Exercise 1.3

Question 1:

Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down $g \circ f$.

Answer

The functions $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ are defined as

$$f = \{(1, 2), (3, 5), (4, 1)\}$$
 and $g = \{(1, 3), (2, 3), (5, 1)\}.$

Question 2:

Let f, g and h be functions from \mathbf{R} to \mathbf{R} . Show that

$$(f+g)oh = foh + goh$$

 $(f \cdot g)oh = (foh) \cdot (goh)$

Answer

To prove:

$$(f+g)oh = foh + goh$$

Consider:

$$((f+g)\circ h)(x)$$

$$= (f+g)(h(x))$$

$$= f(h(x)) + g(h(x))$$

$$= (f\circ h)(x) + (g\circ h)(x)$$

$$= \{(f\circ h) + (g\circ h)\}(x)$$

$$\therefore ((f+g)\circ h)(x) = \{(f\circ h) + (g\circ h)\}(x) \quad \forall x \in \mathbb{R}$$
Hence, $(f+g)\circ h = f\circ h + g\circ h$.

To prove:

$$(f \cdot g) \circ h = (f \circ h) \cdot (g \circ h)$$

Consider:

$$((f \cdot g) \circ h)(x)$$

$$=(f\cdot g)(h(x))$$

$$= f(h(x)).g(h(x))$$

$$=(f\circ h)(x).(g\circ h)(x)$$

$$= \{(f \circ h).(g \circ h)\}(x)$$

$$\therefore ((f \cdot g) \circ h)(x) = \{(f \circ h), (g \circ h)\}(x) \ \forall x \in \mathbb{R}$$

Hence,
$$(f \cdot g) \circ h = (f \circ h) \cdot (g \circ h)$$
.

Question 3:

Find gof and fog, if

(i)
$$f(x) = |x|$$
 and $g(x) = |5x-2|$

(ii)
$$f(x) = 8x^3$$
 and $g(x) = x^{\frac{1}{3}}$

Answer

(i)
$$f(x) = |x|$$
 and $g(x) = |5x-2|$

$$\therefore (g \circ f)(x) = g(f(x)) = g(|x|) = |5|x| - 2|$$

$$(f \circ g)(x) = f(g(x)) = f(|5x-2|) = ||5x-2|| = |5x-2|$$

(ii)
$$f(x) = 8x^3$$
 and $g(x) = x^{\frac{1}{3}}$

$$\therefore (g \circ f)(x) = g(f(x)) = g(8x^3) = (8x^3)^{\frac{1}{3}} = 2x$$

$$(f \circ g)(x) = f(g(x)) = f(x^{\frac{1}{3}}) = 8(x^{\frac{1}{3}})^3 = 8x$$

Question 4:

$$f(x) = \frac{(4x+3)}{(6x-4)}, x \neq \frac{2}{3}, \text{ show that } f \text{ o } f(x) = x, \text{ for all } x \neq \frac{2}{3}. \text{ What is the inverse of } f$$
?

Answer

$$f(x) = \frac{(4x+3)}{(6x-4)}, x \neq \frac{2}{3}.$$
 It is given that

$$(fof)(x) = f(f(x)) = f\left(\frac{4x+3}{6x-4}\right)$$

$$= \frac{4\left(\frac{4x+3}{6x-4}\right) + 3}{6\left(\frac{4x+3}{6x-4}\right) - 4} = \frac{16x+12+18x-12}{24x+18-24x+16} = \frac{34x}{34} = x$$

Therefore, fof (x) = x, for all $x \neq \frac{2}{3}$.

$$\Rightarrow$$
 fof = I

Hence, the given function *f* is invertible and the inverse of *f* is *f* itself.

Question 5:

State with reason whether following functions have inverse

(i)
$$f: \{1, 2, 3, 4\} \rightarrow \{10\}$$
 with

$$f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$$

(ii)
$$g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$$
 with

$$g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$$

(iii)
$$h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$$
 with

$$h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$$

Answer

(i)
$$f: \{1, 2, 3, 4\} \rightarrow \{10\}$$
 defined as:

$$f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$$

From the given definition of f, we can see that f is a many one function as: f(1) = f(2) = f(3)

$$f(3) = f(4) = 10$$

: f is not one-one.

Hence, function f does not have an inverse.

(ii)
$$g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$$
 defined as:

$$g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$$

From the given definition of g, it is seen that g is a many one function as: g(5) = g(7) = 4.

 $\therefore g$ is not one-one,

Hence, function g does not have an inverse.

(iii) $h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$ defined as:

$$h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$$

It is seen that all distinct elements of the set $\{2, 3, 4, 5\}$ have distinct images under h.

 \therefore Function h is one-one.

Also, h is onto since for every element y of the set $\{7, 9, 11, 13\}$, there exists an element x in the set $\{2, 3, 4, 5\}$ such that h(x) = y.

Thus, *h* is a one-one and onto function. Hence, *h* has an inverse.

Question 6:

Show that $f: [-1, 1] \to \mathbf{R}$, given by $f(x) = \frac{x}{(x+2)}$ is one-one. Find the inverse of the function $f: [-1, 1] \to \mathrm{Range}\ f$.

(Hint: For $y \in \text{Range } f$, $y = \frac{x}{x+2}$, for some x in [-1, 1], i.e., $x = \frac{2y}{(1-y)}$)
Answer

$$f(x) = \frac{x}{(x+2)}.$$
f: [-1, 1] \rightarrow R is given as

Let f(x) = f(y).

$$\Rightarrow \frac{x}{x+2} = \frac{y}{y+2}$$
$$\Rightarrow xy + 2x = xy + 2y$$

$$\Rightarrow 2x = 2y$$

$$\Rightarrow x = y$$

 \therefore f is a one-one function.

It is clear that $f: [-1, 1] \rightarrow \text{Range } f \text{ is onto.}$

 $:: f: [-1, 1] \to \text{Range } f \text{ is one-one and onto and therefore, the inverse of the function:}$

 $f: [-1, 1] \rightarrow \text{Range } f \text{ exists.}$

Let g: Range $f \rightarrow [-1, 1]$ be the inverse of f.

Let y be an arbitrary element of range f.

Since $f: [-1, 1] \rightarrow \text{Range } f \text{ is onto, we have:}$

$$y = f(x)$$
 for same $x \in [-1, 1]$

$$\Rightarrow y = \frac{x}{x+2}$$

$$\Rightarrow xy + 2y = x$$

$$\Rightarrow x(1-y)=2y$$

$$\Rightarrow x = \frac{2y}{1-y}, y \neq 1$$

Now, let us define g: Range $f \rightarrow [-1, 1]$ as

$$g(y) = \frac{2y}{1-y}, y \neq 1.$$

Now,
$$(gof)(x) = g(f(x)) = g\left(\frac{x}{x+2}\right) = \frac{2\left(\frac{x}{x+2}\right)}{1 - \frac{x}{x+2}} = \frac{2x}{x+2-x} = \frac{2x}{2} = x$$

$$(f \circ g)(y) = f(g(y)) = f\left(\frac{2y}{1-y}\right) = \frac{\frac{2y}{1-y}}{\frac{2y}{1-y}+2} = \frac{2y}{2y+2-2y} = \frac{2y}{2} = y$$

$$::gof = I_{[-1, 1]}$$
 and $fog = I_{Range f}$

$$f^{-1} = a$$

$$f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$$

Question 7:

Consider $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

Answer

 $f: \mathbf{R} \to \mathbf{R}$ is given by,

$$f(x) = 4x + 3$$

One-one:

Let
$$f(x) = f(y)$$
.

$$\Rightarrow 4x+3=4y+3$$

$$\Rightarrow 4x = 4y$$

$$\Rightarrow x = y$$

 \therefore f is a one-one function.

Onto:

For $y \in \mathbf{R}$, let y = 4x + 3.

$$\Rightarrow x = \frac{y-3}{4} \in \mathbf{R}$$

Therefore, for any $y \in \mathbf{R}$, there exists $x = \frac{y-3}{4} \in \mathbf{R}$ such that

$$f(x) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y.$$

 \therefore *f* is onto.

Thus, f is one-one and onto and therefore, f^{-1} exists.

Let us define
$$g: \mathbf{R} \to \mathbf{R}$$
 by $g(x) = \frac{y-3}{4}$

Now,
$$(g \circ f)(x) = g(f(x)) = g(4x+3) = \frac{(4x+3)-3}{4} = x$$

$$(f \circ g)(y) = f(g(y)) = f(\frac{y-3}{4}) = 4(\frac{y-3}{4}) + 3 = y-3+3 = y$$

$$gof = fog = I_R$$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \frac{y-3}{4}.$$

Question 8:

Consider $f: \mathbb{R}_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse

 f^{-1} of given f by $f^{-1}(y) = \sqrt{y-4}$, where \mathbf{R}_+ is the set of all non-negative real numbers.

Answer

 $f: \mathbf{R}_+ \to [4, \infty)$ is given as $f(x) = x^2 + 4$.

One-one:

Let
$$f(x) = f(y)$$
.

$$\Rightarrow x^2 + 4 = y^2 + 4$$

$$\Rightarrow x^2 = v^2$$

$$\Rightarrow x = y$$
 [as $x = y \in \mathbf{R}_{\perp}$]

 \therefore f is a one-one function.

Onto:

For $y \in [4, \infty)$, let $y = x^2 + 4$.

$$\Rightarrow x^2 = y - 4 \ge 0$$
 [as $y \ge 4$]

as
$$y \ge 4$$

$$\Rightarrow x = \sqrt{y-4} \ge 0$$

Therefore, for any $y \in \mathbf{R}$, there exists $x = \sqrt{y-4} \in \mathbf{R}$ such that

$$f(x) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = y - 4 + 4 = y$$

 $\therefore f$ is onto.

Thus, f is one-one and onto and therefore, f^{-1} exists.

Let us define $g: [4, \infty) \to \mathbf{R}_+$ by,

$$g(y) = \sqrt{y-4}$$

Now,
$$g \circ f(x) = g(f(x)) = g(x^2 + 4) = \sqrt{(x^2 + 4) - 4} = \sqrt{x^2} = x$$

And,
$$f \circ g(y) = f(g(y)) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = (y-4) + 4 = y$$

$$g \circ f = f \circ g = I_{\mathbf{R}^+}$$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \sqrt{y-4}$$
.

Ouestion 21:

Find the values of $\tan^{-1} \sqrt{3} - \cot^{-1} \left(-\sqrt{3}\right)$ is equal to

(A)
$$\sqcap$$
 (B) $-\frac{\pi}{2}$ (C) 0 (D) $2\sqrt{3}$

Answer

Let
$$\tan^{-1}\sqrt{3}=x$$
. Then, $\tan x=\sqrt{3}=\tan\frac{\pi}{3}$ where $\frac{\pi}{3}\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

 $\tan^{-1} is \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$ We know that the range of the principal value branch of

$$\therefore \tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

Let
$$\cot^{-1}\left(-\sqrt{3}\right) = y$$

Then,
$$\cot y = -\sqrt{3} = -\cot\left(\frac{\pi}{6}\right) = \cot\left(\pi - \frac{\pi}{6}\right) = \cot\frac{5\pi}{6}$$
 where $\frac{5\pi}{6} \in (0, \pi)$.

The range of the principal value branch of \cot^{-1} is $(0, \pi)$.

$$\therefore \cot^{-1}\left(-\sqrt{3}\right) = \frac{5\pi}{6}$$

$$\therefore \tan^{-1} \sqrt{3} - \cot^{-1} \left(-\sqrt{3} \right) = \frac{\pi}{3} - \frac{5\pi}{6} = \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6} = -\frac{\pi}{2}$$

The correct answer is B.

Question 9:

Consider $f: \mathbf{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with

$$f^{-1}(y) = \left(\frac{(\sqrt{y+6})-1}{3}\right)$$

Answer

 $f: \mathbf{R}_+ \to [-5, \infty)$ is given as $f(x) = 9x^2 + 6x - 5$.

Let y be an arbitrary element of $[-5, \infty)$.

Let
$$y = 9x^2 + 6x - 5$$
.

$$\Rightarrow y = (3x+1)^2 - 1 - 5 = (3x+1)^2 - 6$$

$$\Rightarrow (3x+1)^2 = y+6$$

$$\Rightarrow$$
 3x+1= $\sqrt{y+6}$ [as $y \ge -5 \Rightarrow y+6 > 0$]

$$\Rightarrow x = \frac{\sqrt{y+6}-1}{3}$$

∴ f is onto, thereby range $f = [-5, \infty)$.

Let us define $g: [-5, \infty) \to \mathbf{R}_+$ as $g(y) = \frac{\sqrt{y+6}-1}{3}$.

We now have:

$$(gof)(x) = g(f(x)) = g(9x^{2} + 6x - 5)$$

$$= g((3x+1)^{2} - 6)$$

$$= \frac{\sqrt{(3x+1)^{2} - 6 + 6} - 1}{3}$$

$$= \frac{3x+1-1}{3} = x$$

And,
$$(f \circ g)(y) = f(g(y)) = f(\frac{\sqrt{y+6}-1}{3})$$

= $\left[3(\frac{\sqrt{y+6}-1}{3})+1\right]^2 - 6$
= $(\sqrt{y+6})^2 - 6 = y+6-6 = y$

$$gof = I_{R_+}$$
 and $fog = I_{[-5,\infty)}$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \frac{\sqrt{y+6}-1}{3}$$
.

Question 10:

Let $f: X \to Y$ be an invertible function. Show that f has unique inverse.

(Hint: suppose g_1 and g_2 are two inverses of f. Then for all $y \in Y$,

 $f \circ g_1(y) = I_Y(y) = f \circ g_2(y)$. Use one-one ness of f).

Answer

Let $f: X \to Y$ be an invertible function.

Also, suppose f has two inverses (say g_1 and g_2).

Then, for all $y \in Y$, we have:

$$f \circ g_1(y) = I_Y(y) = f \circ g_2(y)$$

 $\Rightarrow f(g_1(y)) = f(g_2(y))$
 $\Rightarrow g_1(y) = g_2(y)$ [f is invertible \Rightarrow f is one-one]
 $\Rightarrow g_1 = g_2$ [g is one-one]

Hence, f has a unique inverse.

Question 11:

Consider $f: \{1, 2, 3\} \to \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f$.

Answer

Function $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ is given by,

$$f(1) = a$$
, $f(2) = b$, and $f(3) = c$

If we define $g: \{a, b, c\} \to \{1, 2, 3\}$ as g(a) = 1, g(b) = 2, g(c) = 3, then we have:

$$(f \circ g)(a) = f(g(a)) = f(1) = a$$

$$(f \circ g)(b) = f(g(b)) = f(2) = b$$

$$(f \circ g)(c) = f(g(c)) = f(3) = c$$

And.

$$(g \circ f)(1) = g(f(1)) = g(a) = 1$$

$$(g \circ f)(2) = g(f(2)) = g(b) = 2$$

$$(g \circ f)(3) = g(f(3)) = g(c) = 3$$

$$gof = I_X$$
 and $fog = I_Y$, where $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$.

Thus, the inverse of f exists and $f^{-1} = g$.

:
$$f^{-1}$$
: {a, b, c} \to {1, 2, 3} is given by,

$$f^{-1}(a) = 1, f^{-1}(b) = 2, f^{1}(c) = 3$$

Let us now find the inverse of f^{-1} i.e., find the inverse of g.

If we define $h: \{1, 2, 3\} \to \{a, b, c\}$ as

$$h(1) = a, h(2) = b, h(3) = c$$
, then we have:

$$(g \circ h)(1) = g(h(1)) = g(a) = 1$$

$$(g \circ h)(2) = g(h(2)) = g(b) = 2$$

$$(g \circ h)(3) = g(h(3)) = g(c) = 3$$

And,

$$(h \circ g)(a) = h(g(a)) = h(1) = a$$

$$(h \circ g)(b) = h(g(b)) = h(2) = b$$

$$(h \circ g)(c) = h(g(c)) = h(3) = c$$

$$goh = I_X$$
 and $hog = I_Y$, where $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$.

Thus, the inverse of g exists and $g^{-1} = h \Rightarrow (f^{-1})^{-1} = h$.

It can be noted that h = f.

Hence, $(f^{-1})^{-1} = f$.

Question 12:

Let $f: X \to Y$ be an invertible function. Show that the inverse of f^{-1} is f, i.e., $(f^{-1})^{-1} = f$.

Answer

Let $f: X \to Y$ be an invertible function.

Then, there exists a function $g: Y \to X$ such that $g \circ f = I_X$ and $f \circ g = I_Y$.

Here, $f^{-1} = g$.

Now, $gof = I_X$ and $fog = I_Y$

$$\Rightarrow f^{-1} \circ f = I_X \text{ and } f \circ f^{-1} = I_Y$$

Hence, f^{-1} : $Y \to X$ is invertible and f is the inverse of f^{-1}

i.e.,
$$(f^{-1})^{-1} = f$$
.

Question 13:

If $f: \mathbf{R} \to \mathbf{R}$ be given by $f(x) = (3-x^3)^{\frac{1}{3}}$, then $f\circ f(x)$ is

(A)
$$\frac{1}{x^3}$$
 (B) x^3 (C) x (D) $(3 - x^3)$

Answer

$$f: \mathbf{R} \to \mathbf{R}$$
 is given as $f(x) = (3-x^3)^{\frac{1}{3}}$.

$$f(x) = (3-x^3)^{\frac{1}{3}}$$

$$\therefore fof(x) = f(f(x)) = f(3-x^3)^{\frac{1}{3}} = \left[3 - \left((3-x^3)^{\frac{1}{3}}\right)^3\right]^{\frac{1}{3}}$$
$$= \left[3 - \left(3-x^3\right)^{\frac{1}{3}}\right] = \left(x^3\right)^{\frac{1}{3}} = x$$

$$\therefore$$
 fof $(x) = x$

The correct answer is C.

Question 14:

 $f: \mathbf{R} - \left\{-\frac{4}{3}\right\} \to \mathbf{R}$ be a function defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is map g:

Range $f \to \mathbf{R} - \left\{ -\frac{4}{3} \right\}$ given by

(A)
$$g(y) = \frac{3y}{3-4y}$$
 (B) $g(y) = \frac{4y}{4-3y}$

(C)
$$g(y) = \frac{4y}{3-4y}$$
 (D) $g(y) = \frac{3y}{4-3y}$

Answer

 $f: \mathbf{R} - \left\{ -\frac{4}{3} \right\} \to \mathbf{R} \text{ is defined as } f(x) = \frac{4x}{3x+4}.$

Let y be an arbitrary element of Range f.

Then, there exists $x \in \mathbb{R} - \left\{ -\frac{4}{3} \right\}$ such that y = f(x).

$$\Rightarrow y = \frac{4x}{3x+4}$$

$$\Rightarrow 3xy + 4y = 4x$$

$$\Rightarrow x(4-3y) = 4y \text{ Let us define } g \text{: Range}$$

$$f \to \mathbf{R} - \left\{ -\frac{4}{3} \right\} \text{ as } g(y) = \frac{4y}{4-3y}.$$

$$\Rightarrow x = \frac{4y}{4-3y}$$

Now,
$$(g \circ f)(x) = g(f(x)) = g\left(\frac{4x}{3x+4}\right)$$

$$= \frac{4\left(\frac{4x}{3x+4}\right)}{4-3\left(\frac{4x}{3x+4}\right)} = \frac{16x}{12x+16-12x} = \frac{16x}{16} = x$$

And,
$$(f \circ g)(y) = f(g(y)) = f\left(\frac{4y}{4-3y}\right)$$

= $\frac{4\left(\frac{4y}{4-3y}\right)}{3\left(\frac{4y}{4-3y}\right)+4} = \frac{16y}{12y+16-12y} = \frac{16y}{16} = y$

$$gof = I_{R - \left\{-\frac{4}{3}\right\}}$$
 and $fog = I_{Range f}$

Thus, g is the inverse of f i.e., $f^{-1} = g$.

Hence, the inverse of f is the map g: Range $f \to \mathbf{R} - \left\{-\frac{4}{3}\right\}$, which is given by

$$g(y) = \frac{4y}{4-3y}.$$

The correct answer is B.