Maths

Miscellaneous Solutions

Question 1:

Find the area under the given curves and given lines:

(i) y = x², x = 1, x = 2 and x-axis
(ii) y = x⁴, x = 1, x = 5 and x -axis
Answer

i. The required area is represented by the shaded area ADCBA as

Area ADCBA =
$$\int_{1}^{x} y dx$$

= $\int_{1}^{2} x^{2} dx$
= $\left[\frac{x^{3}}{3}\right]_{1}^{2}$
= $\frac{8}{3} - \frac{1}{3}$
= $\frac{7}{3}$ units

ii. The required area is represented by the shaded area ADCBA as

Maths

Question 2:

Find the area between the curves y = x and $y = x^2$

Answer

The required area is represented by the shaded area OBAO as

The points of intersection of the curves, y = x and $y = x^2$, is A (1, 1). We draw AC perpendicular to *x*-axis.

 \therefore Area (OBAO) = Area (\triangle OCA) - Area (OCABO) ... (1)

$$= \int_0^1 x \, dx - \int_0^1 x^2 \, dx$$
$$= \left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1$$
$$= \frac{1}{2} - \frac{1}{3}$$
$$= \frac{1}{6} \text{ units}$$

Question 3:

Find the area of the region lying in the first quadrant and bounded by $y = 4x^2$, x = 0, y = 1 and y = 4

Answer

The area in the first quadrant bounded by $y = 4x^2$, x = 0, y = 1, and y = 4 is represented by the shaded area ABCDA as

$$\therefore \text{ Area ABCD} = \int_{1}^{1} x \, dx$$
$$= \int_{1}^{4} \frac{\sqrt{y}}{2} \, dx$$
$$= \frac{1}{2} \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$$
$$= \frac{1}{3} \left[(4)^{\frac{3}{2}} - 1 \right]$$
$$= \frac{1}{3} [8 - 1]$$
$$= \frac{7}{3} \text{ units}$$

Question 4:

Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$ Answer The given equation is y = |x+3|

The corresponding values of x and y are given in the following table.

x	- 6	- 5	- 4	- 3	- 2	- 1	0
y	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of y = |x+3| as follows.

It is known that, $(x+3) \le 0$ for $-6 \le x \le -3$ and $(x+3) \ge 0$ for $-3 \le x \le 0$ $\therefore \int_{-3}^{0} |(x+3)| dx = -\int_{-3}^{-3} (x+3) dx + \int_{0}^{0} (x+3) dx$

$$J_{-6}(x - y) = J_{-6}(x - y) = J_{-3}(x - y)$$
$$= -\left[\frac{x^2}{2} + 3x\right]_{-6}^{-3} + \left[\frac{x^2}{2} + 3x\right]_{-3}^{0}$$
$$= -\left[\left(\frac{(-3)^2}{2} + 3(-3)\right) - \left(\frac{(-6)^2}{2} + 3(-6)\right)\right] + \left[0 - \left(\frac{(-3)^2}{2} + 3(-3)\right)\right]$$
$$= -\left[-\frac{9}{2}\right] - \left[-\frac{9}{2}\right]$$
$$= 9$$

Question 5:

Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$ Answer

The graph of $y = \sin x$ can be drawn as

 \therefore Required area = Area OABO + Area BCDB

$$= \int_{0}^{\pi} \sin x \, dx + \left| \int_{\pi}^{2\pi} \sin x \, dx \right|$$

= $\left[-\cos x \right]_{0}^{\pi} + \left| \left[-\cos x \right]_{\pi}^{2\pi} \right|$
= $\left[-\cos \pi + \cos 0 \right] + \left| -\cos 2\pi + \cos \pi \right|$
= $1 + 1 + \left| (-1 - 1) \right|$
= $2 + \left| -2 \right|$
= $2 + 2 = 4$ units

Question 6:

Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx

Answer

The area enclosed between the parabola, $y^2 = 4ax$, and the line, y = mx, is represented by the shaded area OABO as

The points of intersection of both the curves are (0, 0) and $\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$. We draw AC perpendicular to *x*-axis.

 \therefore Area OABO = Area OCABO - Area (\triangle OCA)

$$= \int_{0}^{\frac{4a}{m^{2}}} 2\sqrt{ax} \, dx - \int_{0}^{\frac{4a}{m^{2}}} mx \, dx$$
$$= 2\sqrt{a} \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{\frac{4a}{m^{2}}} - m \left[\frac{x^{2}}{2} \right]_{0}^{\frac{4a}{m^{2}}}$$
$$= \frac{4}{3}\sqrt{a} \left(\frac{4a}{m^{2}} \right)^{\frac{3}{2}} - \frac{m}{2} \left[\left(\frac{4a}{m^{2}} \right)^{2} \right]$$
$$= \frac{32a^{2}}{3m^{3}} - \frac{m}{2} \left(\frac{16a^{2}}{m^{4}} \right)$$
$$= \frac{32a^{2}}{3m^{3}} - \frac{8a^{2}}{m^{3}}$$
$$= \frac{8a^{2}}{3m^{3}} \text{ units}$$

Question 7:

Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12Answer

The area enclosed between the parabola, $4y = 3x^2$, and the line, 2y = 3x + 12, is represented by the shaded area OBAO as

The points of intersection of the given curves are A (-2, 3) and (4, 12). We draw AC and BD perpendicular to x-axis.

: Area OBAO = Area CDBA - (Area ODBO + Area OACO)

$$= \int_{-2}^{4} \frac{1}{2} (3x+12) dx - \int_{-2}^{4} \frac{3x^{2}}{4} dx$$

$$= \frac{1}{2} \left[\frac{3x^{2}}{2} + 12x \right]_{-2}^{4} - \frac{3}{4} \left[\frac{x^{3}}{3} \right]_{-2}^{4}$$

$$= \frac{1}{2} [24+48-6+24] - \frac{1}{4} [64+8]$$

$$= \frac{1}{2} [90] - \frac{1}{4} [72]$$

$$= 45 - 18$$

$$= 27 \text{ units}$$

Question 8:

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line

$$\frac{x}{3} + \frac{y}{2} = 1$$

Answer

The area of the smaller region bounded by the ellipse, $\frac{x^2}{9} + \frac{y^2}{4} = 1$, and the line,

 $\frac{x}{3} + \frac{y}{2} = 1$, is represented by the shaded region BCAB as

∴ Area BCAB = Area (OBCAO) - Area (OBAO)

$$= \int_{0}^{3} 2\sqrt{1 - \frac{x^{2}}{9}} dx - \int_{0}^{3} 2\left(1 - \frac{x}{3}\right) dx$$

$$= \frac{2}{3} \left[\int_{0}^{3} \sqrt{9 - x^{2}} dx\right] - \frac{2}{3} \int_{0}^{3} (3 - x) dx$$

$$= \frac{2}{3} \left[\frac{x}{2}\sqrt{9 - x^{2}} + \frac{9}{2} \sin^{-1}\frac{x}{3}\right]_{0}^{3} - \frac{2}{3} \left[3x - \frac{x^{2}}{2}\right]_{0}^{3}$$

$$= \frac{2}{3} \left[\frac{9}{2}\left(\frac{\pi}{2}\right)\right] - \frac{2}{3} \left[9 - \frac{9}{2}\right]$$

$$= \frac{2}{3} \left[\frac{9\pi}{4} - \frac{9}{2}\right]$$

$$= \frac{2}{3} \left(\pi - 2\right) \text{ units}$$

Question 9:

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line

$$\frac{x}{a} + \frac{y}{b} = 1$$

Answer

The area of the smaller region bounded by the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and the line,

$$\frac{x}{a} + \frac{y}{b} = 1$$
, is represented by the shaded region BCAB as

∴ Area BCAB = Area (OBCAO) – Area (OBAO)

$$= \int_{0}^{a} b \sqrt{1 - \frac{x^{2}}{a^{2}}} dx - \int_{0}^{a} b \left(1 - \frac{x}{a}\right) dx$$

$$= \frac{b}{a} \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx - \frac{b}{a} \int_{0}^{a} (a - x) dx$$

$$= \frac{b}{a} \left[\left\{ \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right\}_{0}^{a} - \left\{ ax - \frac{x^{2}}{2} \right\}_{0}^{a} \right]$$

$$= \frac{b}{a} \left[\left\{ \frac{a^{2}}{2} \left(\frac{\pi}{2} \right) \right\} - \left\{ a^{2} - \frac{a^{2}}{2} \right\} \right]$$

$$= \frac{b}{a} \left[\frac{a^{2}\pi}{4} - \frac{a^{2}}{2} \right]$$

$$= \frac{ba^{2}}{2a} \left[\frac{\pi}{2} - 1 \right]$$

$$= \frac{ab}{4} (\pi - 2)$$

Question 10:

Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and x-axis

Answer

The area of the region enclosed by the parabola, $x^2 = y$, the line, y = x + 2, and x-axis is represented by the shaded region OABCO as

Class XII

The point of intersection of the parabola, $x^2 = y$, and the line, y = x + 2, is A (-1, 1).

Chapter 8 – Application of Integrals

∴ Area OABCO = Area (BCA) + Area COAC

$$= \int_{-2}^{1} (x+2)dx + \int_{-1}^{0} x^{2}dx$$

= $\left[\frac{x^{2}}{2} + 2x\right]_{-2}^{-1} + \left[\frac{x^{3}}{3}\right]_{-1}^{0}$
= $\left[\frac{(-1)^{2}}{2} + 2(-1) - \frac{(-2)^{2}}{2} - 2(-2)\right] + \left[-\frac{(-1)^{3}}{3}\right]$
= $\left[\frac{1}{2} - 2 - 2 + 4 + \frac{1}{3}\right]$
= $\frac{5}{6}$ units

Question 11:

Using the method of integration find the area bounded by the curve |x|+|y|=1[**Hint:** the required region is bounded by lines x + y = 1, x - y = 1, -x + y = 1 and -x - y = 11]

Answer

The area bounded by the curve, |x|+|y|=1, is represented by the shaded region ADCB as

The curve intersects the axes at points A (0, 1), B (1, 0), C (0, -1), and D (-1, 0). It can be observed that the given curve is symmetrical about *x*-axis and *y*-axis.

 \therefore Area ADCB = 4 \times Area OBAO

$$= 4 \int_0^t (1-x) dx$$
$$= 4 \left(x - \frac{x^2}{2} \right)_0^1$$
$$= 4 \left[1 - \frac{1}{2} \right]$$
$$= 4 \left(\frac{1}{2} \right)$$
$$= 2 \text{ units}$$

Question 12:

Find the area bounded by curves $\{(x, y) : y \ge x^2 \text{ and } y = |x|\}$ Answer

The area bounded by the curves, $\{(x, y): y \ge x^2 \text{ and } y = |x|\}$, is represented by the shaded region as

It can be observed that the required area is symmetrical about *y*-axis.

Required area = 2 [Area (OCAO) - Area (OCADO)]
= 2 [
$$\int_0^1 x \, dx - \int_0^1 x^2 \, dx$$
]
= 2 [$\left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1$]
= 2 [$\frac{1}{2} - \frac{1}{3}$]
= 2 [$\frac{1}{6}$] = $\frac{1}{3}$ units

Question 13:

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A (2, 0), B (4, 5) and C (6, 3)

Answer

The vertices of \triangle ABC are A (2, 0), B (4, 5), and C (6, 3).

Equation of line segment AB is

$$y - 0 = \frac{5 - 0}{4 - 2} (x - 2)$$

2y = 5x - 10
$$y = \frac{5}{2} (x - 2) \qquad \dots (1)$$

Equation of line segment BC is

$$y-5 = \frac{3-5}{6-4}(x-4)$$

2y-10 = -2x+8
2y = -2x+18
y = -x+9 ...(2)

Equation of line segment CA is

$$y-3 = \frac{0-3}{2-6}(x-6)$$

-4y+12 = -3x+18
4y = 3x-6
$$y = \frac{3}{4}(x-2) \qquad \dots(3)$$

Area (
$$\Delta$$
ABC) = Area (ABLA) + Area (BLMCB) - Area (ACMA)

$$= \int_{2}^{4} \frac{5}{2} (x-2) dx + \int_{4}^{6} (-x+9) dx - \int_{2}^{6} \frac{3}{4} (x-2) dx$$

$$= \frac{5}{2} \left[\frac{x^{2}}{2} - 2x \right]_{2}^{4} + \left[\frac{-x^{2}}{2} + 9x \right]_{4}^{6} - \frac{3}{4} \left[\frac{x^{2}}{2} - 2x \right]_{2}^{6}$$

$$= \frac{5}{2} \left[8 - 8 - 2 + 4 \right] + \left[-18 + 54 + 8 - 36 \right] - \frac{3}{4} \left[18 - 12 - 2 + 4 \right]$$

$$= 5 + 8 - \frac{3}{4} (8)$$

$$= 13 - 6$$

$$= 7 \text{ units}$$

Question 14:

Using the method of integration find the area of the region bounded by lines:

$$2x + y = 4$$
, $3x - 2y = 6$ and $x - 3y + 5 = 0$

Answer

The given equations of lines are

$$2x + y = 4 \dots (1)$$

$$3x - 2y = 6 \dots (2)$$

And, $x - 3y + 5 = 0 \dots (3)$

$$x - 3y + 5 = 0 \dots (3)$$

$$x - 3y = -5$$

The area of the region bounded by the lines is the area of \triangle ABC. AL and CM are the perpendiculars on *x*-axis.

Area (ΔABC) = Area (ALMCA) - Area (ALB) - Area (CMB) = $\int_{1}^{4} \left(\frac{x+5}{3}\right) dx - \int_{1}^{2} (4-2x) dx - \int_{2}^{4} \left(\frac{3x-6}{2}\right) dx$ = $\frac{1}{3} \left[\frac{x^{2}}{2} + 5x\right]_{1}^{4} - \left[4x - x^{2}\right]_{1}^{2} - \frac{1}{2} \left[\frac{3x^{2}}{2} - 6x\right]_{2}^{4}$ = $\frac{1}{3} \left[8 + 20 - \frac{1}{2} - 5\right] - \left[8 - 4 - 4 + 1\right] - \frac{1}{2} \left[24 - 24 - 6 + 12\right]$ = $\left(\frac{1}{3} \times \frac{45}{2}\right) - (1) - \frac{1}{2}(6)$ = $\frac{15}{2} - 1 - 3$ = $\frac{15}{2} - 4 = \frac{15 - 8}{2} = \frac{7}{2}$ units

Question 15:

Find the area of the region $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$ Answer

The area bounded by the curves, $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$, is represented as

 $\left(\frac{1}{2},\sqrt{2}\right)$ and $\left(\frac{1}{2},-\sqrt{2}\right)$

The points of intersection of both the curves are

The required area is given by OABCO.

It can be observed that area OABCO is symmetrical about x-axis.

 \therefore Area OABCO = 2 \times Area OBC

Area OBCO = Area OMC + Area MBC

$$= \int_{0}^{\frac{1}{2}} 2\sqrt{x} \, dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2}\sqrt{9 - 4x^2} \, dx$$
$$= \int_{0}^{\frac{1}{2}} 2\sqrt{x} \, dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2}\sqrt{(3)^2 - (2x)^2} \, dx$$

Question 16:

Area bounded by the curve $y = x^3$, the *x*-axis and the ordinates x = -2 and x = 1 is **A.** – 9

 $-\frac{15}{4}$

c. $\frac{15}{4}$

D. $\frac{17}{4}$

A

Required area = $\int_{-2}^{1} y dx$

$$= \int_{-2}^{4} x^{3} dx$$
$$= \left[\frac{x^{4}}{4}\right]_{-2}^{1}$$
$$= \left[\frac{1}{4} - \frac{(-2)^{4}}{4}\right]$$
$$= \left(\frac{1}{4} - 4\right) = -\frac{15}{4} \text{ units}$$

Thus, the correct answer is B.

Question 17:

The area bounded by the curve y = x|x|, *x*-axis and the ordinates x = -1 and x = 1 is given by [Hint: $y = x^2$ if x > 0 and $y = -x^2$ if x < 0]

x

Thus, the correct answer is C.

Question 18:

The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is

A.
$$\frac{4}{3}(4\pi - \sqrt{3})$$

B. $\frac{4}{3}(4\pi + \sqrt{3})$
C. $\frac{4}{3}(8\pi - \sqrt{3})$
D. $\frac{4}{3}(4\pi + \sqrt{3})$

Answer

The given equations are

$$x^{2} + y^{2} = 16 \dots (1)$$

$$y^{2} = 6x \dots (2)$$

$$x^{(-4, 0)}$$

$$x^{(-4, 0)$$

Area bounded by the circle and parabola

$$= 2 \Big[\operatorname{Area} (\operatorname{OADO}) + \operatorname{Area} (\operatorname{ADBA}) \Big]$$

$$= 2 \Big[\int_{0}^{2} \sqrt{16x} dx + \int_{2}^{4} \sqrt{16 - x^{2}} dx \Big]$$

$$= 2 \Big[\sqrt{6} \left\{ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right\}_{0}^{2} \Big] + 2 \Big[\frac{x}{2} \sqrt{16 - x^{2}} + \frac{16}{2} \sin^{-1} \frac{x}{4} \Big]_{2}^{4}$$

$$= 2 \sqrt{6} \times \frac{2}{3} \Big[x^{\frac{3}{2}} \Big]_{0}^{2} + 2 \Big[8 \cdot \frac{\pi}{2} - \sqrt{16 - 4} - 8 \sin^{-1} \Big(\frac{1}{2} \Big) \Big]$$

$$= \frac{4 \sqrt{6}}{3} (2 \sqrt{2}) + 2 \Big[4 \pi - \sqrt{12} - 8 \frac{\pi}{6} \Big]$$

$$= \frac{16 \sqrt{3}}{3} + 8 \pi - 4 \sqrt{3} - \frac{8}{3} \pi$$

$$= \frac{4}{3} \Big[4 \sqrt{3} + 6 \pi - 3 \sqrt{3} - 2 \pi \Big]$$

$$= \frac{4}{3} \Big[\sqrt{3} + 4 \pi \Big]$$

$$= \frac{4}{3} \Big[4 \pi + \sqrt{3} \Big] \text{ units}$$

Area of circle = n (r)²
= n (4)²
= 16n units
$$\therefore \text{ Required area} = 16 \pi - \frac{4}{3} \Big[4 \pi + \sqrt{3} \Big]$$

$$= \frac{4}{3} \Big[4 \times 3 \pi - 4 \pi - \sqrt{3} \Big]$$

$$= \frac{4}{3} \Big(8 \pi - \sqrt{3} \Big) \text{ units}$$

Thus, the correct answer is C.

Question 19:

The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$ when $0 \le x \le \frac{\pi}{2}$

A.
$$2(\sqrt{2}-1)$$

B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$
Answer
The given equations are
 $y = \cos x \dots (1)$
And, $y = \sin x \dots (2)$

Required area = Area (ABLA) + area (OBLO)

$$= \int_{\frac{1}{\sqrt{2}}}^{1} x dy + \int_{0}^{\frac{1}{\sqrt{2}}} x dy$$
$$= \int_{\frac{1}{\sqrt{2}}}^{1} \cos^{-1} y dy + \int_{0}^{\frac{1}{\sqrt{2}}} \sin^{-1} x dy$$

Integrating by parts, we obtain

$$= \left[y \cos^{-1} y - \sqrt{1 - y^2} \right]_{\frac{1}{\sqrt{2}}}^{1} + \left[x \sin^{-1} x + \sqrt{1 - x^2} \right]_{0}^{\frac{1}{\sqrt{2}}}$$
$$= \left[\cos^{-1} (1) - \frac{1}{\sqrt{2}} \cos^{-1} \left(\frac{1}{\sqrt{2}} \right) + \sqrt{1 - \frac{1}{2}} \right] + \left[\frac{1}{\sqrt{2}} \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) + \sqrt{1 - \frac{1}{2}} - 1 \right]$$
$$= \frac{-\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1$$
$$= \frac{2}{\sqrt{2}} - 1$$
$$= \sqrt{2} - 1 \text{ units}$$

Thus, the correct answer is B.

Put
$$2x = t \Rightarrow dx = \frac{dt}{2}$$

When $x = \frac{3}{2}, t = 3$ and when $x = \frac{1}{2}, t = 1$
 $= \int_{0}^{\frac{1}{2}} 2\sqrt{x} \, dx + \frac{1}{4} \int_{1}^{3} \sqrt{(3)^{2} - (t)^{2}} \, dt$
 $= 2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{1}{2}} + \frac{1}{4}\left[\frac{t}{2}\sqrt{9 - t^{2}} + \frac{9}{2}\sin^{-1}\left(\frac{t}{3}\right)\right]_{1}^{3}$
 $= 2\left[\frac{2}{3}\left(\frac{1}{2}\right)^{\frac{3}{2}}\right] + \frac{1}{4}\left[\left\{\frac{3}{2}\sqrt{9 - (3)^{2}} + \frac{9}{2}\sin^{-1}\left(\frac{3}{3}\right)\right\} - \left\{\frac{1}{2}\sqrt{9 - (1)^{2}} + \frac{9}{2}\sin^{-1}\left(\frac{1}{3}\right)\right\}\right]$
 $= \frac{2}{3\sqrt{2}} + \frac{1}{4}\left[\left\{0 + \frac{9}{2}\sin^{-1}(1)\right\} - \left\{\frac{1}{2}\sqrt{8} + \frac{9}{2}\sin^{-1}\left(\frac{1}{3}\right)\right\}\right]$
 $= \frac{\sqrt{2}}{3} + \frac{1}{4}\left[\frac{9\pi}{4} - \sqrt{2} - \frac{9}{2}\sin^{-1}\left(\frac{1}{3}\right)\right]$
 $= \frac{\sqrt{2}}{3} + \frac{9\pi}{16} - \frac{\sqrt{2}}{4} - \frac{9}{8}\sin^{-1}\left(\frac{1}{3}\right)$

Therefore, the required area is
$$\left[2 \times \left(\frac{9\pi}{16} - \frac{9}{8}\sin^{-1}\left(\frac{1}{3}\right) + \frac{\sqrt{2}}{12}\right)\right] = \frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) + \frac{1}{3\sqrt{2}}$$
 units