We draw AC perpendicular to x-axis.
\therefore Area $(O B A O)=$ Area $(\triangle O C A)-$ Area $(O C A B O) . . .(1)$
$=\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x$
$=\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}$
$=\frac{1}{2}-\frac{1}{3}$
$=\frac{1}{6}$ units

Question 3:

Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, x=0, y$ $=1$ and $y=4$

Answer

The area in the first quadrant bounded by $y=4 x^{2}, x=0, y=1$, and $y=4$ is represented by the shaded area ABCDA as

\therefore Area $\mathrm{ABCD}=\int_{1}^{4} x d x$

$$
=\int^{4} \frac{\sqrt{y}}{2} d x
$$

$$
=\frac{1}{2}\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}
$$

$$
=\frac{1}{3}\left[(4)^{\frac{3}{2}}-1\right]
$$

$$
=\frac{1}{3}[8-1]
$$

$$
=\frac{7}{3} \text { units }
$$

Question 4:
Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$
Answer

The given equation is $y=|x+3|$
The corresponding values of x and y are given in the following table.

x	-6	-5	-4	-3	-2	-1	0
y	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of $y=|x+3|$ as follows.

It is known that, $(x+3) \leq 0$ for $-6 \leq x \leq-3$ and $(x+3) \geq 0$ for $-3 \leq x \leq 0$

$$
\begin{aligned}
\therefore \int_{-6}^{0}|(x+3)| d x & =-\int_{-6}^{-3}(x+3) d x+\int_{-3}^{0}(x+3) d x \\
& =-\left[\frac{x^{2}}{2}+3 x\right]_{-6}^{-3}+\left[\frac{x^{2}}{2}+3 x\right]_{-3}^{0} \\
& =-\left[\left(\frac{(-3)^{2}}{2}+3(-3)\right)-\left(\frac{(-6)^{2}}{2}+3(-6)\right]+\left[0-\left(\frac{(-3)^{2}}{2}+3(-3)\right)\right]\right. \\
& =-\left[-\frac{9}{2}\right]-\left[-\frac{9}{2}\right] \\
& =9
\end{aligned}
$$

Question 5:

Find the area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$
Answer
The graph of $y=\sin x$ can be drawn as

\therefore Required area $=$ Area $\mathrm{OABO}+$ Area BCDB
$=\int_{0}^{\pi} \sin x d x+\left|\int_{\pi}^{2 \pi} \sin x d x\right|$
$=[-\cos x]_{0}^{\pi}+\left|[-\cos x]_{\pi}^{2 \pi}\right|$
$=[-\cos \pi+\cos 0]+|-\cos 2 \pi+\cos \pi|$
$=1+1+|(-1-1)|$
$=2+|-2|$
$=2+2=4$ units

Question 6:

Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$
Answer
The area enclosed between the parabola, $y^{2}=4 a x$, and the line, $y=m x$, is represented by the shaded area OABO as

The points of intersection of both the curves are $(0,0)$ and $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$.
We draw AC perpendicular to x-axis.
\therefore Area $O A B O=$ Area $O C A B O-$ Area $(\triangle O C A)$
$=\int_{0}^{4 a} m^{m^{2}} 2 \sqrt{a x} d x-\int_{0}^{\frac{m^{2}}{2}} m x d x$
$=2 \sqrt{a}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{4 a}{m^{2}}}-m\left[\frac{x^{2}}{2}\right]_{0}^{\frac{4 a}{m^{2}}}$
$=\frac{4}{3} \sqrt{a}\left(\frac{4 a}{m^{2}}\right)^{\frac{3}{2}}-\frac{m}{2}\left[\left(\frac{4 a}{m^{2}}\right)^{2}\right]$
$=\frac{32 a^{2}}{3 m^{3}}-\frac{m}{2}\left(\frac{16 a^{2}}{m^{4}}\right)$
$=\frac{32 a^{2}}{3 m^{3}}-\frac{8 a^{2}}{m^{3}}$
$=\frac{8 a^{2}}{3 m^{3}}$ units

Question 7:

Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$

Answer

The area enclosed between the parabola, $4 y=3 x^{2}$, and the line, $2 y=3 x+12$, is represented by the shaded area OBAO as

The points of intersection of the given curves are $A(-2,3)$ and $(4,12)$.
We draw $A C$ and BD perpendicular to x-axis.
\therefore Area $\mathrm{OBAO}=$ Area $C D B A-($ Area $O D B O+$ Area $O A C O)$
$=\int_{-2}^{4} \frac{1}{2}(3 x+12) d x-\int_{-2}^{4} \frac{3 x^{2}}{4} d x$
$=\frac{1}{2}\left[\frac{3 x^{2}}{2}+12 x\right]_{-2}^{4}-\frac{3}{4}\left[\frac{x^{3}}{3}\right]_{-2}^{4}$
$=\frac{1}{2}[24+48-6+24]-\frac{1}{4}[64+8]$
$=\frac{1}{2}[90]-\frac{1}{4}[72]$
$=45-18$
$=27$ units

Question 8:

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

Answer
The area of the smaller region bounded by the ellipse, $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, and the line, $\frac{x}{3}+\frac{y}{2}=1$, is represented by the shaded region BCAB as

\therefore Area $\mathrm{BCAB}=$ Area (OBCAO) - Area $(O B A O)$
$=\int_{0}^{3} 2 \sqrt{1-\frac{x^{2}}{9}} d x-\int_{0}^{3} 2\left(1-\frac{x}{3}\right) d x$
$=\frac{2}{3}\left[\int_{0}^{3} \sqrt{9-x^{2}} d x\right]-\frac{2}{3} \int_{0}^{3}(3-x) d x$
$=\frac{2}{3}\left[\frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1} \frac{x}{3}\right]_{0}^{3}-\frac{2}{3}\left[3 x-\frac{x^{2}}{2}\right]_{0}^{3}$
$=\frac{2}{3}\left[\frac{9}{2}\left(\frac{\pi}{2}\right)\right]-\frac{2}{3}\left[9-\frac{9}{2}\right]$
$=\frac{2}{3}\left[\frac{9 \pi}{4}-\frac{9}{2}\right]$
$=\frac{2}{3} \times \frac{9}{4}(\pi-2)$
$=\frac{3}{2}(\pi-2)$ units

Question 9:

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

Answer
The area of the smaller region bounded by the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and the line, $\frac{x}{a}+\frac{y}{b}=1$, is represented by the shaded region BCAB as

\therefore Area $B C A B=$ Area $(O B C A O)$ - Area (OBAO)

$$
\begin{aligned}
& =\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x-\int_{0}^{a} b\left(1-\frac{x}{a}\right) d x \\
& =\frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x-\frac{b}{a} \int_{0}^{a}(a-x) d x \\
& =\frac{b}{a}\left[\left\{\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right\}_{0}^{a}-\left\{a x-\frac{x^{2}}{2}\right\}_{0}^{a}\right] \\
& =\frac{b}{a}\left[\left\{\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)\right\}-\left\{a^{2}-\frac{a^{2}}{2}\right\}\right] \\
& =\frac{b}{a}\left[\frac{a^{2} \pi}{4}-\frac{a^{2}}{2}\right] \\
& =\frac{b a^{2}}{2 a}\left[\frac{\pi}{2}-1\right] \\
& =\frac{a b}{2}\left[\frac{\pi}{2}-1\right] \\
& =\frac{a b}{4}(\pi-2)
\end{aligned}
$$

Question 10:

Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and x axis

Answer
The area of the region enclosed by the parabola, $x^{2}=y$, the line, $y=x+2$, and x-axis is represented by the shaded region OABCO as

The point of intersection of the parabola, $x^{2}=y$, and the line, $y=x+2$, is $\mathrm{A}(-1,1)$.
\therefore Area $\mathrm{OABCO}=$ Area $(B C A)+$ Area COAC
$=\int_{-2}^{-1}(x+2) d x+\int_{-1}^{0} x^{2} d x$
$=\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{-1}+\left[\frac{x^{3}}{3}\right]_{-1}^{0}$
$=\left[\frac{(-1)^{2}}{2}+2(-1)-\frac{(-2)^{2}}{2}-2(-2)\right]+\left[-\frac{(-1)^{3}}{3}\right]$
$=\left[\frac{1}{2}-2-2+4+\frac{1}{3}\right]$
$=\frac{5}{6}$ units

Question 11:

Using the method of integration find the area bounded by the curve $|x|+|y|=1$
[Hint: the required region is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x$
$-y=11]$
Answer
The area bounded by the curve, $|x|+|y|=1$, is represented by the shaded region ADCB as

The curve intersects the axes at points $A(0,1), B(1,0), C(0,-1)$, and $D(-1,0)$. It can be observed that the given curve is symmetrical about x-axis and y-axis.
\therefore Area $\mathrm{ADCB}=4 \times$ Area OBAO
$=4 \int_{0}^{1}(1-x) d x$
$=4\left(x-\frac{x^{2}}{2}\right)_{0}^{1}$
$=4\left[1-\frac{1}{2}\right]$
$=4\left(\frac{1}{2}\right)$
$=2$ units

Question 12:

Find the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$
Answer
The area bounded by the curves, $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$, is represented by the shaded region as

It can be observed that the required area is symmetrical about y-axis.

$$
\begin{aligned}
\text { Required area } & =2[\text { Area }(\mathrm{OCAO})-\operatorname{Area}(\mathrm{OCADO})] \\
& =2\left[\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x\right] \\
& \left.=2\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}\right] \\
& =2\left[\frac{1}{2}-\frac{1}{3}\right] \\
& =2\left[\frac{1}{6}\right]=\frac{1}{3} \text { units }
\end{aligned}
$$

Question 13:

Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$

Answer
The vertices of $\triangle A B C$ are $A(2,0), B(4,5)$, and $C(6,3)$.

Equation of line segment $A B$ is
$y-0=\frac{5-0}{4-2}(x-2)$
$2 y=5 x-10$
$y=\frac{5}{2}(x-2)$
Equation of line segment $B C$ is
$y-5=\frac{3-5}{6-4}(x-4)$
$2 y-10=-2 x+8$
$2 y=-2 x+18$
$y=-x+9$
Equation of line segment CA is
$y-3=\frac{0-3}{2-6}(x-6)$
$-4 y+12=-3 x+18$
$4 y=3 x-6$
$y=\frac{3}{4}(x-2)$

Area $(\triangle A B C)=$ Area $(A B L A)+$ Area $(B L M C B)-$ Area $(A C M A)$
$=\int_{2}^{4} \frac{5}{2}(x-2) d x+\int_{4}^{6}(-x+9) d x-\int_{2}^{6} \frac{3}{4}(x-2) d x$
$=\frac{5}{2}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}+\left[\frac{-x^{2}}{2}+9 x\right]_{4}^{6}-\frac{3}{4}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{6}$
$=\frac{5}{2}[8-8-2+4]+[-18+54+8-36]-\frac{3}{4}[18-12-2+4]$
$=5+8-\frac{3}{4}(8)$
$=13-6$
$=7$ units

Question 14:

Using the method of integration find the area of the region bounded by lines:
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$

Answer

The given equations of lines are
$2 x+y=4$
$3 x-2 y=6 \ldots$
And, $x-3 y+5=0 \ldots$

The area of the region bounded by the lines is the area of $\triangle A B C$. AL and CM are the perpendiculars on x-axis.
Area $(\triangle A B C)=$ Area $(A L M C A)$ - Area $(A L B)-$ Area $(C M B)$
$=\int_{1}^{4}\left(\frac{x+5}{3}\right) d x-\int_{1}^{2}(4-2 x) d x-\int_{2}^{4}\left(\frac{3 x-6}{2}\right) d x$
$=\frac{1}{3}\left[\frac{x^{2}}{2}+5 x\right]_{1}^{4}-\left[4 x-x^{2}\right]_{1}^{2}-\frac{1}{2}\left[\frac{3 x^{2}}{2}-6 x\right]_{2}^{4}$
$=\frac{1}{3}\left[8+20-\frac{1}{2}-5\right]-[8-4-4+1]-\frac{1}{2}[24-24-6+12]$
$=\left(\frac{1}{3} \times \frac{45}{2}\right)-(1)-\frac{1}{2}(6)$
$=\frac{15}{2}-1-3$
$=\frac{15}{2}-4=\frac{15-8}{2}=\frac{7}{2}$ units

Question 15:

Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$
Answer
The area bounded by the curves, $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$, is represented as

The points of intersection of both the curves are $\left(\frac{1}{2}, \sqrt{2}\right)$ and $\left(\frac{1}{2},-\sqrt{2}\right)$.
The required area is given by OABCO.
It can be observed that area OABCO is symmetrical about x-axis.
\therefore Area $\mathrm{OABCO}=2 \times$ Area $O B C$

Area $\mathrm{OBCO}=$ Area $\mathrm{OMC}+$ Area MBC

$$
\begin{aligned}
& =\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9-4 x^{2}} d x \\
& =\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{(3)^{2}-(2 x)^{2}} d x
\end{aligned}
$$

Question 16:

Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer

Required area $=\int_{-2}^{1} y d x$
$=\int_{-2}^{1} x^{3} d x$
$=\left[\frac{x^{4}}{4}\right]_{-2}^{1}$
$=\left[\frac{1}{4}-\frac{(-2)^{4}}{4}\right]$
$=\left(\frac{1}{4}-4\right)=-\frac{15}{4}$ units
Thus, the correct answer is B.

Question 17:

The area bounded by the curve $\begin{aligned} y=x|x|\end{aligned}, x$-axis and the ordinates $x=-1$ and $x=1$ is given by
[Hint: $y=x^{2}$ if $x>0$ and $y=-x^{2}$ if $\left.x<0\right]$
A. 0
B. ${ }^{\frac{1}{3}}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer

Required area $=\int_{-1}^{1} y d x$
$=\int_{-1}^{1} x|x| d x$
$=\int_{-1}^{0} x^{2} d x+\int_{0}^{1} x^{2} d x$
$=\left[\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}\right]_{0}^{1}$
$=-\left(-\frac{1}{3}\right)+\frac{1}{3}$
$=\frac{2}{3}$ units
Thus, the correct answer is C .

Question 18:

The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is
A. $\frac{4}{3}(4 \pi-\sqrt{3})$
B. $\frac{4}{3}(4 \pi+\sqrt{3})$
C. $\frac{4}{3}(8 \pi-\sqrt{3})$
D. $\frac{4}{3}(4 \pi+\sqrt{3})$

Answer
The given equations are
$x^{2}+y^{2}=16 \ldots(1)$
$y^{2}=6 x \ldots(2)$

Area bounded by the circle and parabola

$$
\begin{aligned}
& =2[\operatorname{Area}(\mathrm{OADO})+\operatorname{Area}(\mathrm{ADBA})] \\
& =2\left[\int_{0}^{2} \sqrt{16 x} d x+\int_{2}^{+} \sqrt{16-x^{2}} d x\right] \\
& =2\left[\sqrt{6}\left\{\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right\}_{0}^{2}\right]+2\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{2}^{4} \\
& =2 \sqrt{6} \times \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{2}+2\left[8 \cdot \frac{\pi}{2}-\sqrt{16-4}-8 \sin ^{-1}\left(\frac{1}{2}\right)\right] \\
& =\frac{4 \sqrt{6}}{3}(2 \sqrt{2})+2\left[4 \pi-\sqrt{12}-8 \frac{\pi}{6}\right] \\
& =\frac{16 \sqrt{3}}{3}+8 \pi-4 \sqrt{3}-\frac{8}{3} \pi \\
& =\frac{4}{3}[4 \sqrt{3}+6 \pi-3 \sqrt{3}-2 \pi] \\
& =\frac{4}{3}[\sqrt{3}+4 \pi] \\
& =\frac{4}{3}[4 \pi+\sqrt{3}] \text { units } \\
& \text { Area of circle }=\pi(r)^{2} \\
& =\pi(4)^{2} \\
& =16 \pi \text { units } \\
& \therefore \text { Required area }=16 \pi-\frac{4}{3}[4 \pi+\sqrt{3}] \\
& =\frac{4}{3}[4 \times 3 \pi-4 \pi-\sqrt{3}] \\
& =\frac{4}{3}(8 \pi-\sqrt{3}) \text { units }
\end{aligned}
$$

Thus, the correct answer is C.

Question 19:
The area bounded by the y-axis, $y=\cos x$ and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer
The given equations are
$y=\cos x \ldots$ (1)
And, $y=\sin x \ldots$ (2)

Required area $=$ Area $(A B L A)+$ area $(O B L O)$
$=\int_{\frac{1}{\sqrt{2}}}^{1} x d y+\int_{0}^{\frac{1}{\sqrt{2}}} x d y$
$=\int_{\sqrt{2}}^{1} \cos ^{-1} y d y+\int_{0}^{\frac{1}{2}} \sin ^{-1} x d y$
Integrating by parts, we obtain

$$
\begin{aligned}
& =\left[y \cos ^{-1} y-\sqrt{1-y^{2}}\right]_{\frac{1}{\sqrt{2}}}^{1}+\left[x \sin ^{-1} x+\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{\sqrt{2}}} \\
& =\left[\cos ^{-1}(1)-\frac{1}{\sqrt{2}} \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}\right]+\left[\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}-1\right] \\
& =\frac{-\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1 \\
& =\frac{2}{\sqrt{2}}-1 \\
& =\sqrt{2}-1 \text { units }
\end{aligned}
$$

Thus, the correct answer is B.

Put $2 x=t \Rightarrow d x=\frac{d t}{2}$
When $x=\frac{3}{2}, t=3$ and when $x=\frac{1}{2}, t=1$
$=\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\frac{1}{4} \int_{1}^{3} \sqrt{(3)^{2}-(t)^{2}} d t$
$=2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{1}{2}}+\frac{1}{4}\left[\frac{t}{2} \sqrt{9-t^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{t}{3}\right)\right]_{1}^{3}$
$=2\left[\frac{2}{3}\left(\frac{1}{2}\right)^{\frac{3}{2}}\right]+\frac{1}{4}\left[\left\{\frac{3}{2} \sqrt{9-(3)^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{3}{3}\right)\right\}-\left\{\frac{1}{2} \sqrt{9-(1)^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right\}\right]$
$=\frac{2}{3 \sqrt{2}}+\frac{1}{4}\left[\left\{0+\frac{9}{2} \sin ^{-1}(1)\right\}-\left\{\frac{1}{2} \sqrt{8}+\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right\}\right]$
$=\frac{\sqrt{2}}{3}+\frac{1}{4}\left[\frac{9 \pi}{4}-\sqrt{2}-\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right]$
$=\frac{\sqrt{2}}{3}+\frac{9 \pi}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)$
$=\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{\sqrt{2}}{12}$

Therefore, the required area is $\left[2 \times\left(\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{\sqrt{2}}{12}\right)\right]=\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{1}{3 \sqrt{2}}$ units

