

1st March - 13th March

∜Saral

- IIT Bombay, Metallurgy
- > Online Creativity & Visualization Expert
- Mentored Lakhs of Students

Master Planners & Faculties

∜Saral

9nfinity

- IIT Bombay, CS
- AIR-41 INT-JEE
- > Air-71 AIEEE (JEE Main)
- AIR-4 NSO
- > 1% In Top INPHO
- > 8+ Years of Teaching Experience
- Mentored Lakhs of Students

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Get it on Google Play

Get Top Ranks in IIT-JEE/NEET with eSaral APP

> 30+ years of Teaching Experience

➤ Mentored over 3,00,000 Students

Google Play

Master Planners & Faculties

&Saral

Visualisation

Audio Visual Learning

Dr. Anshuman Agarwal eSaral Biology Faculty

- MBBS, MD, FIPM
- AIR-196 AIPMT(NEET)
 - ARR-46, RPMT
- NTSE Scholar
 - (Ex HoD Biology), Resonance, Kota
- 10+ years of Teaching Experience
- Mentored over thousands of doctors

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Get it on Google Play


Master Planners & Faculties

Dr. Kushika Taneja eSaral Biology Faculty

- Ex-HoD Biology, Pace IIT and Medical, Indore
- Biology faculty at Rao Academy, Kota
- > 7+ years of Teaching Experience
- Mentored over thousands of doctors

Get Top Ranks in IIT-JEE/NEET with eSaral APP

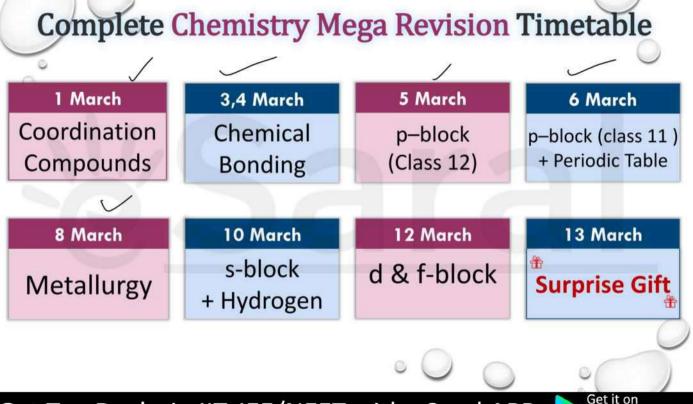
What you get inside eSaral course? 👻

- Study from Kota's Top IITian Faculties
- 650+ Hours of PCM Videos Lectures with
- best Visualisation
- 30000+ Solved Qs
- Personalised date wise Time-table
- Live 4-Layered Doubt Solving System
- ➤ Personalised 3-Layered One to One

Mentorship

➤ 115 Fully Solved Topic wise segregated Practice Sheets with homework index & video solutions

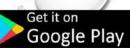
- > Solved Prev 10 years Chapterwise Qs
- Quick Revision Video Lectures and 90+ Mind Maps
- > 97 JEE Main and 94 JEE advanced 1hr Topic wise Tests
- > 3 Hour Regular Review tests and Test Series
- > Instant Test Analysis Report
- Regular Motivation and Strategy Sessions


mw

Complete Chemistry Mega Revision PYOs & Quiz Timetable Prod rahi page Pructice makes Parfect 2 March 4 March 5 March 7 March Coordination Chemical Banding Publick (Class 12)

Coordination
Compounds
PYQs (JELINEET)
Quiz

4 March
Chemical Bonding
PYQs
Quiz


p-block (Class 12)
PYQs
Quiz

7 March
p-block (class 11)
and Periodic Table
PYQs
Quiz

11 March Metallurgy PYQs Quiz

12 March s-block + Hydrogen PYQs Quiz 13 March d & f-block PYQs **Quiz**

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Priodic 15-18 group **GROUP-15 ELEMENTS** (N, P, As, Sb, Bi)बीमार आश् सब नानी पापा

Nitrogen Family

Electronic Configuration

The valence shell electronic configuration of these elements is ns²np³.

Atomic And Ionic Radii Covalent radius N < P < As < Sb < Bi**Ionisation Enthalpy** N > P > As > Sb > Bi (IE_1 values) +5 (+) Electronegativity N > P > As > (5b = Bi (1.9)) Inport pair

Physical Properties

(i) All the elements of this group are polyatomic.

Dinitrogen is a diatomic gas while all others are solids.

(ii) Metallic character increases down the group ★

Chemical Properties

i) The common oxidation states of these elements are -3, +3 and +5.

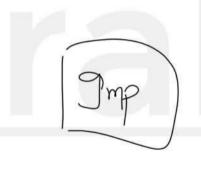
Dinitrogen //

Laboratory Preparation

$$NH_{4}Cl(aq) + NaNO_{2}(aq) \longrightarrow N_{2}(g) + 2H_{2}O(\ell) + NaCl (aq)$$

$$(NH_{4})_{2}Cr_{2}O_{7} \xrightarrow{Heat} N_{2} + 4H_{2}O + Cr_{2}O_{3}$$

Reaction with Non-Metals


It combines with hydrogen at about 773 K in the presence of a catalyst (Haber's Process) to form ammonia

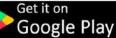
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

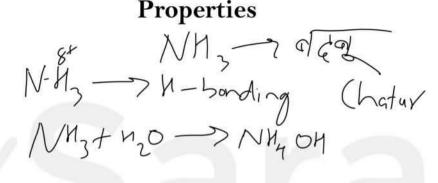
Ammonia

Preparation

Ammonia is present in small quantities in air and soil where it is formed by the decay of nitrogenous organic matter e.g., urea.

 $NH_2CONH_2 + 2H_2O \longrightarrow (NH_4)_2CO_3 \rightleftharpoons (2NH_3) + H_2O + CO_2$


$$2NH_4Cl + Ca(OH)_2 \longrightarrow 2NH_3 + 2H_2O + CaCl_2$$

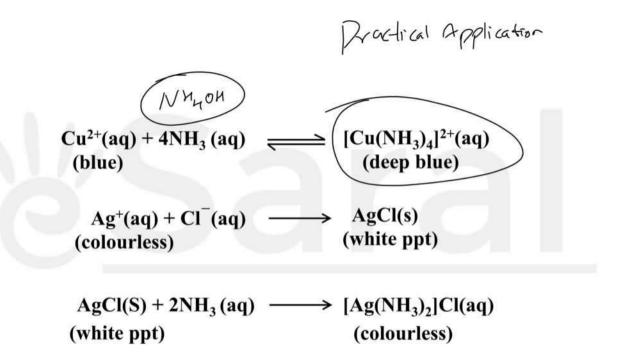

$$(NH_4)_2SO_4 + 2NaOH \longrightarrow 2NH_3 + 2H_2O + Na_2SO_4$$

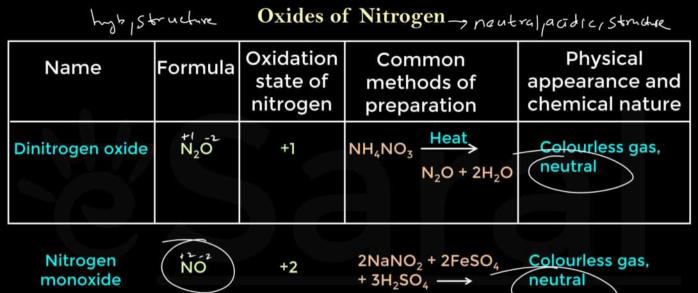
Large scale manufacturing (<u>Haber</u>'s Process)

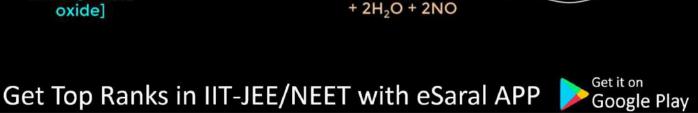
$$N_2(g) + 3H_2(g) \iff 2NH_3(g)$$

$$\Delta_{\rm f} {\rm H}^{\odot}$$
 = - 46.1 kJ mol⁻¹

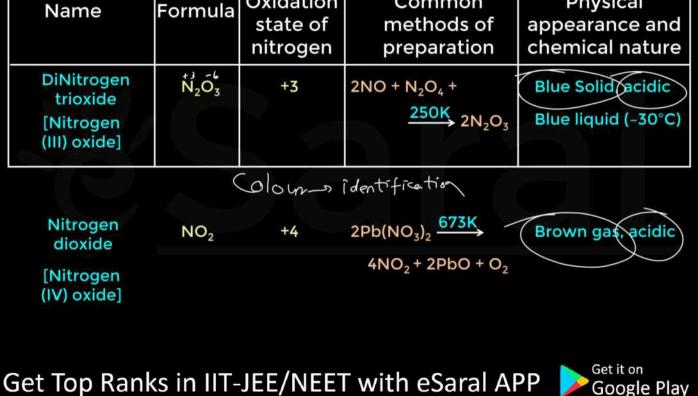

pungent odour, 2. Its freezing and boiling points


are 198.4 and 239.7 K respectively.

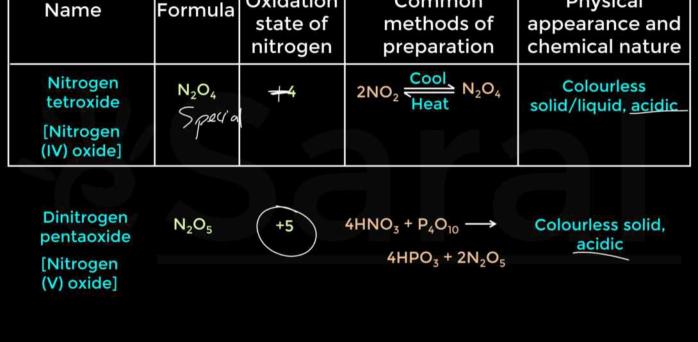

1 is a colourless gas with a


3.Ammonia gas is highly soluble

in water.



[Nitrogen (II)

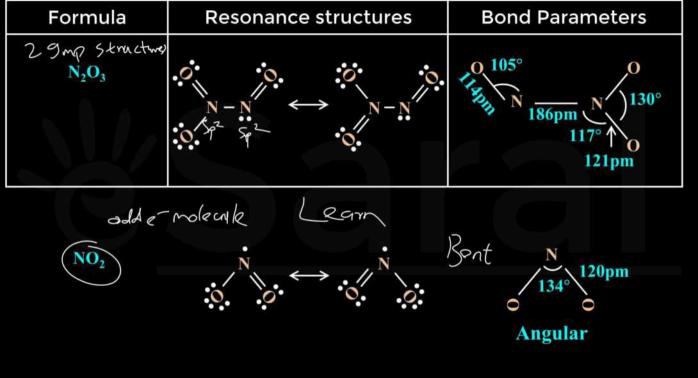

Fe₂(SO₄)₃ + 2NaHSO₄

Common

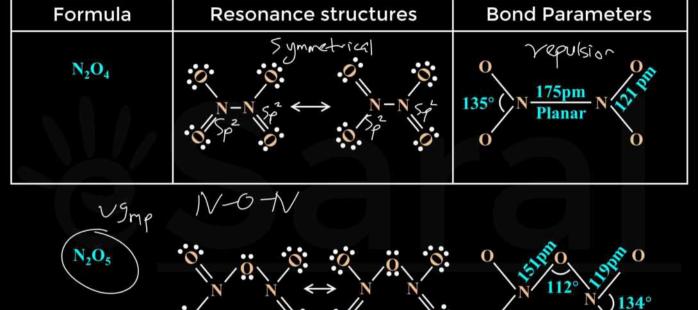
Physical

Oxidation

Common


Physical

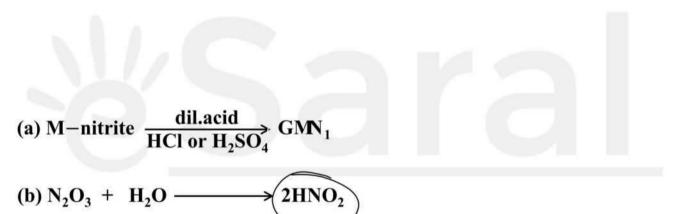
Oxidation


Get it on Get Top Ranks in IIT-JEE/NEET with eSaral APP Google Play

Structure of Oxides of Nitrogen

Formula	Resonance structures	Bond Parameters
N_2O	$N = N = 0 \longleftrightarrow N = N - 0$ Sp $Linear$	N — N — 0 113pm 119pm Linear
NO	:N=0 ←→:N=0	N — O 115pm

Get Top Ranks in IIT-JEE/NEET with eSaral APP Google Play



Get it on Get Top Ranks in IIT-JEE/NEET with eSaral APP Google Play

Planar

Nitrous Acid (HNO_o)

Preparation

Properties 13 - 143 Properties Because of its easy oxidation to Good oxidising agent liberate nascent oxygen, it acts as a strong oxidant P-block elements
d-block elements $2HNO_2 \longrightarrow H_2O + 2NO + [O]$ intermediate oxidation Nitrous acid also acts as a reducing reducing agent as it can be oxidised into nitric acid. $2KMnO_4 + 5HNO_2 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 5HNO_3 + 3H_2O_4$

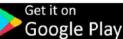
Nitric Acid

HNO3 -> bagp Oxidat

Laboratory Method

By heating KNO_3 or $NaNO_3$ and concentrated H_2SO_4 in a glass retort.

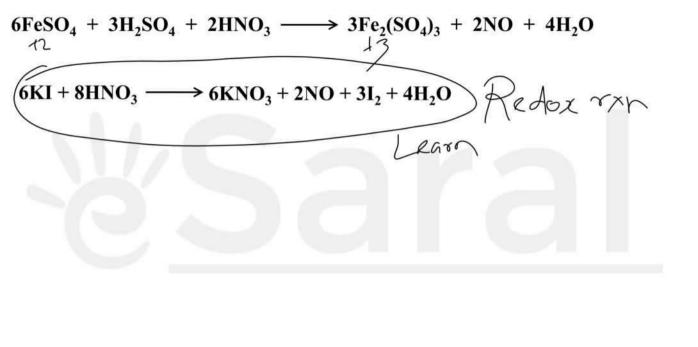
 $KNO_3 / NaNO_3 + H_2SO_4 \longrightarrow KHSO_4 / NaHSO_4 + HNO_3$


(i) This method is based upon catalytic oxidation of NH₃ by atmospheric Oxygen.

Get it on Google Play

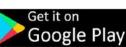
Physical Properties

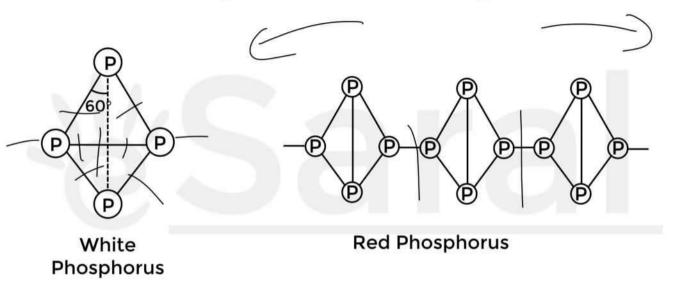
$$4HNO_3 \xrightarrow{Sunlight} 4NO_2 + 2H_2O + O_2$$


Chemical Properties

-> Highest oxidising **Oxidising Nature** Nitric acid acts as a strong oxidising agent as it decomposes to give nascent Oxygen easily. $S + 6HNO_3 \longrightarrow H_2SO_4 + 6NO_2 + 2H_2O$ Conc. and hot

C + 4HNO₃ \longrightarrow H₂CO₃ + 4NO₂ + 2H₂O Sb + 5HNO₃ \longrightarrow H₃SbO₄ + 5NO₂ + H₂O (conc. and hot)


Get Top Ranks in IIT-JEE/NEET with eSaral APP



Uses

The major use of nitric acid is in the manufacture of ammonium nitrate for fertilizers and other nitrates for use in explosives and pyrotechnics.

Allotropic Forms of Phosphorus

Note

Ghar waapas mat jao

If white Phosphorus is heated to about 250°C, or a lower temperature in the presence of sunlight, then red phosphorus is formed.

Black Phosphorus has two forms α -black Phosphorus and β -black Phosphorus.

 α -black Phosphorus is formed when red Phosphorus is heated in a sealed tube at 803K.

Get Top Ranks in IIT-JEE/NEET with eSaral APP Goog

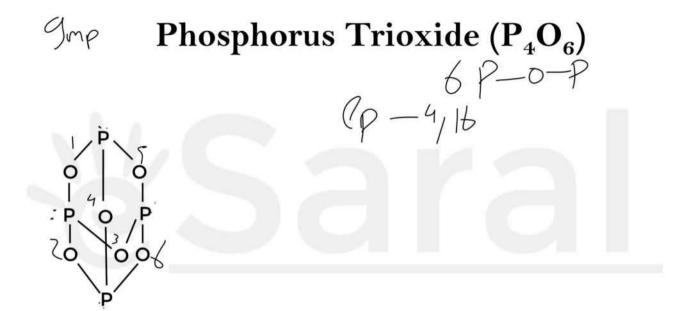
Comparison Between White And Red Phosphorus

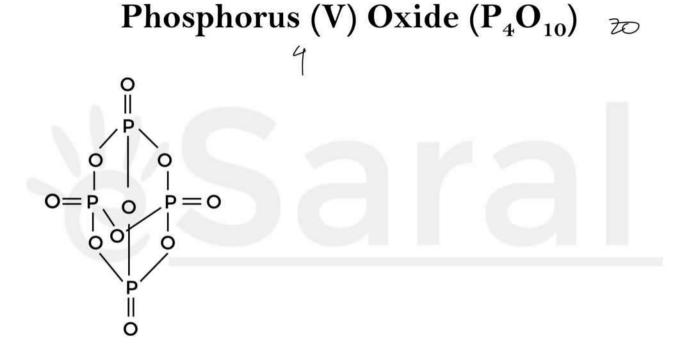
Property	White Phosphorus	Red Phosphorus
Physical state	Soft waxy solid.	Brittle powder
Colour	White when pure. Attains yellow colour on standing.	Red
Solubility in CS ₂	Soluble	Insoluble
Property	White Phosphorus	Red Phosphorus
Physiological / action	Poisonous	Non-poisonous
Chemical activity	Very active	Less active
Molecular formula	P ₄	Complex polymer

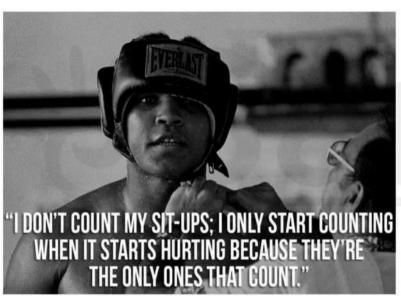
Phosphine is prepared by the reaction of Calcium phosphide with water or dilute HCl.

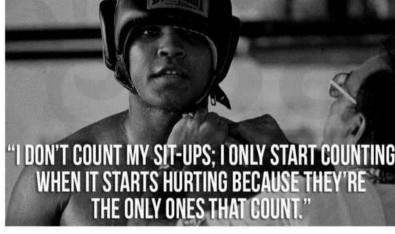
$$Ca_3P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$$

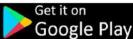
 $Ca_3P_2 + 6HCl \longrightarrow 3CaCl_2 + 2PH_3$


Laboratory preparation: it is prepared by heating white Phosphorus with concentrated NaOH solution in an inert atmosphere of CO₂.


$$P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$$
(sodium hypophosphite)


Properties


It is a colourless gas with rotten fish smell and is highly poisonous.


It explodes in contact with traces of oxidising agents like HNO₃, Cl₂ and Br₂ vapours.

Oxygen Family Group 16 Elements (O, S, Se, Te, Po) Oye Salike se Teepo

Electronic Configuration

ns²np⁴ is the general valence shell electronic configuration.

Atomic and Ionic Radii

Covalent radius O < S < Se < Te

Ionisation Enthalpy

O > S > Se > Te > Po (IE₁ values)

Electronegativity

O > S > Se > Te

Get Top Ranks in IIT-JEE/NEET with eSaral APP Soogle Play

Metallic Character

Melting and Boiling points

M.P. Te > Po > Se > S > O

B.P. Te > Po > Se > S > O

MPBBAMM

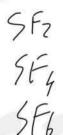
Oxygen and Sulphur are nonmetals, Selenium and Tellurium metalloids, whereas Polonium is a metal.

Oxidation states and trends in chemical reactivity 5=-21121+41+6

The stability of -2 oxidation state decreases down the group.

oxidation state.

Polonium hardly shows -2


All the elements of Group 16 form hydrides of the type H₂E (E = O, S, Se, Te, Po).

Their acidic character increases from H₂O to H₂Te.

Reactivity with Oxygen

(i) All these elements form oxides of the EO₂ and EO₃ types where E = S, Se, Te or Po.

(ii) Elements of Group 16 form a large number of halides of the type, EX₆, EX₄ and EX₂ where E is an element of the group and X is a halogen.

Dioxygen

Laboratory Method

(i) By heating Oxygen containing salts such as chlorates, nitrates and permanganates.

$$2KClO_3 \xrightarrow{\text{Heat}} 2KCl + 3O_2$$

$$2Ag_2O(s) \xrightarrow{\text{MnO}_2} 4Ag(s) + O(g)$$

$$\rightarrow$$
 4Ag(s) + O (g)

$$2Pb_3O_4(s) \longrightarrow 6PbO(s) + O_2(g)$$

$$2 \operatorname{HgO}(s) \longrightarrow 2 \operatorname{Hg}(\ell) + \operatorname{O}_2(g)$$

$$2PbO_2(s) \longrightarrow 2PbO(s) + O_2(g)$$

(ii) Hydrogen peroxide is readily decomposed into water and dioxygen by catalysts such as finely divided metals and manganese dioxide.

$$2H_2O_2(aq) \xrightarrow{/\gamma_{\sim}O_{\downarrow}} 2H_2O(\ell) + O_2(g)$$

Formation of oxide

Get Top Ranks in IIT-JEE/NEET with eSaral APP Google Play

Acidic Oxide

An oxide that combines with water to give an acid is termed acidic oxide (e.g., SO_2 , Cl_2O_7 , CO_2 , N_2O_5).

Basic Oxide

Nu20 - 120 2420

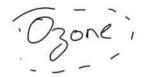
The oxides which give a base with water are known as basic oxides (e.g., Na₂O, CaO, BaO).

In general, metallic oxides are basic.

Amphoteric Oxide

Some metallic oxides exhibit a dual behaviour.

They show characteristics of both acidic as well as basic oxides. Al_2O_3 reacts with acids as well as alkalies.


Neutral Oxide

Learn this

There are some oxides which are neither acidic nor basic.

Such oxides are known as neutral oxides.

Examples of neutral oxides are $CO_1H_2O_2$, NO and N_2O_2 .

This ozone layer protects the earth's surface from an excessive concentration of ultraviolet (UV) radiations.

Ozone

There is the possibility that nitrogen oxides emitted from the exhaust systems of <u>supersonic</u> jet <u>aeroplanes</u> might be slowly depleting the concentration of the ozone layer in the upper atmosphere.

$$\underbrace{\begin{array}{c}
NO(g) + O_3(g) \\
\hline
NO_2(g) + O_2(g)
\end{array}}$$

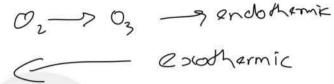
Another threat to this ozone layer is probably posed by the use of <u>freons</u> which are used in <u>aerosol sprays</u> and as refrigerants.

Preparation

Properties

Which of the following is a dix gas

(DNO) (DO) (DO) (DO)


- (i) Pure ozone is a <u>pale blue</u> gas, <u>dark blue</u> liquid and violet-black solid.
- (ii) It is diamagnetic gas.

Toxic Effect

(a) Toxic enough (more toxic than KCN).

It's intense blue colour is due to the absorption of red light.

Oxidizing Properties

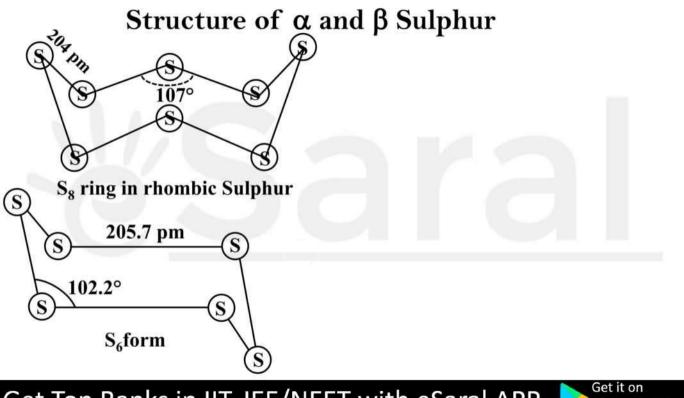
It is one of best oxidising agent, in acid solution, its standard, reduction potential value is 2.07 V.

$$O_3 + 2H^+ + 2e \longrightarrow O_2 + H_2O$$

$$E^{\circ} = +2.07 \text{ V}$$

$$PbS(s) + 4O_3(g) \rightarrow PbSO_4(s) + 4O_2(g)$$

$$2I^{-}(aq) + H_2O(\ell) + O_3(g) \rightarrow 2OH^{-}(aq) + I_2(s) + O_2(g)$$



Allotropic Forms of Sulphur

The stable form at room
temperature is Rhombic Sulphur
which transforms to Monoclinic

$$\alpha$$
-Sulphur $\frac{>369 \text{ K}}{<369 \text{ K}} \beta$ -Sulphur

Sulphur when heated above 369 K.

Get Top Ranks in IIT-JEE/NEET with eSaral APP Google Play

Rhombic Sulphur (α - Sulphur)

- (i) This allotrope is yellow in colour, m.p. 385.8 K and specific gravity 2.06.
- (ii) Rhombic Sulphur crystals are formed on evaporating the solution of roll Sulphur in CS₂.
- (iii) It is insoluble in water but dissolves to some extent in Benzene, Alcohol and

(iv) It is readily soluble in CS2.

Ether.

APP Google Play

Monoclinic Sulphur (β - Sulphur)

- (i) Its m.p. is 393 K and specific gravity 1.98.
- (ii) It is soluble in CS₂.
- (iii) This form of Sulphur is prepared by melting rhombic sulphur in a dish and cooling ,till crust is formed.

Two holes are made in the crust and the remaining liquid poured out.

> Get it on Google Play

Hydrogen Sulphide(H₂S)

Preparation

By the action of dil. HCl or H₂SO₄ on Iron Pyrites.

$$FeS + H_2SO_4 \longrightarrow FeSO_4 + H_2S$$

It is a colourless gas having an offensive smell of rotten eggs.

It burns in air with <u>blue flame</u> \mathcal{O}_{M} ?

2H₂S + O₂ \longrightarrow 2H₂O + S

It act as a reducing agent. It reduces halogen into corresponding hydroacid.

 $H_2S + X_2 \longrightarrow 2HX + S$

Sulphuric Acid 9

300 million tenne

Sulphuric acid is one of the most important industrial chemical worldwide.

Industrial Manufacturing (Contact process)

(i) Burning of Sulphur or Sulphide ores in air to generate SO₂.

The key step in the manufacture of H_2SO_4 is the catalytic oxidation of SO_2 with O_2 to give SO_3 in the presence of V_2O_5 (catalyst).

$$2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g)$$

$$\Delta_r H^{\odot} = -196.6 \text{ kJ mol}^{-1}$$

V205 catalyst re-arsible xxn

The reaction is exothermic, reversible and the forward reaction leads to a decrease in pressure.

The SO₃ gas from the catalytic converter is absorbed in concentrated H₂SO₄ to produce oleum.

Dilution of Oleum with water gives H₂SO₄ of the desired concentration.

It dissolves in water with the evolution of a large quantity of heat. Hence, care must be taken while preparing sulphuric acid solution from concentrated Sulphuric acid.

The concentrated acid must be added slowly into water with constant stirring.

Acidic Character It is a very strong acid.

Organic Chem

Concentrated sulphuric acid is a strong dehydrating agent.

Many wet gases can be dried by passing them through sulphuric acid, provided the gases do not react with the acid.

Hot concentrated Sulphuric acid is a moderately strong oxidising agent.

In this respect, it is intermediate between phosphoric and nitric acids.

Zidd

<mark>सपने</mark> उनके पूरे नहीं होते जिनके बाप बड़े होते है सपने उनके पूरे होते है जो जिद पर Elon Musk Stave Jobs Sardar Patel Jordan

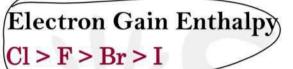
Get it on

Organds

Halogen Family Group 17 Elements (F, Cl, Br, I, At)

First Class Break Indian Auto

Electronic Configuration



The electronic configuration of outermost shell 17th group element is (ns²np⁵).

Ionisation Enthalpy

F > Cl > Br > I

Bond energy order

Oxidation States

(i) All the halogens exhibit -1 oxidation state.

However, Chlorine, Bromine and iodine exhibit +1, +3, +5 and +7 oxidation states also as explained below

Chemical Reactivity

(i) All the Halogens are highly reactive.

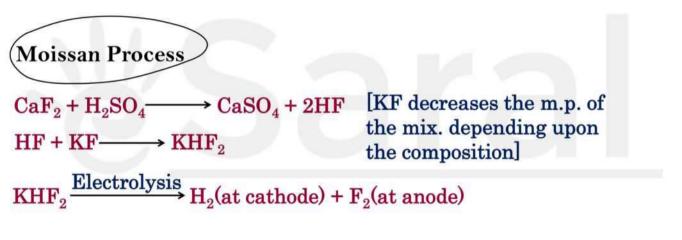
(ii) The reactivity of the halogens decreases down the group.

i.e. the order is $F_2 > Cl_2 > Br_2 >$

 ${
m I}_2$

 $2F_{2}(g) + H_{2}O(\ell) \longrightarrow 4H^{+}(aq) + 4F^{-}(aq) + O_{2}(g)$ $X_{2}(g) + H_{2}O(\ell) \longrightarrow HX(aq) + HOX(aq)$ (where X = Cl or Br) $4I^{-}(aq) + 4H^{+}(aq) + O_{2}(g) \longrightarrow 2I_{2}(s) + 2H_{2}O(\ell)$

Hydrogen Fluoride is a liquid (b.p. 293 K) due to strong Hydrogen bonding. Other Hydrogen halides are gases.


O₂F₂ oxidises Plutonium to PuF₆ and the reaction is used in removing Plutonium as PuF₆ from spent nuclear fuel.

ClO₂ is used as a bleaching agent for paper pulp and textiles and in water treatment.

> Get it on Google Play

Fluorine

Chlorine

Preparation

By electrolysis of aq. NaCl

At anode

$$2NaCl + 2H_2O \longrightarrow 2NaOH + H_2 + Cl_2$$

At cathode

$$2\text{NaCl} \xrightarrow{\text{Electrolysis}} 2\text{Na} + \text{Cl}_2$$
(Molten) (Cathode)(anode)

Deacon's Process

Industrial

By oxidation of Hydrogen Chloride gas by atmospheric Oxygen in the presence of CuCl₂ (catalyst) at 723 K.

$$4HCl + O_2 \xrightarrow{CuCl_2} 2Cl_2 + 2H_2O$$

Properties

1 Lovine

It is a greenish yellow gas with Pungent and Suffocating odour.

It is soluble in water.

Chlorine reacts with a number of metals and non-metals to form chlorides.

Get it on Google Play

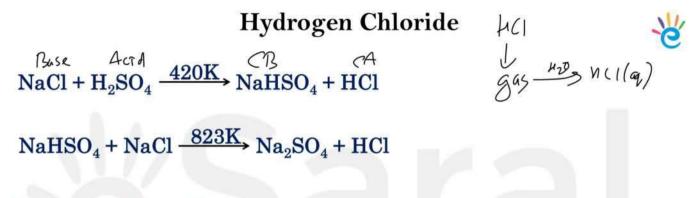
Reactivity with Ammonia

With excess Ammonia, Chlorine gives Nitrogen and Ammonium Chloride whereas with excess Chlorine, Nitrogen trichloride (explosive) is formed.

 $NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$ (excess)

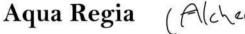
Reactivity with Alkalies

With cold and dilute alkalies
Chlorine produces a mixture of
Chloride and Hypochlorite but with
hot and concentrated alkalies it
gives Chloride and chlorate.


 $2\text{NaOH} + \text{Cl}_2 \longrightarrow \text{NaCl} + \text{NaOCl} + \text{H}_2\text{O}$

(cold and dilute)

 $6 \text{ NaOH} + 3\text{Cl}_2 \longrightarrow 5\text{NaCl} + (\text{NaClO}_3 + 3\text{H}_2\text{Cl}_3)$


(hot and conc.)

Get it on
Google Play


It is a colourless and pungent smelling acidic gas.

When three parts of concentrated HCl and one part of concentrated HNO₃ are mixed, aqua regia is formed which is used for dissolving noble metals, e.g., Gold, Platinum.

Interhalogen Compounds

When two different halogens react with each other, interhalogen compounds are formed.

They can be assigned general compositions as XX', XX₃', XX₅' and XX₇'

Where X is Halogen of larger size and X' of smaller size and X is more electropositive than X'.

Sp3d2 Saplonar

Noble Gases Family Group 18 Elements (He, Ne, Ar, Kr, Xe, Rn) He Never Argues, Kal Xero Run pe out Raha Dravid hua tha

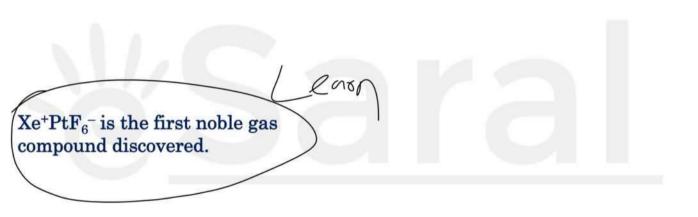
Electronic Configuration

GLIEI

General electronic configuration of 18 group element is ns²np⁶ except
Helium which has 1s².

Ionisation Enthalpy

He > Ne > Ar > Kr > Xe > Rn


He < Ne < Ar < Kr < Xe < Rn (Melting point order) \sim

Boiling point order

He < Ne < Ar < Kr < Xe < Rn \swarrow

Chemical Properties

Fluorides of Xenon OF

$$Xe(g) + F_2(g) \xrightarrow{673K, 1 \text{ bar}} XeF_2(s)$$

(xenon in excess)

$$Xe(g) + 2F_2(g) \xrightarrow{873K, 7 \text{ bar}} XeF_4(s)$$
(1:5 ratio)

XeF₂, XeF₄ and XeF₆ are colourless crystalline solids and sublime readily at 298 K.

> Get it on Google Play

Hydrolysis

Maha 9 mportent

They are readily hydrolysed even by traces of water.

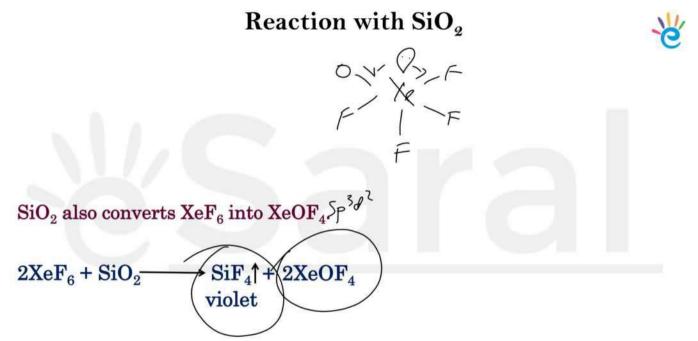
XeO4 - shydrolylsis isko produce nahi

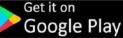
For example, XeF_2 is Hydrolysed to give Xe, HF and O_2 .

$$2XeF_2(s) + 2H_2O(1)$$
 $2Xe(g) + 4HF(aq) + O_2(g)$ $2Se^{-r}$

 $6XeF_4 + 12H_2O \longrightarrow 4Xe + 2XeO_3 + 24HF + 3O_2$ Carh

$$XeF_6 + 3H_2O \longrightarrow XeO_3 + 6 HF$$
 Carh


10-72F

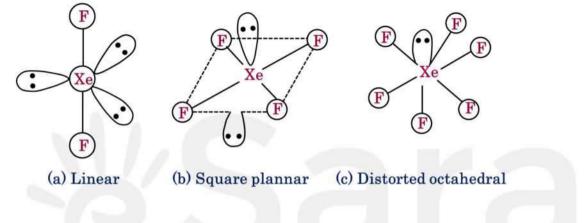

Partial hydrolysis of XeF₆ gives oxyfluorides, XeOF₄ and XeO₂F₂.

$$XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$$

$$XeF_6 + 2H_2O \longrightarrow XeO_2F_2 + 4HF$$

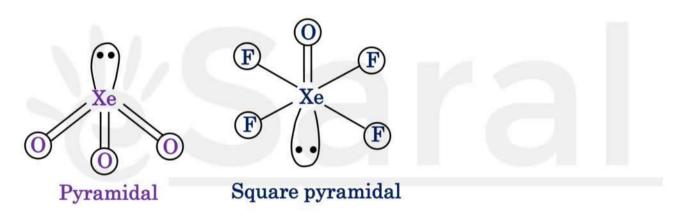
Similarly,

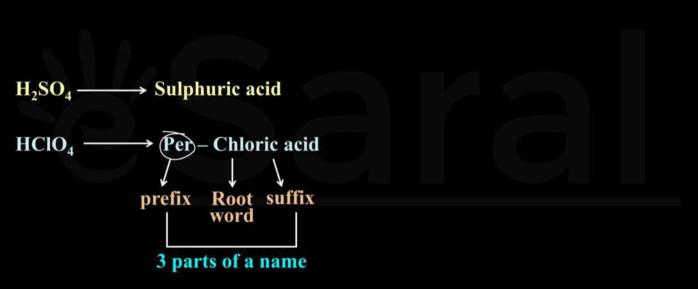
 $XeO_3 + XeOF_4 \longrightarrow 2XeO_2F_2$


 $XeO_3 + 2XeF_6 \longrightarrow 3XeOF_4$

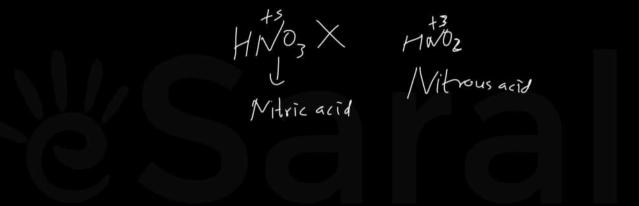
Xe - fluorides oxidise Cl^- to Cl_2 and I^- to I_2

$$XeF_2 + 2HCl \longrightarrow 2HF + Xe + Cl_2$$

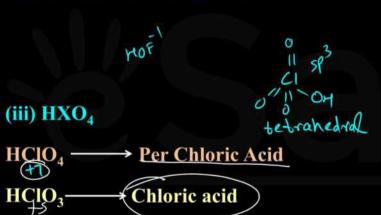

$$XeF_4 + 4KI \longrightarrow 4KF + Xe + 2I_2$$



Xenon - Oxygen Compounds



Naming of Oxyacids


Rule -1 for Suffix

(i) Suffix ic is used when the oxidation state of the central atom is maximum & ous is used when the oxidation state of central in the oxyacid is lower than the ic from of Oxyacid in general.

Exceptions

The acid of Halogen family do not follow the above rule

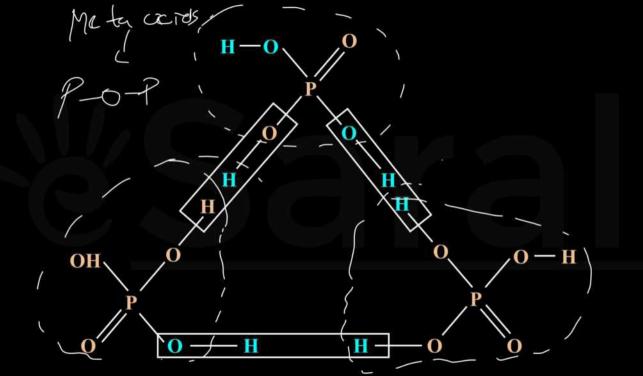
 $HClO_2 \longrightarrow Chlorous acid [Hallous acid]$

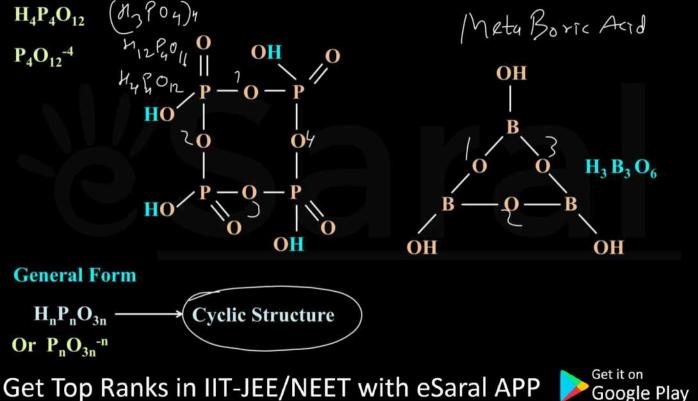
Rule – 2 'Meta' Prefix

which is obtained by the elimination of water molecule from molecule of parent acid.

(i) It is provided to that Oxy acid

Google Play


Parent acid $\xrightarrow{-H_2O}$ Meta (P.A) H_3^{+5} $\xrightarrow{-H_2O}$ $\xrightarrow{+5}$ HPO₃ Meta phosphoric acid


For n = 1Structure is not known For n = 3

Get Top Ranks in IIT-JEE/NEET with eSaral APP Google Play

 $(HPO_3)_3 \Rightarrow H_3P_3O_9$

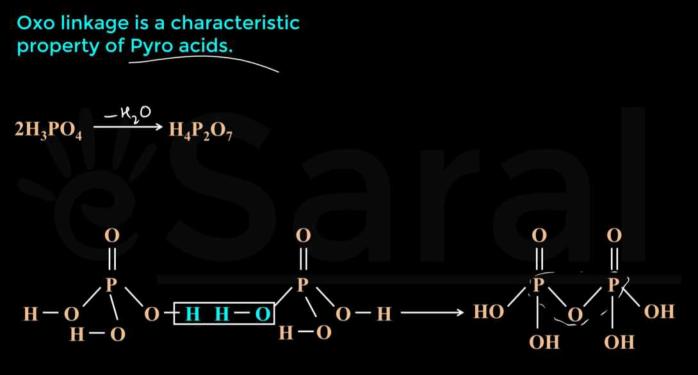
Get Top Ranks in IIT-JEE/NEET with eSaral APP Google Play

Rule - 3 'Ortho' Prefix

It is provided to ic from of that Oxyacid whose Meta derivative is possible

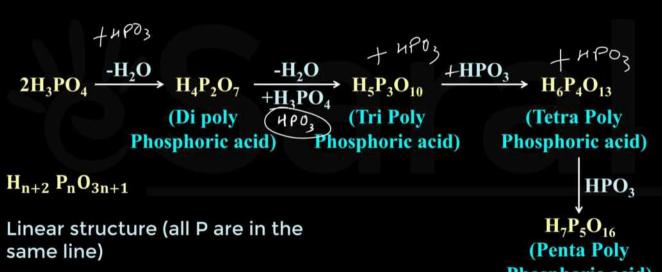
H₃PO₄ also ortho Phosphoric acid

 H_3PO_4 also ortho Phosphoric acid $H_3BO_3 \rightarrow \text{ ortho B.A}$


[Exception $H_3PO_3 \rightarrow Ortho Phosphourous acid]$

Rule - 4 'Pyro' Prefix 9_{mp}

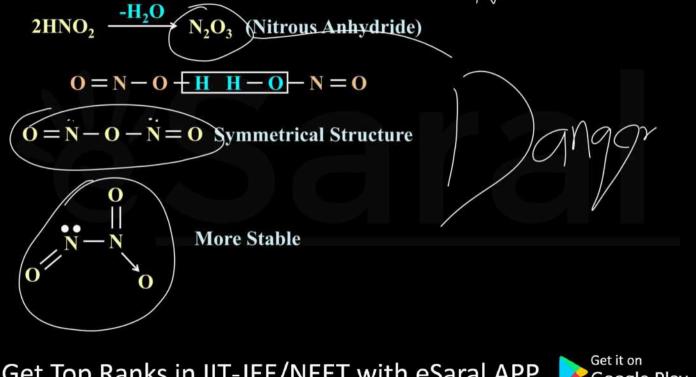
'Pyro' prefix is provided to that derivative of parent acid which is obtained by the elimination of water molecule from 2 molecule of the parent acid.



2H2SO3 -H2O H2S2O5 pyro sulphurous acid

 $\begin{array}{c|c}
\mathbf{O} & \mathbf{O} \\
\parallel & \parallel \\
\mathbf{H} - \mathbf{O} - \mathbf{S} - \mathbf{S} - \mathbf{O} - \mathbf{H}
\end{array}$

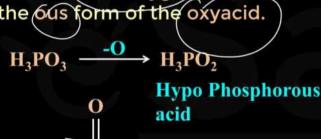
Series of Poly Phosphoric acid


Phosphoric acid)

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Google Play

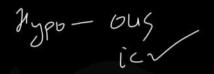
Metu-> Cyclic Str Pyro -> Linear


 $H_7P_5O_{16}$

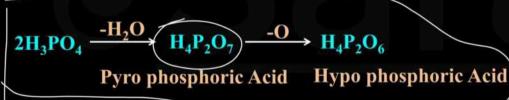
Get Top Ranks in IIT-JEE/NEET with eSaral APP Google Play

Rule - 5 'Hypo' Prefix

Hypo prefix is provided to that oxyacid which is obtained by the removel one Oxygen atom from the ous form of the oxyacid.


Geometrical Isomerism Trans - Hyponitrous acid Cis – Hyponitrous acid

Get Top Ranks in IIT-JEE/NEET with eSaral APP


Get it on

Google Play

 $2(HNO) \longrightarrow H_2N_2O_2$

Hypo Phosphoric acid H₄P₂O₆

Exception - instead of ous, ic

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Rule - 6 'Per' Prefix

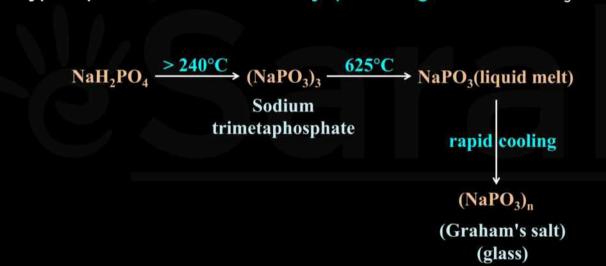
Per prefix is provided to that Oxyacid which is obtained by the addition of Oxygen atom in the ic from of Oxyacid.

(ic)

The acids which contain P-H bond have strong reducing properties.

rous acid

Thus, hypophosphorous acid is a good reducing agent as it contains two P-H bonds and reduces, $AgNO_3$ to Metallic silver.


Heating Effect

$$H_3PO_2 \xrightarrow{140^{\circ}C} PH_3 + H_3PO_4$$

$$\begin{array}{c|c} H_3PO_4 & \xrightarrow{Gentle\ heat} & H_4P_2O_7 & \xrightarrow{Strong\ heat} & (HPO_3)_n \\ Orthophosphoric & Pyrophosphoric & Metaphosporic acid & acid & acid & \end{array}$$

Graham's salt is the best known of these long chain Polyphosphates, and is formed by quenching molten NaPO₃.

