Exercise 1.3

Question 1:

Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5)$, $(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down $g \circ f$.

Answer

The functions $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ are defined as $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$.

$$
\begin{array}{ll}
g \circ f(1)=g(f(1))=g(2)=3 & {[f(1)=2 \text { and } g(2)=3]} \\
g \circ f(3)=g(f(3))=g(5)=1 & {[f(3)=5 \text { and } g(5)=1]} \\
g \circ f(4)=g(f(4))=g(1)=3 & {[f(4)=1 \text { and } g(1)=3]}
\end{array}
$$

$\therefore g \circ f=\{(1,3),(3,1),(4,3)\}$

Question 2:

Let f, g and h be functions from \mathbf{R} to \mathbf{R}. Show that
$(f+g) \mathrm{o} h=f \circ h+g \circ h$
$(f \cdot g) \mathrm{o} h=(f \circ h) \cdot(g \circ h)$
Answer
To prove:

$$
(f+g) \mathrm{o} h=f \circ h+g \circ h
$$

Consider:

$$
\begin{aligned}
& ((f+g) \circ h)(x) \\
& =(f+g)(h(x)) \\
& =f(h(x))+g(h(x)) \\
& =(f \circ h)(x)+(g \circ h)(x) \\
& =\{(f \circ h)+(g \circ h)\}(x) \\
& \therefore((f+g) \circ h)(x)=\{(f \circ h)+(g \circ h)\}(x) \quad \forall x \in \mathbf{R}
\end{aligned}
$$

Hence, $(f+g) \mathrm{o} h=f \circ h+g \circ h$.

To prove:
$(f \cdot g) \mathrm{o} h=(f \circ h) \cdot(g \circ h)$
Consider:
$((f \cdot g) \mathrm{o} h)(x)$
$=(f \cdot g)(h(x))$
$=f(h(x)) \cdot g(h(x))$
$=(f \circ h)(x) \cdot(g \circ h)(x)$
$=\{(f \circ h) \cdot(g \circ h)\}(x)$
$\therefore((f \cdot g) \mathrm{o} h)(x)=\{(f \circ h) \cdot(g \circ h)\}(x) \forall x \in \mathrm{R}$
Hence, $(f \cdot g) \mathrm{o} h=(f \circ h) \cdot(g \circ h)$.

Question 3:

Find $g \circ f$ and $f \circ g$, if
(i) $f(x)=|x|$ and $g(x)=|5 x-2|$
(ii) $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

Answer
(i) $f(x)=|x|$ and $g(x)=|5 x-2|$
$\therefore(g \circ f)(x)=g(f(x))=g(|x|)=|5| x|-2|$
$(f \circ g)(x)=f(g(x))=f(|5 x-2|)=\|5 x-2\|=|5 x-2|$
(ii) $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$
$\therefore(g \circ f)(x)=g(f(x))=g\left(8 x^{3}\right)=\left(8 x^{3}\right)^{\frac{1}{3}}=2 x$
$(f \circ g)(x)=f(g(x))=f\left(x^{\frac{1}{3}}\right)=8\left(x^{\frac{1}{3}}\right)^{3}=8 x$

Question 4:

If $f(x)=\frac{(4 x+3)}{(6 x-4)}, x \neq \frac{2}{3}$, show that $f \circ f(x)=x$, for all $x \neq \frac{2}{3}$. What is the inverse of f ? Answer
It is given that $f(x)=\frac{(4 x+3)}{(6 x-4)}, x \neq \frac{2}{3}$.

$$
\begin{aligned}
(f \circ f)(x) & =f(f(x))=f\left(\frac{4 x+3}{6 x-4}\right) \\
& =\frac{4\left(\frac{4 x+3}{6 x-4}\right)+3}{6\left(\frac{4 x+3}{6 x-4}\right)-4}=\frac{16 x+12+18 x-12}{24 x+18-24 x+16}=\frac{34 x}{34}=x
\end{aligned}
$$

Therefore, $f \circ f(x)=x$, for all $x \neq \frac{2}{3}$.
$\Rightarrow f \circ f=\mathrm{I}$
Hence, the given function f is invertible and the inverse of f is f itself.

Question 5:

State with reason whether following functions have inverse
(i) $f:\{1,2,3,4\} \rightarrow\{10\}$ with
$f=\{(1,10),(2,10),(3,10),(4,10)\}$
(ii) $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with
$g=\{(5,4),(6,3),(7,4),(8,2)\}$
(iii) $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with
$h=\{(2,7),(3,9),(4,11),(5,13)\}$
Answer
(i) $f:\{1,2,3,4\} \rightarrow\{10\}$ defined as:
$f=\{(1,10),(2,10),(3,10),(4,10)\}$
From the given definition of f, we can see that f is a many one function as: $f(1)=f(2)=$ $f(3)=f(4)=10$
$\therefore f$ is not one-one.
Hence, function f does not have an inverse.
(ii) $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ defined as:
$g=\{(5,4),(6,3),(7,4),(8,2)\}$
From the given definition of g, it is seen that g is a many one function as: $g(5)=g(7)=$ 4.
$\therefore g$ is not one-one,
Hence, function g does not have an inverse.
(iii) $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ defined as:
$h=\{(2,7),(3,9),(4,11),(5,13)\}$
It is seen that all distinct elements of the set $\{2,3,4,5\}$ have distinct images under h.
\therefore Function h is one-one.
Also, h is onto since for every element y of the set $\{7,9,11,13\}$, there exists an element x in the set $\{2,3,4,5\}$ such that $h(x)=y$.

Thus, h is a one-one and onto function. Hence, h has an inverse.

Question 6:

Show that $f:[-1,1] \rightarrow \mathbf{R}$, given by $f(x)=\frac{x}{(x+2)}$ is one-one. Find the inverse of the function $f:[-1,1] \rightarrow$ Range f.
(Hint: For $y \in \operatorname{Range} f, y=f(x)=\frac{x}{x+2}$, for some x in $[-1,1]$, i.e., $\quad x=\frac{2 y}{(1-y)}$) Answer
$f:[-1,1] \rightarrow \mathrm{R}$ is given as $f(x)=\frac{x}{(x+2)}$.
Let $f(x)=f(y)$.

$$
\begin{aligned}
& \Rightarrow \frac{x}{x+2}=\frac{y}{y+2} \\
& \Rightarrow x y+2 x=x y+2 y \\
& \Rightarrow 2 x=2 y \\
& \Rightarrow x=y
\end{aligned}
$$

$\therefore f$ is a one-one function.
It is clear that $f:[-1,1] \rightarrow$ Range f is onto.
$\therefore f:[-1,1] \rightarrow$ Range f is one-one and onto and therefore, the inverse of the function:
$f:[-1,1] \rightarrow$ Range f exists.
Let g : Range $f \rightarrow[-1,1]$ be the inverse of f.
Let y be an arbitrary element of range f.
Since $f:[-1,1] \rightarrow$ Range f is onto, we have:
$y=f(x)$ for same $x \in[-1,1]$
$\Rightarrow y=\frac{x}{x+2}$
$\Rightarrow x y+2 y=x$
$\Rightarrow x(1-y)=2 y$
$\Rightarrow x=\frac{2 y}{1-y}, y \neq 1$
Now, let us define g : Range $f \rightarrow[-1,1]$ as
$g(y)=\frac{2 y}{1-y}, y \neq 1$.
Now, $(g \circ f)(x)=g(f(x))=g\left(\frac{x}{x+2}\right)=\frac{2\left(\frac{x}{x+2}\right)}{1-\frac{x}{x+2}}=\frac{2 x}{x+2-x}=\frac{2 x}{2}=x$
$(f \circ g)(y)=f(g(y))=f\left(\frac{2 y}{1-y}\right)=\frac{\frac{2 y}{1-y}}{\frac{2 y}{1-y}+2}=\frac{2 y}{2 y+2-2 y}=\frac{2 y}{2}=y$
$\therefore g \circ f=\mathrm{I}_{[-1,1]}$ and $f \circ g=\mathrm{I}_{\text {Range } f}$
$\therefore f^{-1}=g$
$\Rightarrow f^{-1}(y)=\frac{2 y}{1-y}, y \neq 1$

Question 7:

Consider $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse of f.
Answer
$f: \mathbf{R} \rightarrow \mathbf{R}$ is given by,
$f(x)=4 x+3$
One-one:

Let $f(x)=f(y)$.
$\Rightarrow 4 x+3=4 y+3$
$\Rightarrow 4 x=4 y$
$\Rightarrow x=y$
$\therefore f$ is a one-one function.
Onto:
For $y \in \mathbf{R}$, let $y=4 x+3$.
$\Rightarrow x=\frac{y-3}{4} \in \mathbf{R}$
Therefore, for any $y \in \mathbf{R}$, there exists $x=\frac{y-3}{4} \in \mathbf{R}$ such that $f(x)=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y$.
$\therefore f$ is onto.
Thus, f is one-one and onto and therefore, f^{-1} exists.
Let us define $g: \mathbf{R} \rightarrow \mathbf{R}$ by $g(x)=\frac{y-3}{4}$.
Now, $(g \circ f)(x)=g(f(x))=g(4 x+3)=\frac{(4 x+3)-3}{4}=x$
$(f \circ g)(y)=f(g(y))=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y-3+3=y$
$\therefore g \circ f=f \circ g=\mathrm{I}_{\mathrm{R}}$
Hence, f is invertible and the inverse of f is given by
$f^{-1}(y)=g(y)=\frac{y-3}{4}$.

Question 8:

Consider $f: \mathbf{R}_{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse f^{-1} of given f by $f^{-1}(y)=\sqrt{y-4}$, where \mathbf{R}_{+}is the set of all non-negative real numbers. Answer
$f: \mathbf{R}_{+} \rightarrow[4, \infty)$ is given as $f(x)=x^{2}+4$.

One-one:

Let $f(x)=f(y)$.
$\Rightarrow x^{2}+4=y^{2}+4$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow x=y \quad\left[\right.$ as $\left.x=y \in \mathbf{R}_{+}\right]$
$\therefore f$ is a one-one function.
Onto:
For $y \in[4, \infty)$, let $y=x^{2}+4$.
$\Rightarrow x^{2}=y-4 \geq 0 \quad[$ as $y \geq 4]$
$\Rightarrow x=\sqrt{y-4} \geq 0$
Therefore, for any $y \in \mathbf{R}$, there exists $x=\sqrt{y-4} \in \mathbf{R}$ such that
$f(x)=f(\sqrt{y-4})=(\sqrt{y-4})^{2}+4=y-4+4=y$.
$\therefore f$ is onto.
Thus, f is one-one and onto and therefore, f^{-1} exists.
Let us define $g:[4, \infty) \rightarrow \mathbf{R}_{+}$by,
$g(y)=\sqrt{y-4}$
Now, $g \circ f(x)=g(f(x))=g\left(x^{2}+4\right)=\sqrt{\left(x^{2}+4\right)-4}=\sqrt{x^{2}}=x$
And, $f \circ g(y)=f(g(y))=f(\sqrt{y-4})=(\sqrt{y-4})^{2}+4=(y-4)+4=y$
$\therefore g \circ f=f \circ g=\mathrm{I}_{\mathrm{R}+}$
Hence, f is invertible and the inverse of f is given by

$$
f^{-1}(y)=g(y)=\sqrt{y-4}
$$

Question 21:

Find the values of $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$ is equal to
(A) $п(B)$
$-\frac{\pi}{2}$
(C) 0 (D) $2 \sqrt{3}$

Answer

Let $\tan ^{-1} \sqrt{3}=x$. Then, $\tan x=\sqrt{3}=\tan \frac{\pi}{3}$ where $\frac{\pi}{3} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
We know that the range of the principal value branch of $\tan ^{-1}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
$\therefore \tan ^{-1} \sqrt{3}=\frac{\pi}{3}$
Let $\cot ^{-1}(-\sqrt{3})=y$.
Then, $\cot y=-\sqrt{3}=-\cot \left(\frac{\pi}{6}\right)=\cot \left(\pi-\frac{\pi}{6}\right)=\cot \frac{5 \pi}{6}$ where $\frac{5 \pi}{6} \in(0, \pi)$.
The range of the principal value branch of $\cot ^{-1}$ is $(0, \pi)$.
$\therefore \cot ^{-1}(-\sqrt{3})=\frac{5 \pi}{6}$
$\therefore \tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})=\frac{\pi}{3}-\frac{5 \pi}{6}=\frac{2 \pi-5 \pi}{6}=\frac{-3 \pi}{6}=-\frac{\pi}{2}$
The correct answer is B.

Question 9:

Consider $f: \mathbf{R}_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with
$f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)$
Answer
$f: \mathbf{R}_{+} \rightarrow[-5, \infty)$ is given as $f(x)=9 x^{2}+6 x-5$.
Let y be an arbitrary element of $[-5, \infty)$.
Let $y=9 x^{2}+6 x-5$.
$\Rightarrow y=(3 x+1)^{2}-1-5=(3 x+1)^{2}-6$
$\Rightarrow(3 x+1)^{2}=y+6$
$\Rightarrow 3 x+1=\sqrt{y+6} \quad[$ as $y \geq-5 \Rightarrow y+6>0]$
$\Rightarrow x=\frac{\sqrt{y+6}-1}{3}$
$\therefore f$ is onto, thereby range $f=[-5, \infty)$.
Let us define $g:[-5, \infty) \rightarrow \mathbf{R}_{+}$as $g(y)=\frac{\sqrt{y+6}-1}{3}$.
We now have:

$$
\begin{aligned}
(g \circ f)(x)=g(f(x)) & =g\left(9 x^{2}+6 x-5\right) \\
& =g\left((3 x+1)^{2}-6\right) \\
& =\frac{\sqrt{(3 x+1)^{2}-6+6}-1}{3} \\
& =\frac{3 x+1-1}{3}=x
\end{aligned}
$$

$$
\text { And, } \begin{aligned}
(f \circ g)(y)=f(g(y)) & =f\left(\frac{\sqrt{y+6}-1}{3}\right) \\
& =\left[3\left(\frac{\sqrt{y+6}-1}{3}\right)+1\right]^{2}-6 \\
& =(\sqrt{y+6})^{2}-6=y+6-6=y
\end{aligned}
$$

$\therefore g \circ f=\mathrm{I}_{\mathbf{R}_{+} \text {and }} f \circ g=\mathrm{I}_{[-5, \infty)}$
Hence, f is invertible and the inverse of f is given by

$$
f^{-1}(y)=g(y)=\frac{\sqrt{y+6}-1}{3} .
$$

Question 10:

Let $f: X \rightarrow Y$ be an invertible function. Show that f has unique inverse.
(Hint: suppose g_{1} and g_{2} are two inverses of f. Then for all $y \in Y$,
$f \circ g_{1}(y)=\mathrm{I}_{\gamma}(y)=f \circ g_{2}(y)$. Use one-one ness of f).
Answer
Let $f: X \rightarrow Y$ be an invertible function.
Also, suppose f has two inverses (say g_{1} and g_{2}).
Then, for all $y \in Y$, we have:

$$
\begin{array}{ll}
f \circ g_{1}(y)=\mathrm{I}_{Y}(y)=f \circ g_{2}(y) & \\
\Rightarrow f\left(g_{1}(y)\right)=f\left(g_{2}(y)\right) & \\
\Rightarrow g_{1}(y)=g_{2}(y) & {[f \text { is invertible } \Rightarrow f \text { is one-one }]} \\
\Rightarrow g_{1}=g_{2} & {[g \text { is one-one }]}
\end{array}
$$

Hence, f has a unique inverse.

Question 11:

Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b$ and $f(3)=c$. Find f^{-1} and show that $\left(f^{-1}\right)^{-1}=f$.
Answer
Function $f:\{1,2,3\} \rightarrow\{a, b, c\}$ is given by,
$f(1)=a, f(2)=b$, and $f(3)=c$
If we define $g:\{a, b, c\} \rightarrow\{1,2,3\}$ as $g(a)=1, g(b)=2, g(c)=3$, then we have:
$(f \circ g)(a)=f(g(a))=f(1)=a$
$(f \circ g)(b)=f(g(b))=f(2)=b$
$(f \circ g)(c)=f(g(c))=f(3)=c$
And,
$(g \circ f)(1)=g(f(1))=g(a)=1$
$(g \circ f)(2)=g(f(2))=g(b)=2$
$(g \circ f)(3)=g(f(3))=g(c)=3$
$\therefore g \circ f=\mathrm{I}_{X}$ and $f \circ g=\mathrm{I}_{Y}$, where $X=\{1,2,3\}$ and $Y=\{a, b, c\}$.
Thus, the inverse of f exists and $f^{-1}=g$.
$\therefore f^{-1}:\{a, b, c\} \rightarrow\{1,2,3\}$ is given by,
$f^{-1}(a)=1, f^{-1}(b)=2, f^{-1}(c)=3$
Let us now find the inverse of f^{-1} i.e., find the inverse of g.
If we define $h:\{1,2,3\} \rightarrow\{a, b, c\}$ as
$h(1)=a, h(2)=b, h(3)=c$, then we have:

$$
\begin{aligned}
& (g \circ h)(1)=g(h(1))=g(a)=1 \\
& (g \circ h)(2)=g(h(2))=g(b)=2 \\
& (g \circ h)(3)=g(h(3))=g(c)=3
\end{aligned}
$$

And,
$(h \circ g)(a)=h(g(a))=h(1)=a$
$(h \circ g)(b)=h(g(b))=h(2)=b$
$(h \circ g)(c)=h(g(c))=h(3)=c$
$\therefore g \mathrm{o} h=\mathrm{I}_{X}$ and $h \mathrm{og}=\mathrm{I}_{Y}$, where $X=\{1,2,3\}$ and $Y=\{a, b, c\}$.
Thus, the inverse of g exists and $g^{-1}=h \Rightarrow\left(f^{-1}\right)^{-1}=h$.
It can be noted that $h=f$.
Hence, $\left(f^{-1}\right)^{-1}=f$.

Question 12:

Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of f^{-1} is f, i.e.,

$$
\left(f^{-1}\right)^{-1}=f
$$

Answer

Let $f: X \rightarrow Y$ be an invertible function.
Then, there exists a function $g: Y \rightarrow X$ such that $g \circ f=\mathrm{I}_{X}$ and $f \circ g=\mathrm{I}_{Y}$.
Here, $f^{-1}=g$.
Now, $g \circ f=\mathrm{I}_{X}$ and $f \circ g=\mathrm{I}_{Y}$
$\Rightarrow f^{-1} \circ f=\mathrm{I}_{X}$ and $f \circ f^{-1}=\mathrm{I}_{Y}$
Hence, $f^{-1}: Y \rightarrow X$ is invertible and f is the inverse of f^{-1}
i.e., $\left(f^{-1}\right)^{-1}=f$.

Question 13:

If $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$, then $f \circ f(x)$ is
(A) $\frac{1}{x^{3}}$ (B) x^{3} (C) x (D) $\left(3-x^{3}\right)$

Answer
$f: \mathbf{R} \rightarrow \mathbf{R}$ is given as $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$.

$$
\begin{aligned}
& f(x)=\left(3-x^{3}\right)^{\frac{1}{3}} \\
& \begin{aligned}
\therefore f \circ f(x)=f(f(x)) & =f\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)=\left[3-\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)^{3}\right]^{\frac{1}{3}} \\
& =\left[3-\left(3-x^{3}\right)\right]^{\frac{1}{3}}=\left(x^{3}\right)^{\frac{1}{3}}=x
\end{aligned}
\end{aligned}
$$

$\therefore f \circ f(x)=x$
The correct answer is C .

Question 14:

Let $f: \mathbf{R}-\left\{-\frac{4}{3}\right\} \rightarrow \mathbf{R}$ be a function defined as $f(x)=\frac{4 x}{3 x+4}$. The inverse of f is map g :
Range $f \rightarrow \mathbf{R}-\left\{-\frac{4}{3}\right\}$ given by
(A) $g(y)=\frac{3 y}{3-4 y}(\mathrm{~B}) \quad g(y)=\frac{4 y}{4-3 y}$
(C) $g(y)=\frac{4 y}{3-4 y}$ (D) $g(y)=\frac{3 y}{4-3 y}$

Answer

It is given that $f: \mathbf{R}-\left\{-\frac{4}{3}\right\} \rightarrow \mathbf{R}$ is defined as $f(x)=\frac{4 x}{3 x+4}$.
Let y be an arbitrary element of Range f.
Then, there exists $x \in \mathbf{R}-\left\{-\frac{4}{3}\right\}$ such that $y=f(x)$.
$\Rightarrow y=\frac{4 x}{3 x+4}$
$\begin{aligned} & \begin{array}{c}3 x+4 \\ \Rightarrow \\ \Rightarrow x y+4 y=4 x\end{array} \quad \begin{array}{ll}x-3 y)=4 y\end{array} \text { Let us define } g: \text { Range }\end{aligned} f \rightarrow \mathbf{R}-\left\{-\frac{4}{3}\right\}$ as $g(y)=\frac{4 y}{4-3 y}$.
$\Rightarrow x=\frac{4 y}{4-3 y}$

Now, $(g \circ f)(x)=g(f(x))=g\left(\frac{4 x}{3 x+4}\right)$

$$
=\frac{4\left(\frac{4 x}{3 x+4}\right)}{4-3\left(\frac{4 x}{3 x+4}\right)}=\frac{16 x}{12 x+16-12 x}=\frac{16 x}{16}=x
$$

$$
\text { And, }(f \circ g)(y)=f(g(y))=f\left(\frac{4 y}{4-3 y}\right)
$$

$$
=\frac{4\left(\frac{4 y}{4-3 y}\right)}{3\left(\frac{4 y}{4-3 y}\right)+4}=\frac{16 y}{12 y+16-12 y}=\frac{16 y}{16}=y
$$

$$
\begin{aligned}
& \quad g \circ f=\mathrm{I}_{\mathrm{R}-\left\{-\frac{4}{3}\right\}} \text { and } f \circ g=\mathrm{I}_{\mathrm{Range} f} \\
& \therefore
\end{aligned}
$$

Thus, g is the inverse of f i.e., $f^{-1}=g$.
Hence, the inverse of f is the map $g:$ Range $f \rightarrow \mathbf{R}-\left\{-\frac{4}{3}\right\}$, which is given by $g(y)=\frac{4 y}{4-3 y}$.
The correct answer is B.

