Ex-12.1

Q1. A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side 'a'. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board ?

Sol. The equilateral triangle each side $=\mathrm{a}$
Its semiperimeter $=\frac{a+a+a}{2}=\frac{3}{2} a$
By Heron's formula, the area of the triangle

$$
=\sqrt{\frac{3}{2} a \times\left(\frac{3}{2} a-a\right) \times\left(\frac{3}{2} a-a\right) \times\left(\frac{3}{2} a-a\right)}=\frac{\sqrt{3}}{4} a^{2}
$$

When perimeter of the triangle is 180 cm , we have $3 \mathrm{a}=180 \mathrm{~cm}$ i.e., $\mathrm{a}=60 \mathrm{~cm}$. Then the area of the triangle

$$
=\frac{\sqrt{3}}{4}(60)^{2} \mathrm{~cm}^{2}=900 \sqrt{3} \mathrm{~cm}^{2}
$$

Q2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m (see Fig.). The advertisements yield as earning of Rs. 5000 per m^{2} per year. A company hired one of its walls for 3 months. How much rent did it pay?

Sol. Sides of the two equal triangular walls below the bridge are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m .
$\mathrm{s}=\frac{122 \mathrm{~m}+22 \mathrm{~m}+120 \mathrm{~m}}{2}=132 \mathrm{~m}$
Area of one triangular wall

$$
\begin{aligned}
& =\sqrt{132 \times(132-122) \times(132-22) \times(132-120)} \mathrm{m}^{2} \\
& =\sqrt{132 \times 10 \times 110 \times 12} \mathrm{~m}^{2}=1320 \mathrm{~m}^{2}
\end{aligned}
$$

Company hired only one wall for 3 months. Thus, earning from advertisements for 3 months at the rate of Rs. 5000 per m^{2} per year.

$$
=\text { Rs. } 5000 \times \frac{3}{12} \times 1320=\text { Rs. } 16,500,00
$$

Q3. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN" (see Fig.). If the sides of the wall are $15 \mathrm{~m}, 11$ m and 6 m , find the area painted in colour.

Sol. The sides of the triangular wall be $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m .

$$
\mathrm{s}=\frac{15 \mathrm{~m}+11 \mathrm{~m}+6 \mathrm{~m}}{2}=16 \mathrm{~m}
$$

Area of the wall $=\sqrt{16 \times(16-15) \times(16-11) \times(16-6)} \mathrm{m}^{2}$

$$
=\sqrt{16 \times 1 \times 5 \times 10} \mathrm{~m}^{2}=20 \sqrt{2} \mathrm{~m}^{2}
$$

Q4. Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Sol. $\mathrm{a}=18 \mathrm{~cm}$,
$\mathrm{b}=10 \mathrm{~cm}$
Perimeter $=42$
we have $\mathrm{a}+\mathrm{b}+\mathrm{c}=42$
$\Rightarrow \mathrm{c}=14$
$\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{42}{2}=21$
Area of

$$
\begin{aligned}
\Delta & =\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=\sqrt{21(21-18)(21-10)(21-14)} \\
& =\sqrt{21(3)(11)(7)}=3.7 \sqrt{11} \\
& =21 \sqrt{11} \mathrm{~cm}^{2}
\end{aligned}
$$

Q5. Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.

Sol. Let the sides of triangle be $12 \mathrm{k}, 17 \mathrm{k}, 25 \mathrm{k}$
Perimeter $=12 \mathrm{k}+17 \mathrm{k}+25 \mathrm{k}=54 \mathrm{k}$.
$\Rightarrow 54 \mathrm{k}=540$
$\mathrm{k}=10$
$\Rightarrow \mathrm{a}=12 \times \mathrm{k}=12 \times 10=120$
$\mathrm{b}=17 \times \mathrm{k}=17 \times 10=170$
c $=25 \times \mathrm{k}=25 \times 10=250$

$$
\begin{aligned}
& \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2} \\
& =\begin{aligned}
\therefore \quad \text { Area } & =\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\
& =\sqrt{270(270-120)(270-170)(270-250)} \\
& =\sqrt{270(150)(100)(20)} \\
& =3 \times 30 \times 5 \times 20 \mathrm{~cm}^{2}=9000 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

Q6. An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of triangle.
Sol. $\mathrm{a}=12 \mathrm{~cm}$
$\mathrm{b}=12 \mathrm{~cm}$
Perimeter $=30 \mathrm{~cm}$
$\Rightarrow \mathrm{c}=30-24=6 \mathrm{~cm}$
$\mathrm{s}=\frac{30}{2}=15 \mathrm{~cm}$

$\therefore \quad$ Area $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{15(15-12)(15-12)(15-6)}$
$=\sqrt{15.3 .3 .9}=9 \sqrt{15} \mathrm{~cm}^{2}$

