Physics Mega Revision #3

MEC, Magnetism & Matter, EMI & AC **Superfast Revision**

Complete Physics Mega Revision Timetable

Faculty of the Series

Saransh Gupta Sir eSaral Physics HoD

- > IIT Bombay, CS
- > AIR-41 IIT-JEE
- > Air-71 AIEEE (JEE Main)
- > AIR-4 NSO
- ➤ 1% In Top INPHO
- > 8+ Years of Teaching Experience
- Mentored Lakhs of Students

Magnetic Effect of Current Superfast Revision

8

Biot-Savart Law

Then according to Biot-Savart law

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i d\vec{\ell} \times \vec{r}}{r^3}$$

 $\mu_0 \rightarrow Permeability of Free Space$

$$\mu_0 = 4\pi \times 10^{-7} \, \text{Tm/A}$$

SI unit of magnetic field (\vec{B}) is Tesla (T)

Smaller unit of magnetic field (\vec{B}) is Gauss

$$1Gauss = 10^{-4} T$$

Get it on Google Play

Magnetic Field Intensity due To Straight Current Carrying Wire

In this case Magnetic field lines are <u>circular with their centres on</u> the wire.

Magnetic field lines form continuous closed loops.

R is perpendicular distance of P from wire

MFI Due To Semi ∞ Wire

MFI Due To ∞ Wire

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Get it on Google Play

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Get it on Google Play

Magnetic Field at Centre of Current Carrying Circular Loop

$$B_0 = \frac{\mu_0 i}{2R}$$

$$Jrick \bigcirc -90^\circ \Rightarrow et(enter)$$

Magnetic Field Lines due to a Current Carrying Loop

Ampere's Circuital Law

MFI due to Current Carrying & Long Hollow Cylinder

MFI due to Current Carrying ∞ Long Solid Cylinder

Solenoid

Long Solenoid

Solenoid's length is large compared to its radius (L>>r).

'n' turns per unit length.

MFI inside is uniform and axial $B = \mu_0 ni$

MFI outside solenoid is zero.

MFI at ends is $\frac{\mu_0 n}{2}$

Toroid

Magnetic Force on a Moving Charge Particle

As per the equation

$$\vec{F} \perp \vec{v} \qquad \vec{F} \perp \vec{B}$$

$$p = \vec{F} \cdot \vec{v} = 0$$

Work done by magnetic force is always zero.

That means speed of a particle moving in magnetic field region alone remains constant.

$$\vec{F}_{m} = q(\vec{v} \times \vec{B})$$

$$\vec{F} \perp \vec{v}$$

Motion of a Charged Particle in Uniform Magnetic Field

Case 1: Motion of particle in plane \perp to \overrightarrow{B}

Magnetic Force on a Moving Charged Particle

Case 2: If \overrightarrow{v} is not \bot to \overrightarrow{B}

$$B \equiv \Longrightarrow_{V} B + \Longrightarrow_{V_{\perp} = v \sin \theta}$$

$$T = \frac{2\pi m}{qB}$$

Radius of Helix (R) is radius of circular component of motion.

$$R = \frac{mv_{\perp}}{qB} = \frac{mvsin\theta}{qB}$$

Pitch =
$$(v \cos \theta) T$$

= $\frac{2\pi m v \cos \theta}{aB}$

Motion of Charged Particle in Presence of Both \overrightarrow{E} and \overrightarrow{B}

$$\vec{F} = \vec{F}_E + \vec{F}_B$$

$$\vec{F} = q\vec{E} + q(\vec{v} \times \vec{B})$$

Lorentz force

Cyclotron

Cyclotron frequency

$$\Gamma = \frac{2\pi m}{aB}$$
 $f_c = \frac{qB}{2\pi m}$

Cyclotron uses the fact that frequency of revolution of charged particle in magnetic field is independent of its speed or radius of orbit.

$$f_{osc} = f_c$$

Resonance Condition

Magnetic Force on a Current Carrying Wire Kept in Magnetic Field

 \overrightarrow{B} is Uniform and Wire is Straight

$$\overrightarrow{F} = i \overrightarrow{\ell} \times \overrightarrow{B}$$

1) B Sin Q

B Uniform and Arbitrary Shaped Wire

Net magnetic force on closed loop due to uniform \vec{B} is zero.

Magnetic Force Between Two Current Carrying Wires

Case 1 When wires are parallel to each other

Magnetic Force Between Two Current Carrying Wires

Case 2 When wires are perpendicular to each other.

Magnetic Moment

$$\vec{\mu} = N i \vec{A} \longrightarrow Area vector of the loop$$

Magnetic Moment of the loop

Key Point

Magnetic field try to align $\vec{\mu}$ along \vec{B} from smaller angle side.

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Magnetic Moment due to Rotation of Charge

Moving Coil Galvanometer

Cylindrical soft iron core makes field radial and also increases its strength.

$$\tau = NIAB = k\theta$$
 Deflection in G $\theta = \frac{NIAB}{k}$

Current Sensitivity
$$=\frac{\theta}{I} = \frac{NAB}{k}$$

Voltage Sensitivity =
$$\frac{\theta}{V} = \frac{NAB}{kR}$$

Total Resistance of Coil

Lets Meditate !!

Magnetism & Matter Superfast Revision

Magnetic Field Lines

The magnetic field lines of a magnet form continuous closed loops.

The magnetic field lines of a solenoid form continuous closed loops.

Magnetic Field Lines

The magnetic field lines do not intersect.

Magnetic field lines always form closed loops.

Electrostatic Analog

$$\overrightarrow{\mathbb{B}}$$
 $\overrightarrow{\overline{m}}$

$$\vec{B}_{axial} = \frac{\mu_0}{4\pi} \frac{2 \vec{m}}{r^3}$$

$$\vec{B}_{eq} = -\frac{\mu_0}{4\pi} \ \frac{\vec{m}}{r^3}$$

$$\vec{E}$$
 \vec{p}
 $\frac{1}{2}$

$$\vec{E}_{\text{axial}} = \frac{1}{4\pi\varepsilon_0} \frac{2\,\vec{p}}{r^3}$$

$$\vec{E}_{eq} = -\frac{1}{4\pi\epsilon_0} \ \frac{\vec{p}}{r^3}$$

Get it on Google Play

Electrostatic Analog

$$\vec{\tau} = \vec{m} \times \vec{B}$$
 $\vec{\tau} =$

$$U = -\overrightarrow{m}.\overrightarrow{B}$$

$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$U = -\vec{p} \cdot \vec{E}$$

Dipole in Uniform Magnetic Field

Q) A magnetic needle of magnetic moment 6.7×10^{-2} Am² and moment of inertia 7.5×10^{-6} Kg m² is performing simple harmonic oscillation in a magnetic field of 0.01 T. Time taken for 10 complete oscillations is

Sol.

$$T = 2\pi \sqrt{\frac{I}{mB}}$$

Magnetisation

Magnetisation

$$\overrightarrow{M} = \frac{\overrightarrow{m}_{net}}{V} = \frac{\text{Net Magnetic Moment}}{\text{Volume}}$$

 \vec{B} = Net Magnetic Field

 \vec{B}_0 = External Magnetic Field

 \vec{B}_{m} = Magentic Field contributed by the material core

$$\mu_0$$
 = Permeability of Vacuum

$$\vec{H}$$
 = Magnetic Intensity

$$\overrightarrow{M}$$
 = Magnetisation

$$\chi = Magnetic Susceptibility$$

 μ_r = Relative Permeability of medium w.r.t. vacuum

 μ = Permeability of Medium

$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

$$\vec{M} = \chi \vec{H}$$

Classification of Magnetic Materials

$$M_8 = 14$$
 $M = M_8$
 M_0

Properties	<u>Diamagnetic</u>	<u>Paramagnetic</u>	<u>Ferromagnetic</u>
$\begin{array}{c} \chi \\ \mu_{r} \\ \mu \end{array}$	$\frac{-1 \le \chi < 0}{0 \le \mu_{r} < 1}$ $\mu < \mu_{0}$	$\begin{array}{c} 0 < \chi < k \\ 1 < \mu_{r} < 1 + k \\ \mu > \mu_{0} \end{array}$	$\chi >> 1$ $\mu_r >> 1$ $\mu >> \mu_0$
Magnetisation	Weak Magnetisation in opposite direction	Weak Magnetisation in Same direction	Strong Magnetisation in Same direction

Bm

Properties	Diamagnetic	Paramagnetic	Ferromagnetic
Movement in magnetic field	(Weak tendency) From strong to weak magnetic field	(Weak tendency) From weak to strong magnetic field	(Strong tendency) From weak to strong magnetic field
Magnet	Weak Repulsion	Weak Attraction	Strong Attraction

Properties	Diamagnetic	Paramagnetic	Ferromagnetic
E.g.	Bi, Au, Pb, Si, H ₂ O, NaCl, N ₂ (STP)	Al, Na, Ca, O ₂ (STP)	Fe, Co, Ni,Gd
Magnetic Field Lines	A STATE OF THE STA		

- Q) Magnetic susceptibility is negative for:
 - (1)Diamagnetic material only
 - (2) Paramagnetic material only
 - (3) Ferromagnetic material only
 - (4) Paramagentic and Ferromagnetic Materials

Ans 1

NEET 2016

- Q) A diamagnetic material in a magnetic field moves
 - (1) From stronger to the weaker parts of the field
 - (2) From weaker to the stronger parts of the field
 - (3) Perpendicular to the field
 - (4) In none of the above directions

Ans 1

AIPMT 2003

- Q) There are four light—weight rod sample A,B,C,D separately by threads. A bar magnet is slowly brought near each sample and the following observations are noted:—

 AIPMT (pre) 2011
 - (i) A is feebly repelled (ii) B is feebly attracted
 - (iii) C is strongly attracted (iv) D remains unaffected

Which one of the following is true?

- (1) B is of a paramagnetic material (2) C is of a diamagnetic material
- (3) D is of a ferromagnetic material (4) A is of a non-magnetic material

Ans 1

Paramagnetic

$$\chi = C \; \frac{\mu_0}{T} \; | \;$$

$$\chi \propto \frac{1}{T}$$
 feluir

Curie Law

Ferromagnetic

At high enough temperature, a ferromagnet becomes a paramagnet.

This temperature of transition from ferromagnetic to paramagnetic is called Curie Temperature $T_{\rm C}$.

Above Curie Temperature in paramagnetic phase,

$$\chi \propto \frac{1}{T - T_{C}} \qquad \chi \propto \frac{1}{T} \qquad T > TC$$

$$\chi = \frac{C}{T - T} \qquad \chi \propto \frac{1}{T - T}$$

Q) A paramagnetic material has 10^{28} atoms/m³. Its magnetic susceptibility at temperature 350 K is 2.8×10^{-4} . Its susceptibility at 300 K is:

JEE Main 2019 (12 Jan Shift 2)

JEE Main 2019 (12 Jan Shift 2)
(1)
$$3.672 \times 10^{-4}$$
 (2) 3.726×10^{-4} (3) 3.267×10^{-4} (4) 2.672×10^{-4}

Sol.
$$\chi \propto \frac{1}{T_C}$$
 Curie law for Paramagnetic substance

$$\frac{\chi_1}{\chi_2} = \frac{T_{C_2}}{T_{C_4}}$$

Ans 3

- Q) Nickel shows ferromagnetic property at room temperature. If the temperature is increased beyond Curie temperature then it will show:
 - (1) Diamagnetism
 - (3) Anti ferromagnetism

(2) Paramagnetism

(4) No magnetic property

Ans 2

AIPMT 2007

Magnetic Hysteresis

Retentivity (or Remanence): The value of magnetic field (B) at H=0.

Coercivity: It is the value of H applied in opposite direction to destroy residual magnetism.

Permanent Magnets

High Retentivity

High Coercivity

E.g. Steel

Electromagnets

Low Retentivity

Low Coercivity

E.g. Soft Iron

Uses: Electromagnet, Transformer, Motor, Generator Cores.

Hysteresis Loss

Hysteresis Loss: It is the energy lost in form of heat during a complete cycle of magnetization and demagnetization.

Area of hysteresis loop is proportional to the energy loss per unit volume.

- Q) Hysteresis loops for two magnetic materials A and B are given below. These materials are used to make magnets for electric generators, transformer core and electromagnet core. Then it is proper to use.
 - (1) B for electromagnets and transformers.
 - (2) A for electric generators and transformers.
 - (3X) A for electromagnets and B for electric transformers.
 - A for transformers and B for electric generators.

Ans 1

Get Top Ranks in IIT-JEE/NEET with eSaral APP

JEE Main 2016

Angle of dip (inclination) tan
$$I = \frac{Z_E}{H_E}$$

Horizontal component of Earth's magnetic field

Vertical component of Earth's magnetic field

Elements of Earth's magnetic field:

- 1) Declination (D)
- 2) Angle of dip (I)
- 3) Horizontal component of Earth's field (H_E)

Get it on Google Play

Lets Meditate !!

Master Planners & Faculties

Prateek Gupta Sir **eSaral Chemistry Faculty**

- > IIT Bombay, Metallurgy
- > Online Creativity & Visualization Expert
- Mentored Lakhs of Students

%Sara

- > IIT Kanpur, Mechanical
- Ex Vice President & Academic Head, Allen, Kota
- Mentored many of Rank 1 & Top 100 Students
- > 30+ years of Teaching Experience
- ➤ Mentored over 3,00,000 Students

Master Planners & Faculties

Dr. Anshuman Agarwal **eSaral Biology Faculty**

- MBBS, MD, FIPM
- > AIR-196, AIPMT(NEET)
- > ARR-46, RPMT
- **NTSE Scholar**
- Ex HoD Biology, Resonance, Kota
- 10+ years of Teaching Experience
- Mentored over thousands of doctors

Master Planners & Faculties

Dr. Kushika Taneja eSaral Biology Faculty

- > Ex-HoD Biology, Pace IIT and Medical, Indore
- Biology faculty at Rao Academy, Kota
- > 7+ years of Teaching Experience
- Mentored over thousands of doctors

Electromagnetic Induction Superfast Revision

Electromagnetic Induction

The phenomenon in which electric current is generated by varying magnetic fields is called Electromagnetic Induction (EMI).

Magnetic Flux

Magnetic flux through an area A is given by φ

$$\Phi = \int \vec{B} \cdot d\vec{A}$$

SI unit of φ is weber (Wb) or Tesla meter² (T m²).

If \overrightarrow{B} is uniform

$$\frac{\phi = \vec{B} \cdot \vec{A}}{\phi = |\vec{B}| \times |\vec{A}| \cos \theta}$$

Faraday's Law of Induction

$$\mathcal{E} = \left| \frac{\mathrm{d}\phi}{\mathrm{d}t} \right|$$

EMF Induced

If N turns,
$$\mathcal{E} = N \left| \frac{d\phi}{dt} \right|$$

$$<\mathcal{E}> = \left| \frac{\Delta \Phi}{\Delta t} \right|$$

Q) Find instantaneous EMF if ring is rotated about it's vertical diameter with angular speed ω rad/sec.

Sol.
$$|\epsilon| = BA\omega \sin \omega t$$

Get it on Google Play

Charge flown in time t,
$$Q = \frac{\Delta \phi}{R}$$
 Resistance

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Google Play

Lenz's Law

Induced emf opposes its cause of generation.

Lenz's law is based on law of conservation of energy.

Motional EMF

$$v_p - v_Q = B\ell v$$

Find the induced current in the circuit.

$$R^{\frac{1}{2}} \int_{-\infty}^{A} B \ell V \quad i = \frac{B \ell}{R}$$

Force and Power Analysis

$$F = F_{\text{ext}} = \frac{B^2 \ell^2 v}{R}$$

$$P_{\text{ext}} = \underbrace{F_{\text{ext}} v}_{R} = \underbrace{P_{\text{loss}}}_{R}$$

EMF due to Rotation of Wire

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Eddy Currents

Induced Electric Field

- Produced by the changing magnetic field
- Non-electrostatic and nonconservative in nature
- <u>Cannot define a potential for it</u>
- Form closed loops. No source and sink

Self Inductance

SI unit of L is henry (H)

$$1 \text{ henry} = \frac{1 \text{ Weber}}{1 \text{ Ampere}}$$

Flux through a coil having current 'i' due to its own current is φ then

$$\phi = L i$$

Self Inductance of Coil

L depends on

- Geometrical construction of coil
- Intrinsic material properties

Q) Solenoid of length ℓ is given. n is the no. of turns per unit length, A is area of cross section, and its radius is r. Find its inductance.

Sol.
$$L = \mu_0 n^2 A \ell$$
$$= \mu_0 n^2 \pi r^2 \ell$$

Symbolic Representation of Inductor

$$\varepsilon = -\frac{L \, di}{dt}$$

Growth of Current in LR Circuit

1 Time constant $'\tau' = \frac{L}{R}$

Circuit Analysis

Energy Stored in Inductor

Magnetic Energy Density

Decay of Current

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Get it on Google Play

Mutual Inductance

The overn of Reciprocity $M_{21} = M_{12}$

$$\phi_{21} = M_{21} i_1$$
 \downarrow
 $Mulval Ind af 2) wrt 0$

Inductors in Series

Inductors in Parallel

AC Generator

Lets Meditate !!

3 Layered Personalised Mentorship

&Saral हैं, तो अब अरल है।

PERSONAL ACADEMIC MENTOR

PROGRESS MENTOR
FOR TRACKING PROGRESS

LIVE MENTORSHIP SESSIONS

Saral

४Saral हैं, तो अब अरल है।

Alternating Current Superfast Revision

Alternating Current

If the direction of current changes <u>alternately</u>, it is called Alternating Current.

Pure Resistive Circuit

$$i = \frac{V}{R} = \frac{V_0 \sin(\omega t)}{R}$$

$$i = i_0 \sin(\omega t)$$

$$i_0 = \frac{V_0}{R} \qquad i_{rms} = \frac{V_{rms}}{R}$$

$$i_{rms} = \frac{i_0}{\sqrt{2}} \qquad V_{rms} = \frac{V_0}{\sqrt{2}}$$

In pure resistive circuit V and i are in same phase.

Pure Capacitive Circuit

$$V = V_0 \sin(\omega t)$$

$$i = i_0 \sin\left(\omega t + \frac{\pi}{2}\right)$$

$$i_0 = \frac{V_0}{X_C}$$

$$i_0 = \frac{V_0}{X_C} \qquad X_C = \frac{1}{\omega C}$$

(Capacitive reactance)

In pure Capacitive circuit Current leads Voltage by phase $\frac{\pi}{2}$

Pure Inductive Circuit

$$i = i_0 sin \left(\omega t - \frac{\pi}{2}\right)$$

$$i_0 = \frac{V_0}{X_L} \qquad i_{rms} = \frac{V_{rms}}{X_L} \qquad i$$

$$X_L = \omega L \text{ (inductive reactance)}$$

$$i = i_0 sin \left(\omega t - \frac{\pi}{2}\right)$$

$$V = V_0 sin \left(\omega t - \frac{\pi}{2}\right)$$

{where X_L unit is Ω }

Pure Inductive Circuit

Keypoint

$$V = V_0 \sin(\omega t)$$
 $i = i_0 \sin(\omega t - \frac{\pi}{2})$

In pure Inductive circuit Voltage leads Current by phase $\frac{\pi}{2}$

$$V = V_0 \sin(\omega t)$$

Power Analysis

Impedance

$$i_{rms} = \frac{V_{rms}}{I}$$
 $i_0 = \frac{V_0}{Z}$ Impedance \rightarrow Unit is Ω

Get it on
Google Play

L-R Circuit

$$i = i_0 \sin(\omega t)$$

$$V = V_0 \sin(\omega t + \phi)$$

R -C Circuit

$$Z = \sqrt{X_C^2 + R^2} \quad \tan \phi = \frac{X_C}{R}$$

L—C—R Circuit

$$Z = \sqrt{(X_L - X_C)^2 + R^2} \quad \tan \phi = \frac{X_L - X_C}{R}$$

L—C—R Circuit

$$\omega L > \frac{1}{\omega c}$$

If $X_L > X_C$ circuit is predominantly Inductive (V leads i)

If $X_L < X_C$ circuit is predominantly Capacitive (i leads V)

Power Delivered by Source

Resonance in LCR Circuit

$$\frac{P_{\text{max}}}{2} = \frac{1}{\sqrt{2}}$$

At Resonance

- 1) i_0 will be maximum $2 X_L = X_C$
- $4)(\cos\phi=1)$

Resonant Frequency

 $\omega_1 \ \omega_0 \ \omega_2$

$$f_0 = \frac{1}{2\pi\sqrt{L}}$$

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Quality Factor

Quality factor Q: Q-factor of AC circuit basically gives an idea about stored energy & lost energy.

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

$$W_0 = 1$$

$$W_0^2 = 1$$

Transformers

LC & Spring Block

Potential energy $\frac{1}{2}$ kx²

Magnetic energy $\frac{1}{2}$ Li²

Electrical energy

Kinetic energy $\frac{1}{2}$ mv² $\frac{Q_0^2}{2C} = \frac{1}{2} L i_0^2 = \frac{Q^2}{2C} + \frac{1}{2} L i^2$

Get Top Ranks in IIT-JEE/NEET with eSaral APP

LC & Spring Block

$$\omega = \frac{1}{\sqrt{LC}}$$
; $T = 2\pi\sqrt{LC}$

$$\omega = \sqrt{\frac{k}{m}} \quad ; \ T = 2\pi \sqrt{\frac{m}{k}}$$

Get Top Ranks in IIT-JEE/NEET with eSaral APP

39%le

SEPT. ATTEMPT

99%le

APURV PRINCE DEOGHAR, JHARKHAND

G

Get it on Google Play

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Sonish Singhal First eSaralite Physics: 99/100 Chemistry: 95/100 Maths: 97/100 PCM%: 97

In 12th 96.6% + IITian

eSaral RESULT : JEE MAIN 2020

Heartiest Congratulations

9% Students Above 99 %ile

7 Students Under AIR 1000

45% Students Qualified for JEE ADVANCED

99.97 %ile Shreyansh Agarwal Sambhav Agarwal

99.97 %ile

AIR-599 €

99.95 %ile Ayush Rai

AIR-686

99.94 %ile Gauray Misra

99.94 %ile Aditya Agarwal

AIR-842

99.93 %ile Sai Venu Gopal

AIR-879

99.93 %ile Prabhas Kumar

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Get Top Ranks in IIT-JEE/NEET with eSaral APP

Complete Physics Mega Revision Timetable

All the Best!! Macha DO

&Saral हैं, तो अब अरल है।

