Property - 6

6. The value of a determinant is not changed by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row (or column).

5. Special Determinants

1.
$$\begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} = (x - y)(y - z)(z - x)$$

2. $\begin{vmatrix} 1 & x & x^{3} \\ 1 & y & y^{3} \\ 1 & z & z^{3} \end{vmatrix} = (x - y)(y - z)(z - x)$
(x + y + z)
3. $\begin{vmatrix} 1 & x^{2} & x^{3} \\ 1 & y^{2} & y^{3} \\ 1 & z^{2} & z^{3} \end{vmatrix} = (x - y)(y - z)(z - x)$
(xy + yz + zx)
4. $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 3abc - a^{3} - b^{3} - c^{3}$
 $= -(a + b + c)(a^{2} + b^{2} + c^{2} - ab)$
 $- bc - ca)$
 $= -\frac{1}{2}(a + b + c).\{(a - b)^{2} + (b - c)^{2} + (c - a)^{2}\}$

THEOREM.

Introduction

 $\mathbf{D} = \mathbf{D}_1 \times \mathbf{D}_2$

1) Row by Row

2) Column by Row

cp + dr

JEE | NEET | Class 9,10

 $\mathbf{D} =$

Note

Equations Types of solutions Solution exist (At least one solution) No solution (Consistent) (Inconsistent) If by putting x = a the value of a determinant vanishes then, (x - a)Unique/ Exactly one sol. **Infinite solutions** will be a factor the determinant. This is known as FACTOR At least one non - zero All variables zero is the variable satisfy the system only solution 7. Multiplication of Determinants x = 0, y = 0, z = 0Non - Trivial solution **Trivial solution** Non - Zero solution $D_1 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ $D_2 = \begin{vmatrix} p & q \\ r & s \end{vmatrix}$ 9. Non – Homogeneous System $a_1x + b_1y + c_1z = d_1 \dots (i)$ $a_2x + b_2y + c_2z = d_2$ (ii) ap + br $a_3x + b_3y + c_3z = d_3 \dots$ (iii) aq + bs $\mathbf{D} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \quad \mathbf{D}_{\mathbf{x}} = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$ cq + ds(Row by column multiplication) $D_{y} = \begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix} \quad D_{z} = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}$ Multiplication can also be done Then, $\mathbf{x} = \frac{\mathbf{D}_{\mathbf{x}}}{\mathbf{D}}$ $\mathbf{y} = \frac{\mathbf{D}_{\mathbf{y}}}{\mathbf{D}}$ $\mathbf{z} = \frac{\mathbf{D}_{\mathbf{z}}}{\mathbf{D}}$ 3) Column by Column This is known as the CRAMER'S RULE Download eSaral App for

8. Cramer's Rule System of Linear

